V. Approximation Algorithms via Exact Algorithms

Thomas Sauerwald

Easter 2018

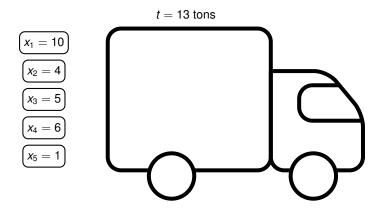
Parallel Machine Scheduling

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

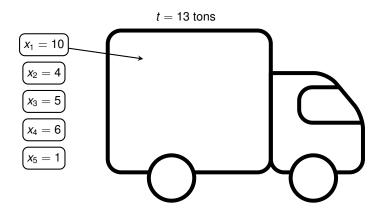
The Subset-Sum Problem Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer tGoal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

This problem is NP-hard

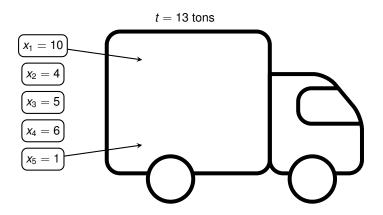
- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



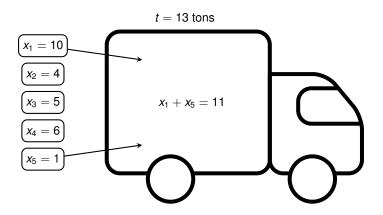
- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



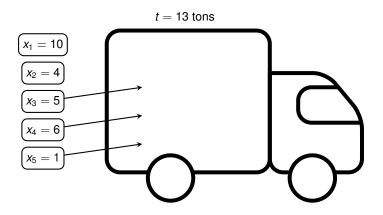
- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



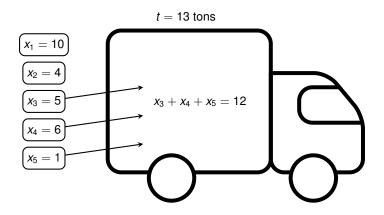
- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i) \quad \underbrace{S + x := \{s + x : s \in S\}}$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

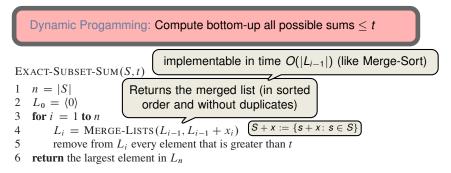
Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

 $\begin{array}{ll}
1 & n = |S| \\
2 & L_0 = \langle 0 \rangle
\end{array}$

Returns the merged list (in sorted order and without duplicates)

- 3 for i = 1 to n 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ $S + x := \{s + x : s \in S\}$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n



Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

• $S = \{1, 4, 5\}, t = 10$

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

- $S = \{1, 4, 5\}, t = 10$
- $L_0 = \langle 0 \rangle$

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

■ *S* = {1, 4, 5}, *t* = 10

•
$$L_0 = \langle 0 \rangle$$

• $L_1 = \langle 0, 1 \rangle$

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

■ *S* = {1,4,5}, *t* = 10

•
$$L_0 = \langle 0 \rangle$$

•
$$L_1 = \langle 0, 1 \rangle$$

•
$$L_2 = \langle 0, 1, 4, 5 \rangle$$

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- 1 n = |S|
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

• $S = \{1, 4, 5\}, t = 10$

•
$$L_0 = \langle 0, 1 \rangle$$

•
$$L_2 = \langle 0, 1, 4, 5 \rangle$$

• $L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle$

Dynamic Programming: Compute bottom-up all possible sums $\leq t$

EXACT-SUBSET-SUM(S, t)

- 1 n = |S|
- 2 $L_0 = \langle 0 \rangle$
- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- 5 remove from L_i every element that is greater than t
- 6 **return** the largest element in L_n

Example:

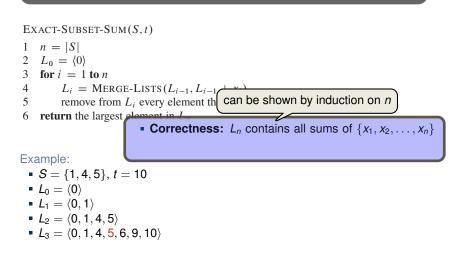
• $S = \{1, 4, 5\}, t = 10$ • $L_0 = \langle 0 \rangle$

$$L_1 = \langle 0, 1 \rangle$$

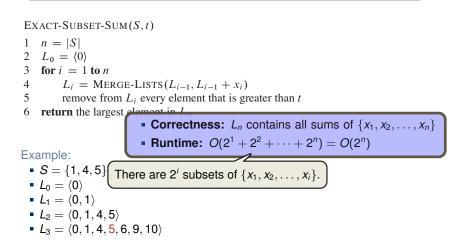
•
$$L_2 = \langle 0, 1, 4, 5 \rangle$$

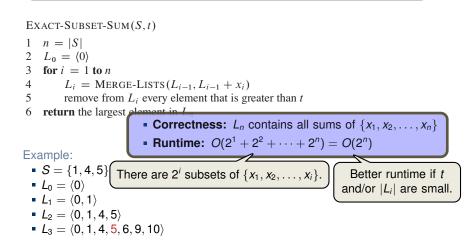
• $L_3 = \langle 0, 1, 4, \frac{5}{2}, 6, 9, 10 \rangle$


```
EXACT-SUBSET-SUM(S, t)
1
  n = |S|
2 L_0 = \langle 0 \rangle
3 for i = 1 to n
4
         L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5
          remove from L_i every element that is greater than t
6
    return the largest element in I
                             • Correctness: L_n contains all sums of \{x_1, x_2, \ldots, x_n\}
Example:
 • S = \{1, 4, 5\}, t = 10
 • L_0 = \langle 0 \rangle
 • L_1 = \langle 0, 1 \rangle
 • L_2 = (0, 1, 4, 5)
  • L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```


```
EXACT-SUBSET-SUM(S, t)
1 \quad n = |S|
2 L_0 = \langle 0 \rangle
3 for i = 1 to n
4
         L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5
         remove from L_i every element that is greater than t
6
    return the largest element in I
                             • Correctness: L_n contains all sums of \{x_1, x_2, \ldots, x_n\}
                             • Runtime: O(2^1 + 2^2 + \dots + 2^n) = O(2^n)
Example:
 • S = \{1, 4, 5\}, t = 10
 • L_0 = \langle 0 \rangle
 • L_1 = \langle 0, 1 \rangle
 • L_2 = (0, 1, 4, 5)
 • L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```



Idea: Don't need to maintain two values in *L* which are close to each other.

Idea: Don't need to maintain two values in *L* which are close to each other.

Trimming a List —

Given a trimming parameter 0 < δ < 1

Idea: Don't need to maintain two values in L which are close to each other.

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

Idea: Don't need to maintain two values in L which are close to each other.

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

Idea: Don't need to maintain two values in L which are close to each other.

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$
• $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$
• $\delta = 0.1$

Idea: Don't need to maintain two values in L which are close to each other.

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$
• $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$
• $\delta = 0.1$
• $L' = \langle 10, 12, 15, 20, 23, 29 \rangle$

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List -

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

 $\operatorname{Trim}(L, \delta)$

$$1 \quad \text{let } m \text{ be the length of } L$$

$$2 \quad L' = \langle y_1 \rangle$$

$$3 \quad last = y_1$$

$$4 \quad \text{for } i = 2 \text{ to } m$$

$$5 \quad \text{if } y_i > last \cdot (1 + \delta) \quad // y_i \ge last \text{ because } L \text{ is sorted}$$

$$6 \quad \text{append } y_i \text{ onto the end of } L'$$

$$7 \quad last = y_i$$

$$8 \quad \text{return } L'$$

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List -

- Given a trimming parameter 0 < δ < 1
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

TRIM (L, δ) 1 let *m* be the length of *L* 2 $L' = \langle y_1 \rangle$ 3 last = y_1 4 **for** *i* = 2 **to** *m* 5 **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* 7 last = y_i 8 **return** *L'* TRIM works in time $\Theta(m)$, if *L* is given in sorted order.

Illustration of the Trim Operation

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 to *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$L' = \langle \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$L' = \langle 10 \rangle$$

 $\operatorname{Trim}(L, \delta)$

$$\delta = 0.1$$

 \downarrow last
 $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$

$$L' = \langle 10 \rangle$$

 $\operatorname{Trim}(L, \delta)$

$$\delta = 0.1$$

$$\int_{\text{last}}^{\text{last}} L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\uparrow_{\text{i}}$$

$$L' = \langle 10 \rangle$$

 $\operatorname{Trim}(L, \delta)$

$$\delta = 0.1$$

$$\int_{\text{last}} \text{last}$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\uparrow_{\text{i}}$$

$$L' = \langle 10 \rangle$$

 $\operatorname{Trim}(L, \delta)$

$$\delta = 0.1$$

$$\int_{\text{last}} \text{last}$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\uparrow_{\text{i}}$$

$$L' = \langle 10, 12 \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{i}^{i} last$ $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\downarrow last$ $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ $\uparrow i$ $L' = \langle 10, 12 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{L}^{last} L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12, 15 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ $\downarrow i$ $L' = \langle 10, 12, 15 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{L}^{L} |ast|$ $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \downarrow_{i} $L' = \langle 10, 12, 15 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{L}^{last} L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12, 15, 20 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ $\uparrow i$ $L' = \langle 10, 12, 15, 20 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ $\uparrow i$ $L' = \langle 10, 12, 15, 20 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{L}^{last} L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12, 15, 20 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{L}^{last} L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12, 15, 20 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

 $\delta = 0.1$ $\int_{\text{last}} \text{last}$ $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$ \uparrow_{i} $L' = \langle 10, 12, 15, 20, 23 \rangle$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\uparrow i$$

$$L' = \langle 10, 12, 15, 20, 23 \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\uparrow^{i}$$

$$L' = \langle 10, 12, 15, 20, 23 \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\downarrow last$$

$$\downarrow i$$

$$L' = \langle 10, 12, 15, 20, 23 \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\downarrow last$$

$$\downarrow i$$

$$L' = \langle 10, 12, 15, 20, 23, 29 \rangle$$

 $\operatorname{Trim}(L, \delta)$

1 let *m* be the length of *L* $L' = \langle y_1 \rangle$ $last = y_1$ **for** i = 2 **to** *m* **if** $y_i > last \cdot (1 + \delta)$ // $y_i \ge last$ because *L* is sorted 6 append y_i onto the end of *L'* $last = y_i$ **return** *L'*

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$
i
$$L' = \langle 10, 12, 15, 20, 23, 29 \rangle$$

The FPTAS

APPROX-SUBSET-SUM (S, t, ϵ)

1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^*

APPROX-SUBSET-SUM (S, t, ϵ)

 $\begin{array}{ll}
1 & n = |S| \\
2 & L_0 = \langle 0 \rangle
\end{array}$

3 **for** i = 1 **to** n

4 $L_i = \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)$

5 $L_i = \operatorname{TRIM}(L_i, \epsilon/2n)$

6 remove from L_i every element that is greater than t

7 let z^* be the largest value in L_n

8 return z^*

EXACT-SUBSET-SUM(S, t)

- $1 \quad n = |S|$
- 2 $L_0 = \langle 0 \rangle$

5

- 3 **for** i = 1 **to** n
- 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$

remove from L_i every element that is greater than t

6 **return** the largest element in L_n

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 5 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z* Repeated application of TRIM to make sure L_i 's remain short.

EXACT-SUBSET-SUM(S, t)

$$n = |S|$$

$$L_0 = \langle 0 \rangle$$

3 for
$$i = 1$$
 to n

$$L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$$

remove from L_i every element that is greater than t

6 return the largest element in L_n

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 5 remove from L_i every element that is greater than t 6 let z^* be the largest value in L_n 7 8 return z* Repeated application of TRIM to make sure L_i 's remain short.

EXACT-SUBSET-SUM(S, t)

- n = |S|
- $L_0 = \langle 0 \rangle$
- 3 for i = 1 to n
- $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$
- remove from L_i every element that is greater than t
- 5 return the largest element in L_n

· We must bound the inaccuracy introduced by repeated trimming

APPROX-SUBSET-SUM (S, t, ϵ) EXACT-SUBSET-SUM(S, t)n = |S|n = |S| $L_0 = \langle 0 \rangle$ $L_0 = \langle 0 \rangle$ 3 for i = 1 to nfor i = 1 to n $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ remove from L_i every element that is greater than t 5 remove from L_i every element that is greater than t 6 return the largest element in L. let z^* be the largest value in L_n 8 return z* Repeated application of TRIM to make sure L_i 's remain short.

- We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

APPROX-SUBSET-SUM (S, t, ϵ) EXACT-SUBSET-SUM(S, t)n = |S|n = |S| $L_0 = \langle 0 \rangle$ $L_0 = \langle 0 \rangle$ for i = 1 to nfor i = 1 to n3 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ $L_i = \text{TRIM}(L_i, \epsilon/2n)$ remove from L_i every element that is greater than t 5 5 remove from L_i every element that is greater than t **return** the largest element in L_n 6 let z^* be the largest value in L_n 8 return z* Repeated application of TRIM to make sure L_i 's remain short.

- We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

Solution is a careful choice of δ !

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|1 $L_0 = \langle 0 \rangle$ 2 3 for i = 1 to n $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 4 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z*

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|1 $L_0 = \langle 0 \rangle$ 2 3 for i = 1 to n $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 4 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z*

• Input:
$$S = \langle 104, 102, 201, 101 \rangle$$
, $t = 308$, $\epsilon = 0.4$

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|1 $L_0 = \langle 0 \rangle$ 2 3 for i = 1 to n $L_i = \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)$ 4 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z*

- Input: $S = \langle 104, 102, 201, 101 \rangle$, t = 308, $\epsilon = 0.4$ ⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^*

■ Input: $S = \langle 104, 102, 201, 101 \rangle$, t = 308, $\epsilon = 0.4$ ⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

line 2: L₀ = (0)

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^*

- Input: $S = \langle 104, 102, 201, 101 \rangle$, $t = 308, \epsilon = 0.4$ ⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$
 - line 2: L₀ = (0)
 - line 4: $L_1 = \langle 0, 104 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^*

■ Input: $S = \langle 104, 102, 201, 101 \rangle$, $t = 308, \epsilon = 0.4$ ⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = (0)
- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^*

■ Input: $S = \langle 104, 102, 201, 101 \rangle$, t = 308, $\epsilon = 0.4$ ⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = (0)
- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$
- line 6: $L_1 = \langle 0, 104 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^* • Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$

⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = (0)
- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$
- line 4: $L_2 = \langle 0, 102, 104, 206 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^* • Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$

⇒ Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = (0)
- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$
- Interview $L_1 = \langle 0, 104, 104, 206 \rangle$ Interview $L_2 = \langle 0, 102, 104, 206 \rangle$
- Ine 5: $L_2 = \langle 0, 102, 206 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^* • Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$

 \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = ⟨0⟩
- line 4: $L_1 = \langle 0, 104 \rangle$
- Ine 5: $L_1 = \langle 0, 104 \rangle$
- line 6: $L_1 = \langle 0, 104 \rangle$
- line 4: $L_2 = \langle 0, 102, 104, 206 \rangle$
- line 5: $L_2 = \langle 0, 102, 206 \rangle$
- line 6: $L_2 = \langle 0, 102, 206 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^* • Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$

- line 2: L₀ = ⟨0⟩
- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$
- Interior $L_1 = \langle 0, 104 \rangle$ Interior $L_2 = \langle 0, 102, 104, 206 \rangle$
- Inte 4: $L_2 = \langle 0, 102, 104, 2 \rangle$ Inte 5: $L_2 = \langle 0, 102, 206 \rangle$
- line 6: $L_2 = \langle 0, 102, 206 \rangle$
- Ine 4: L₃ = ⟨0, 102, 201, 206, 303, 407⟩

APPROX-SUBSET-SUM (S, t, ϵ) 1 n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = MERGE-LISTS(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = TRIM(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t7 let z^* be the largest value in L_n 8 return z^* • Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$

- line 4: $L_1 = \langle 0, 104 \rangle$
- line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$
- Interior $L_1 = \langle 0, 104 \rangle$ Interior $L_2 = \langle 0, 102, 104, 206 \rangle$
- Intervention 102, 104, 2 Intervention 102, 2 I
- line 6: $L_2 = \langle 0, 102, 206 \rangle$
- line 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$
- line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) $1 \quad n = |S|$ 2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to n4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ remove from L_i every element that is greater than t 6 7 let z^* be the largest value in L_n 8 return z* Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$ • line 4: $L_1 = \langle 0, 104 \rangle$ • line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$ • line 4: $L_2 = \langle 0, 102, 104, 206 \rangle$ Ine 5: $L_2 = \langle 0, 102, 206 \rangle$ Ine 6: $L_2 = \langle 0, 102, 206 \rangle$

- Ine 4: L₃ = ⟨0, 102, 201, 206, 303, 407⟩
- line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$
- line 6: $L_3 = \langle 0, 102, 201, 303 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) $1 \quad n = |S|$ 2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to *n* 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z* Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$ • line 4: $L_1 = \langle 0, 104 \rangle$ • line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$ Ine 4: $L_2 = \langle 0, 102, 104, 206 \rangle$ Ine 5: $L_2 = \langle 0, 102, 206 \rangle$ Ine 6: $L_2 = \langle 0, 102, 206 \rangle$ Ine 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$ • line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$ Ine 6: $L_3 = \langle 0, 102, 201, 303 \rangle$ • line 4: $L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) $1 \quad n = |S|$ 2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to *n* 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z* Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$ • line 4: $L_1 = \langle 0, 104 \rangle$ • line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$ Ine 4: $L_2 = \langle 0, 102, 104, 206 \rangle$ Ine 5: $L_2 = \langle 0, 102, 206 \rangle$ Ine 6: $L_2 = \langle 0, 102, 206 \rangle$ Ine 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$ • line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$ Ine 6: $L_3 = \langle 0, 102, 201, 303 \rangle$ • line 4: $L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle$ • line 5: $L_4 = \langle 0, 101, 201, 302, 404 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) $1 \quad n = |S|$ 2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to *n* 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ 6 remove from L_i every element that is greater than t 7 let z^* be the largest value in L_n 8 return z* Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$ • line 4: $L_1 = \langle 0, 104 \rangle$ • line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$ Ine 4: $L_2 = \langle 0, 102, 104, 206 \rangle$ Ine 5: $L_2 = \langle 0, 102, 206 \rangle$ Ine 6: $L_2 = \langle 0, 102, 206 \rangle$ Ine 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$ • line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$ Ine 6: $L_3 = \langle 0, 102, 201, 303 \rangle$ • line 4: $L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle$ • line 5: $L_4 = \langle 0, 101, 201, 302, 404 \rangle$ ■ line 6: $L_4 = \langle 0, 101, 201, 302 \rangle$

APPROX-SUBSET-SUM (S, t, ϵ) n = |S|2 $L_0 = \langle 0 \rangle$ 3 for i = 1 to *n* 4 $L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)$ 5 $L_i = \text{TRIM}(L_i, \epsilon/2n)$ remove from L_i every element that is greater than t 6 7 let z^* be the largest value in L_n 8 return z* Input: $S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4$ \Rightarrow Trimming parameter: $\delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05$ • line 2: $L_0 = \langle 0 \rangle$ • line 4: $L_1 = \langle 0, 104 \rangle$ • line 5: $L_1 = \langle 0, 104 \rangle$ • line 6: $L_1 = \langle 0, 104 \rangle$ Ine 4: $L_2 = \langle 0, 102, 104, 206 \rangle$ Ine 5: $L_2 = \langle 0, 102, 206 \rangle$ Ine 6: $L_2 = \langle 0, 102, 206 \rangle$ Ine 4: $L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle$ • line 5: $L_3 = \langle 0, 102, 201, 303, 407 \rangle$ Ine 6: $L_3 = \langle 0, 102, 201, 303 \rangle$ • line 4: $L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle$ Ine 5: $L_4 = \langle 0, 101, 201, 302, 404 \rangle$ Ine 6: $L_4 = \langle 0, 101, 201, 302 \rangle$ Returned solution $z^* = 302$, which is 2% within the optimum 307 = 104 + 102 + 101

Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

■ Returned solution z* is a valid solution √

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z^* is a valid solution \checkmark
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1 + \epsilon/(2n))^{i}} \le z \le y$$
Can be shown by induction on *i*

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z^* is a valid solution \checkmark
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \qquad \stackrel{y=y^{*}, i=r}{\Rightarrow}$$
Can be shown by induction on *i*

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
Frame be shown by induction on *i*

С

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
an be shown by induction on *i*

$$\frac{y^{*}}{z} \le \left(1+\frac{\epsilon}{2n}\right)^{n},$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
Can be shown by induction on *i*

$$\frac{y^{*}}{z} \le \left(1+\frac{\epsilon}{2n}\right)^{n},$$

and now using the fact that $\left(1+\frac{\epsilon/2}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} e^{\epsilon/2}$ yields

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
Can be shown by induction on *i*
and now using the fact that $\left(1+\frac{\epsilon/2}{n}\right)^{n} \stackrel{n\to\infty}{\longrightarrow} e^{\epsilon/2}$ yields
$$\frac{y^{*}}{z} \le e^{\epsilon/2}$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z^* is a valid solution \checkmark
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*}, i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
Can be shown by induction on *i*
and now using the fact that $\left(1+\frac{\epsilon/2}{n}\right)^{n} \xrightarrow{n\to\infty} e^{\epsilon/2}$ yields
$$\frac{y^{*}}{z} \le e^{\epsilon/2}$$
Taylor approximation of *e*

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z^* is a valid solution \checkmark
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \leq z \leq y \qquad \stackrel{y=y^{*},i=n}{\rightarrow} \qquad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \leq z \leq y^{*}$$
Can be shown by induction on *i*
and now using the fact that $\left(1 + \frac{\epsilon/2}{n}\right)^{n} \xrightarrow{n \to \infty} e^{\epsilon/2}$ yields
$$\frac{y^{*}}{z} \leq e^{\epsilon/2} \qquad \text{Taylor approximation of } e^{\epsilon/2}$$

$$\leq 1 + \epsilon/2 + (\epsilon/2)^{2}$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \leq z \leq y \qquad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \leq z \leq y^{*}$$
Can be shown by induction on *i*
and now using the fact that $\left(1 + \frac{\epsilon/2}{n}\right)^{n} \xrightarrow{n \to \infty} e^{\epsilon/2}$ yields
$$\frac{y^{*}}{z} \leq e^{\epsilon/2} \xrightarrow{\text{Taylor approximation of } e}{\leq 1 + \epsilon/2 + (\epsilon/2)^{2} \leq 1 + \epsilon}$$

Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Theorem 35.8 -----

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

Strategy: Derive a bound on |L_i| (running time is linear in |L_i|)

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values.

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on |L_i| (running time is linear in |L_i|)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 =$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- $\Rightarrow\,$ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

For
$$x > -1$$
, $\ln(1 + x) \ge \frac{x}{1+x}$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$
$$\leq \frac{2n(1+\epsilon/(2n))}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \ge \frac{x}{1+x}$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$
$$\leq \frac{2n(1+\epsilon/(2n))\ln t}{\epsilon} + 2$$
$$\leq \frac{3n\ln t}{\epsilon} + 2.$$

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$
$$\leq \frac{2n(1+\epsilon/(2n))\ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \ge \frac{x}{1+x}$ < $\frac{3n\ln t}{\epsilon} + 2$.

• This bound on $|L_i|$ is polynomial in the size of the input and in $1/\epsilon$.

- Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on |L_i| (running time is linear in |L_i|)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- ⇒ Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$
$$\leq \frac{2n(1+\epsilon/(2n))\ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \ge \frac{x}{1+x}$ $< \frac{3n\ln t}{\epsilon} + 2$.

• This bound on $|L_i|$ is polynomial in the size of the input and in $1/\epsilon$.

Need log(t) bits to represent t and n bits to represent S

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

Concluding Remarks

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- The Subset-Sum Problem -

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem _____

• Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t

- The Subset-Sum Problem -

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem _____

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which

- The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

Theorem 35.8 -

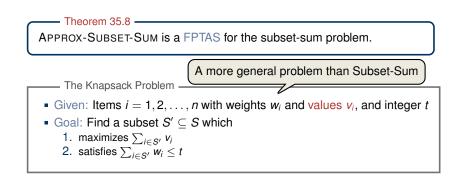
APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem ——

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which
 - 1. maximizes $\sum_{i \in S'} v_i$
 - 2. satisfies $\sum_{i \in S'} w_i \leq t$

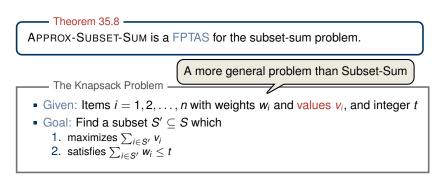
- The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer *t*
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



- The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer *t*
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.

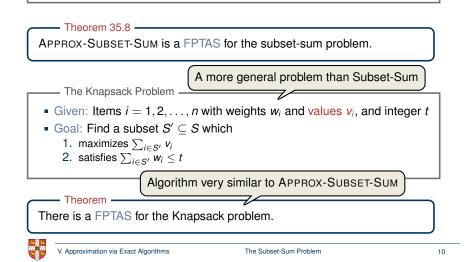


Theorem

There is a FPTAS for the Knapsack problem.

- The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, ..., x_n\}$ and positive integer *t*
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \leq t$.



The Subset-Sum Problem

Parallel Machine Scheduling

Machine Scheduling Problem

• Given: *n* jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and *m* identical machines M_1, M_2, \ldots, M_m

- Machine Scheduling Problem -

- Given: *n* jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and *m* identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .

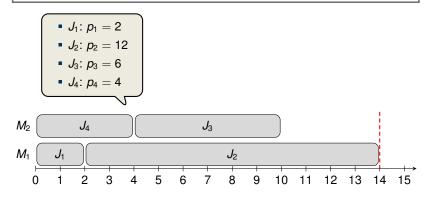
- Machine Scheduling Problem -

- Given: *n* jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and *m* identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .

$$J_1: p_1 = 2
J_2: p_2 = 12
J_3: p_3 = 6
J_4: p_4 = 4$$

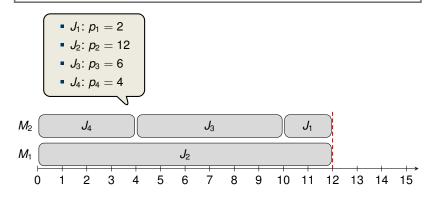
Machine Scheduling Problem

- Given: *n* jobs J₁, J₂,..., J_n with processing times p₁, p₂,..., p_n, and *m* identical machines M₁, M₂,..., M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .



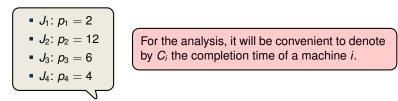
Machine Scheduling Problem

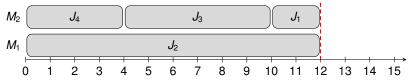
- Given: *n* jobs J₁, J₂,..., J_n with processing times p₁, p₂,..., p_n, and *m* identical machines M₁, M₂,..., M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .



Machine Scheduling Problem

- Given: *n* jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and *m* identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .





- Lemma -

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

- Lemma -

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

- Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

LIST SCHEDULING $(J_1, J_2, \ldots, J_n, m)$

- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

- Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Equivalent to the following Online Algorithm [CLRS]: Whenever a machine is idle, schedule any job that has not yet been scheduled.

LIST SCHEDULING $(J_1, J_2, \ldots, J_n, m)$

- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

- Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Equivalent to the following Online Algorithm [CLRS]: Whenever a machine is idle, schedule any job that has not yet been scheduled.

LIST SCHEDULING $(J_1, J_2, \ldots, J_n, m)$

- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Ex 35-5 a.&b. -----

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C^*_{\max} \geq \max_{1 \leq k \leq n} p_k.$$

Ex 35-5 a.&b. —

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C^*_{\max} \geq \max_{1 \leq k \leq n} p_k.$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$C^*_{\max} \geq rac{1}{m}\sum_{k=1}^n p_k.$$

Ex 35-5 a.&b. —

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C^*_{\max} \geq \max_{1 \leq k \leq n} p_k.$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$C^*_{\max} \geq rac{1}{m}\sum_{k=1}^n p_k.$$

Ex 35-5 a.&b. -

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C^*_{\max} \geq \max_{1 \leq k \leq n} p_k.$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$C^*_{\max} \geq rac{1}{m}\sum_{k=1}^n p_k.$$

Proof:

b. The total processing times of all *n* jobs equals $\sum_{k=1}^{n} p_k$

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C^*_{\max} \geq \max_{1 \leq k \leq n} p_k.$$

b. The optimal makespan is at least as large as the average machine load, that is,

$$C^*_{\max} \geq rac{1}{m}\sum_{k=1}^n p_k.$$

- b. The total processing times of all *n* jobs equals $\sum_{k=1}^{n} p_k$
- \Rightarrow One machine must have a load of at least $\frac{1}{m} \cdot \sum_{k=1}^{n} p_k$

– Ex 35-5 d. (Graham 1966) –

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

– Ex 35-5 d. (Graham 1966) –

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

• Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$

– Ex 35-5 d. (Graham 1966) –

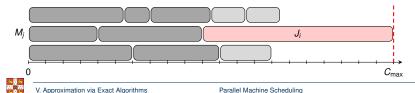
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

• Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$



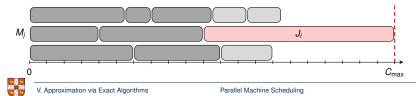
– Ex 35-5 d. (Graham 1966) –

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{max} = C_i$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$



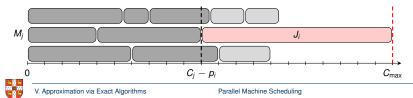
- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{max} = C_i$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$



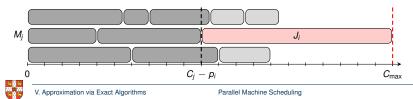
- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_i , $C_i p_i \leq C_k$ for all $1 \leq k \leq m$
- Averaging over k yields:



– Ex 35-5 d. (Graham 1966) –

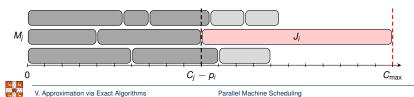
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \leq rac{1}{m} \sum_{k=1}^m C_k$$



- Ex 35-5 d. (Graham 1966) -

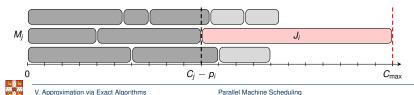
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k$$



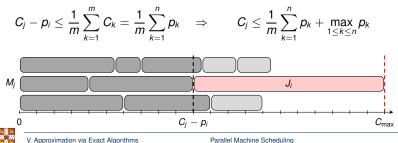
- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:



- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

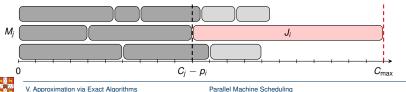
$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k \quad \Rightarrow \qquad C_j \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k$$



Using Ex 35-5 a. & b.

- Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq rac{1}{m}\sum_{k=1}^n p_k + \max_{1\leq k\leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

- Let J_i be the last job scheduled on machine M_j with $C_{max} = C_j$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k \quad \Rightarrow \qquad C_j \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k \leq 2 \cdot C_{\max}^*$$



Using Ex 35-5 a &b

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME $(J_1, J_2, \ldots, J_n, m)$

- 1: Sort jobs decreasingly in their processing times
- 2: **for** *i* = 1 to *m*
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** *j* = 1 to *n*
- 7: $i = \operatorname{argmin}_{1 \le k \le m} C_k$
- 8: $S_i = S_i \cup \{j\}, \ \overline{C}_i = C_i + p_j$
- 9: end for
- 10: **return** *S*₁,..., *S*_m

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME $(J_1, J_2, \ldots, J_n, m)$

- 1: Sort jobs decreasingly in their processing times
- 2: **for** *i* = 1 to *m*
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** *j* = 1 to *n*
- 7: $i = \operatorname{argmin}_{1 \le k \le m} C_k$
- 8: $S_i = S_i \cup \{j\}, \ \overline{C}_i = C_i + p_j$
- 9: end for
- 10: **return** *S*₁,..., *S*_m

Runtime:

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME $(J_1, J_2, \ldots, J_n, m)$

- 1: Sort jobs decreasingly in their processing times
- 2: **for** *i* = 1 to *m*
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** *j* = 1 to *n*

7:
$$i = \operatorname{argmin}_{1 \le k \le m} C_k$$

- 8: $S_i = S_i \cup \{j\}, C_i = C_i + p_j$
- 9: end for
- 10: return $S_1, ..., S_m$

Runtime:

O(n log n) for sorting

The problem of the List-Scheduling Approach were the large jobs

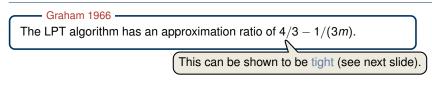
Analysis can be shown to be almost tight. Is there a better algorithm?

LEAST PROCESSING TIME $(J_1, J_2, \ldots, J_n, m)$

- 1: Sort jobs decreasingly in their processing times
- 2: **for** *i* = 1 to *m*
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: **end for**
- 6: **for** *j* = 1 to *n*
- 7: $i = \operatorname{argmin}_{1 \le k \le m} C_k$
- 8: $S_i = S_i \cup \{j\}, \ \overline{C}_i = C_i + p_j$
- 9: end for
- 10: **return** *S*₁,..., *S*_{*m*}

Runtime:

- O(n log n) for sorting
- O(n log m) for extracting (and re-inserting) the minimum (use priority queue).



- Graham 1966 -----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Graham 1966 -----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof (of approximation ratio 3/2).

• Observation 1: If there are at most *m* jobs, then the solution is optimal.

– Graham 1966 –

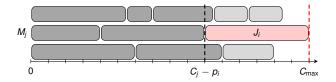
The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C^*_{max} \ge 2 \cdot p_{m+1}$.

- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C^*_{max} \ge 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling

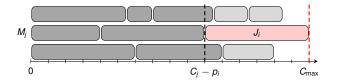


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C^*_{max} \ge 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$C_{\max} = C_j = (C_j - p_i) + p_i$$



- Graham 1966 -

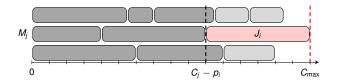
The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C^*_{max} \ge 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$C_{\max} = C_j = (C_j - p_i) + p_i \le C_{\max}^* + \frac{1}{2}C_{\max}^*$$

This is for the case $i \ge m + 1$ (otherwise, an even stronger inequality holds)

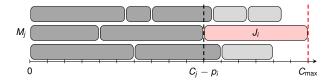


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C^*_{max} \ge 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$\mathcal{C}_{ ext{max}} = \mathcal{C}_j = (\mathcal{C}_j - \mathcal{p}_i) + \mathcal{p}_i \leq \mathcal{C}^*_{ ext{max}} + rac{1}{2}\mathcal{C}^*_{ ext{max}} = rac{3}{2}\mathcal{C}_{ ext{max}}.$$



- Graham 1966 ------

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Graham 1966 -----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Graham 1966 -----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

m machines

- Graham 1966 ----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

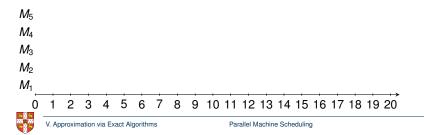
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

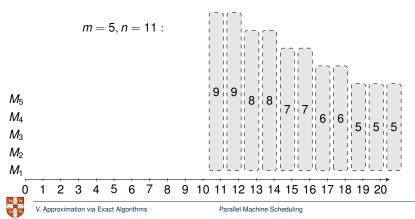
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

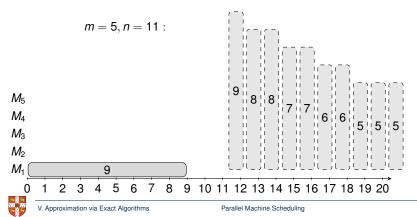
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966 ·

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

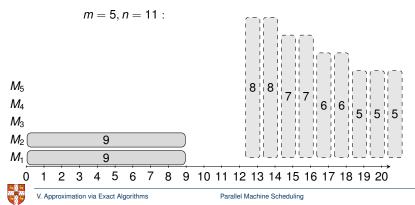
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966 ·

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

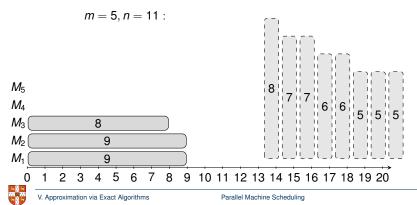
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

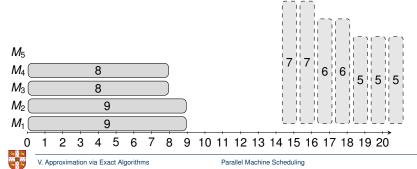


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

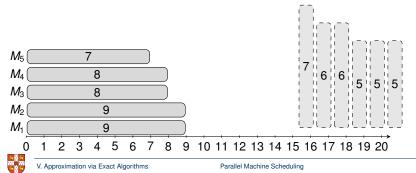


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

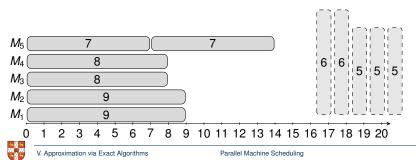


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

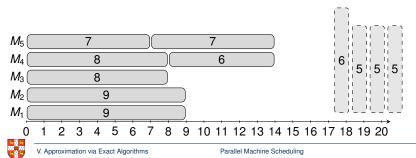


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

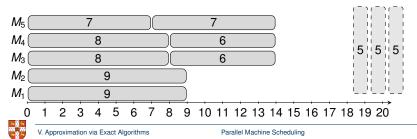


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

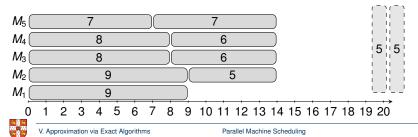


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

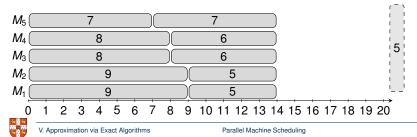


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

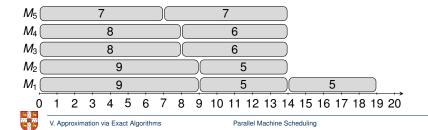


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

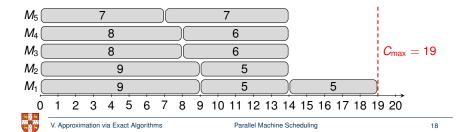


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

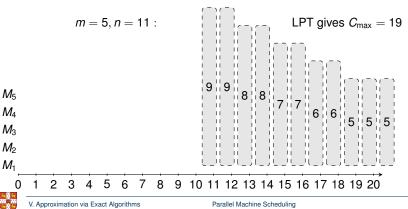
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

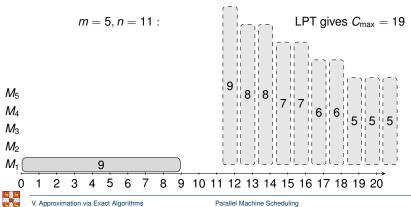
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966 ·

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

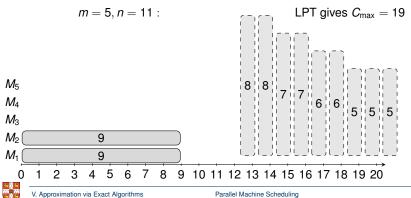
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

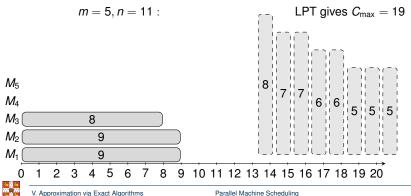
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

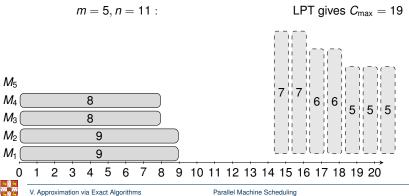
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

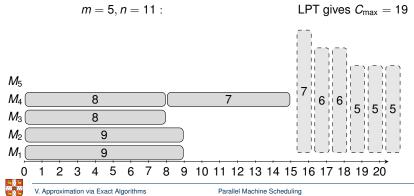
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m



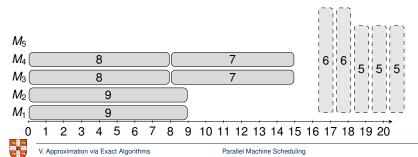
- Graham 1966 ·

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

m = 5, n = 11: LPT gives $C_{max} = 19$



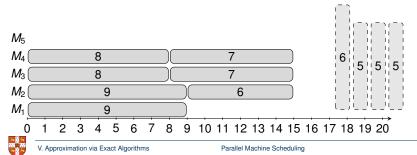
- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

m = 5, n = 11: LPT gives $C_{max} = 19$



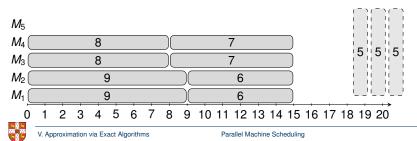
- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

m = 5, n = 11: LPT gives $C_{max} = 19$

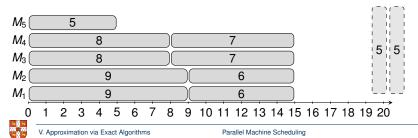


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
: LPT gives $C_{max} = 19$

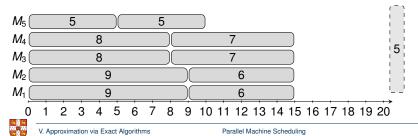


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
: LPT gives $C_{max} = 19$

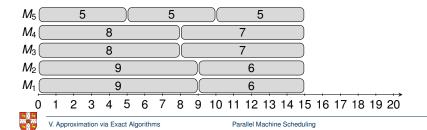


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
: LPT gives $C_{max} = 19$

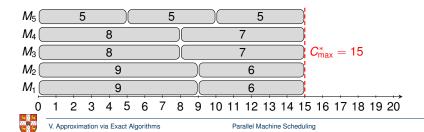


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
: LPT gives $C_{\text{max}} = 19$

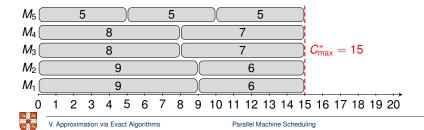


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

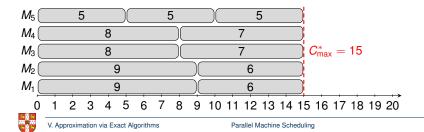
- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
:
LPT gives $C_{max} = 19$
Optimum is $C^*_{max} = 15$



- *m* machines
- n = 2m + 1 jobs of length 2m 1, 2m 2, ..., m and one job of length m

$$m = 5, n = 11$$
:
LPT gives $C_{max} = 19$
Optimum is $C_{max}^* = 15$



Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

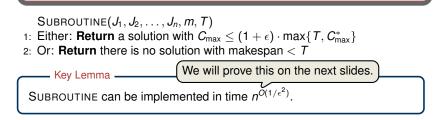
```
SUBROUTINE(J_1, J_2, \ldots, J_n, m, T)
```

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Key Lemma

SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.



Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE($J_1, J_2, ..., J_n, m, T$) 1: Either: **Return** a solution with $C_{max} \le (1 + \epsilon) \cdot max\{T, C_{max}^*\}$ 2: Or: **Return** there is no solution with makespan < TKey Lemma SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

 SUBROUTINE($J_1, J_2, ..., J_n, m, T$)

 1: Either: Return a solution with $C_{max} \le (1 + \epsilon) \cdot max\{T, C_{max}^*\}$

 2: Or: Return there is no solution with makespan < T

 We will prove this on the next slides.

 SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Proof (using Key Lemma):

 $\mathsf{PTAS}(J_1, J_2, \ldots, J_n, m)$

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C^*_{\max}\}$.
- 2: **Return** solution computed by SUBROUTINE($J_1, J_2, ..., J_n, m, T$)

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

 SUBROUTINE($J_1, J_2, \ldots, J_n, m, T$)

 1: Either: Return a solution with $C_{max} \leq (1 + \epsilon) \cdot max\{T, C_{max}^*\}$

 2: Or: Return there is no solution with makespan < T

 We will prove this on the next slides.

 SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Proof (using Key Lemma):

Since $0 \le C_{\max}^* \le P$ and C_{\max}^* is integral, binary search terminates after $O(\log P)$ steps.

- PTAS $(J_1, J_2, \dots, J_n, m)$
- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, ..., J_n, m, T)$

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

 SUBROUTINE($J_1, J_2, \ldots, J_n, m, T$)

 1: Either: Return a solution with $C_{max} \leq (1 + \epsilon) \cdot max\{T, C_{max}^*\}$

 2: Or: Return there is no solution with makespan < T

 We will prove this on the next slides.

 SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Proof (using Key Lemma):

 $PTAS(J_1, J_2, \ldots, J_n, m)$

Since $0 \le C_{\max}^* \le P$ and C_{\max}^* is integral, binary search terminates after $O(\log P)$ steps.

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, ..., J_n, m, T)$

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE($J_1, J_2, ..., J_n, m, T$) 1: Either: **Return** a solution with $C_{\max} \le (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$ 2: Or: **Return** there is no solution with makespan < TKey Lemma We will prove this on the next slides. SUBROUTINE can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

polynomial in the size of the input

Proof (using Key Lemma):

 $\mathsf{PTAS}(J_1, J_2, \ldots, J_n, m)$

Since 0 $\leq C^*_{max} \leq P$ and C^*_{max} is integral, binary search terminates after $O(\log P)$ steps.

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, ..., J_n, m, T)$

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{max}^*\}$.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation –

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{max}^*\}$.

Proof:

Let M_j be the machine with largest load

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{max}^*\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{max}^*\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^n p_k$$
the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow$$
the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation -

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^n p_k \qquad \Rightarrow \qquad C_j \leq p_i + \frac{1}{m} \sum_{k=1}^n p_k$$
the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation -

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow \qquad C_{j} \leq p_{i} + \frac{1}{m} \sum_{k=1}^{n} p_{k}$$

the "well-known" formula
$$\leq \epsilon \cdot T + C_{\max}^{*}$$

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation -

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C^*_{max}\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow \qquad C_{j} \leq p_{i} + \frac{1}{m} \sum_{k=1}^{n} p_{k}$$

$$\underbrace{ \leq \epsilon \cdot T + C_{\max}^{*}}_{ \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^{*}\}} \quad \Box$$

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation -

Divide jobs into two groups: $J_{small} = \{J_i : p_i \le \epsilon \cdot T\}$ and $J_{large} = J \setminus J_{small}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{max}^*\}$.

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow \qquad C_{j} \leq p_{i} + \frac{1}{m} \sum_{k=1}^{n} p_{k}$$

$$\underbrace{ \leq \epsilon \cdot T + C_{\max}^{*}}_{ \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^{*}\}} \quad \Box$$

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$.

Proof of Key Lemma (non-examinable)

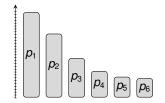
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \left\lceil \frac{p_i b^2}{T} \right\rceil \cdot \frac{T}{h^2}$

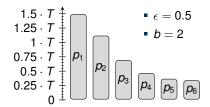
Proof of Key Lemma (non-examinable)

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

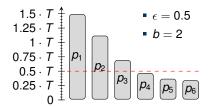
• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \left\lceil \frac{p_j b^2}{T} \right\rceil \cdot \frac{T}{h^2}$



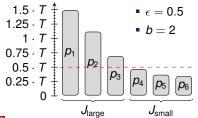
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



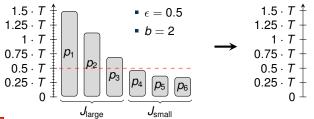
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

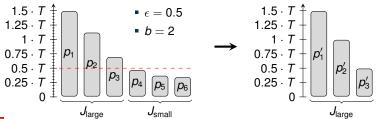


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



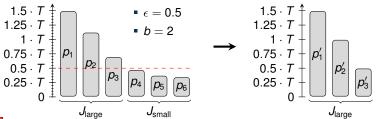
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$



Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$ Can assume there are no jobs with $p_j \ge T$

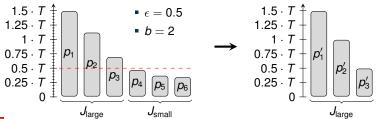


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_i b^2}{T} \rceil \cdot \frac{T}{h^2}$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

• Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.

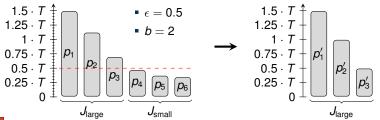


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$

$$\Rightarrow \text{ Every } p'_i = \alpha \cdot \frac{1}{b^2} \text{ for } \alpha = b, b+1, \dots, b^2$$

• Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^c} s_j \cdot j \cdot \frac{T}{b^2} \leq T$. Assignments to one machine with makespan $\leq T$.

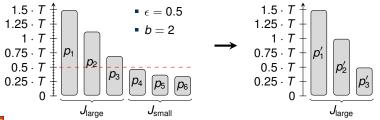


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:



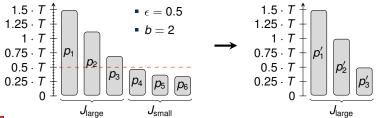
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$

$$\Rightarrow \text{ Every } p'_i = \alpha \cdot \frac{T}{b^2} \text{ for } \alpha = b, b+1, \dots, b^2$$

- Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0)=0$$



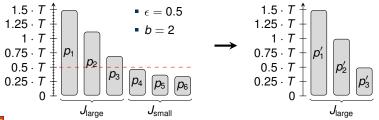
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

$$\Rightarrow \text{ Every } p'_i = \alpha \cdot \frac{T}{b^2} \text{ for } \alpha = b, b+1, \dots, b^2$$

- Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

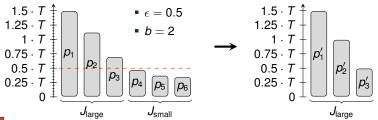
$$f(0, 0, \dots, 0) = 0$$

$$f(n_b, n_{b+1}, \dots, n_{b^2}) = 1 + \min_{(s_b, s_{b+1}, \dots, s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1}, \dots, n_{b^2} - s_{b^2}).$$



$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, \dots, n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$: $f(0, 0, \dots, 0) = 0$ $f(n_b, n_{b+1}, \dots, n_{b^2}) = 1 + \min_{\substack{(s_b, s_{b+1}, \dots, s_{b^2}) \in C}} f(n_b - s_b, n_{b+1} - s_{b+1}, \dots, n_{b^2} - s_{b^2}).$



• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \left\lceil \frac{p_i b^2}{T} \right\rceil \cdot \frac{T}{h^2}$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

 $f(0, 0, \dots, 0) = 0$ $f(n_b, n_{b+1}, \dots, n_{b^2}) = 1 + \min_{(s_b, s_{b+1}, \dots, s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1}, \dots, n_{b^2} - s_{b^2}).$

Number of table entries is at most n^{b²}, hence filling all entries takes n^{O(b²)}

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_i b^2}{T} \rceil \cdot \frac{T}{b^2}$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

 $f(0, 0, \dots, 0) = 0$ $f(n_b, n_{b+1}, \dots, n_{b^2}) = 1 + \min_{(s_b, s_{b+1}, \dots, s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1}, \dots, n_{b^2} - s_{b^2}).$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \dots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p'_i = \lceil \frac{p_i b^2}{T} \rceil \cdot \frac{T}{b^2}$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

 $f(0, 0, \dots, 0) = 0$ $f(n_b, n_{b+1}, \dots, n_{b^2}) = 1 + \min_{(s_b, s_{b+1}, \dots, s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1}, \dots, n_{b^2} - s_{b^2}).$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \ldots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \geq \frac{T}{b})$ and the makespan is $\leq T$,

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b, n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \ldots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \ge \frac{T}{b})$ and the makespan is $\le T$,

$$C_{\max} \leq T + b \cdot \max_{i \in J_{\text{large}}} \left(p_i - p_i'
ight)$$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b, n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b, s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \ldots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \ge \frac{T}{b})$ and the makespan is $\le T$,

$$egin{aligned} & \mathcal{C}_{ ext{max}} \leq \mathcal{T} + b \cdot \max_{i \in J_{ ext{large}}} \left(p_i - p_i'
ight) \ & \leq \mathcal{T} + b \cdot rac{\mathcal{T}}{b^2} \end{aligned}$$

$$\Rightarrow$$
 Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$

- Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
- Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b, n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b, n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \ldots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \ge \frac{T}{b})$ and the makespan is $\le T$,

$$egin{aligned} \mathcal{C}_{ ext{max}} &\leq \mathcal{T} + b \cdot \max_{i \in \mathcal{J}_{ ext{large}}} \left(oldsymbol{
ho}_i - oldsymbol{
ho}_i^\prime
ight) \ &\leq \mathcal{T} + b \cdot rac{\mathcal{T}}{b^2} \leq (1 + \epsilon) \cdot \mathcal{T}. \end{aligned}$$

– Graham 1966 –––

List scheduling has an approximation ratio of 2.

- Graham 1966 -----

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

– Graham 1966 –

List scheduling has an approximation ratio of 2.

Graham 1966 — Graham 1966 — The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87) There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

– Graham 1966 –

List scheduling has an approximation ratio of 2.

Graham 1966 — Graham 1966 — The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87) There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)?

– Graham 1966 –

List scheduling has an approximation ratio of 2.

Graham 1966 — Graham 1966 — The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87) There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)? No!

- Graham 1966 -

List scheduling has an approximation ratio of 2.

Graham 1966 — Graham 1966 — The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87) There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)? No! Because for sufficiently small approximation ratio $1 + \epsilon$, the computed solution has to be optimal, and Parallel Machine Scheduling is strongly NP-hard.

