Advanced Algorithms

I. Course Intro and Sorting Networks

Thomas Sauerwald

Easter 2018

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

IA Algorithms

IB Complexity Theory

IA Algorithms

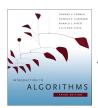
IB Complexity Theory

- I. Sorting Networks (Sorting, Counting)
- II. Matrix Multiplication (and Parallel Algorithms)
- III. Linear Programming
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding

IA Algorithms

IB Complexity Theory

- I. Sorting Networks (Sorting, Counting)
- II. Matrix Multiplication (and Parallel Algorithms)
- III. Linear Programming
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding

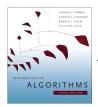


- closely follow CLRS3 and use the same numberring
- however, slides will be self-contained (mostly)

IA Algorithms

IB Complexity Theory

- I. Sorting Networks (Sorting, Counting)
- II. Matrix Multiplication (and Parallel Algorithms)
- III. Linear Programming
- IV. Approximation Algorithms: Covering Problems
- V. Approximation Algorithms via Exact Algorithms
- VI. Approximation Algorithms: Travelling Salesman Problem
- VII. Approximation Algorithms: Randomisation and Rounding



- closely follow CLRS3 and use the same numberring
- however, slides will be self-contained (mostly)

Outline

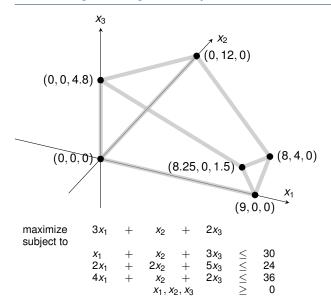
Outline of this Course

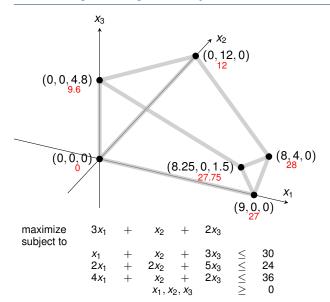
Some Highlights

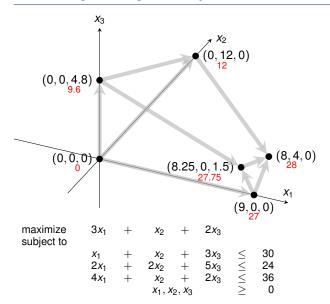
Introduction to Sorting Networks

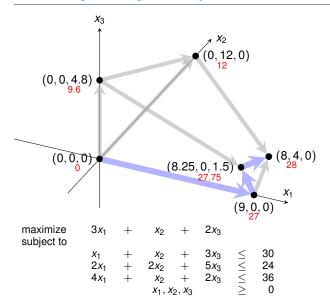
Batcher's Sorting Network

Counting Networks









SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN PROBLEM*

G. DANTZIG, R. FULKERSON, AND S. JOHNSON

The Rand Corporation, Santa Monica, California

(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and Washington, D. C., has the shortest road distance.

THE TRAVELING-SALESMAN PROBLEM might be described as follows: Find the shortest route (tour) for a salesman starting from a given city, visiting each of a specified group of cities, and then returning to the original point of departure. More generally, given an n by n symmetric matrix $D = (d_{IJ})$, where d_{IJ} represents the 'distance' from I to J, arrange the points in a cyclic order in such a way that the sum of the d_{IJ} between consecutive points is minimal. Since there are only a finite number of possibilities (at most $\frac{1}{2}(n-1)!$) to consider, the problem is to devise a method of picking out the optimal arrangement which is reasonably efficient for fairly large values of n. Although algorithms have been devised for problems of similar nature, e.g., the optimal assignment problem, 3,7,8 little is known about the traveling-salesman problem. We do not claim that this note alters the situation very much; what we shall do is outline a way of approaching the problem that sometimes, at least, enables one to find an optimal path and prove it so. In particular, it will be shown that a certain arrangement of 49 cities, one in each of the 48 states and Washington, D. C., is best, the d_{II} used representing road distances as taken from an atlas.

Travelling Salesman Problem: The 42 (49) Cities

- Manchester, N. H.
- 2. Montpelier, Vt.
- 3. Detroit, Mich. 4. Cleveland, Ohio
- 5. Charleston, W. Va.
- Louisville, Kv.
- 7. Indianapolis, Ind.
- 8. Chicago, Ill.
- Milwaukee, Wis.
- 10. Minneapolis, Minn. 11. Pierre, S. D.
- 12. Bismarck, N. D.
- 13. Helena, Mont.
- 14. Seattle, Wash.
- 15. Portland, Ore.
- 16. Boise, Idaho
- 17. Salt Lake City, Utah

- 18. Carson City, Nev.
- Los Angeles, Calif. 20. Phoenix, Ariz.
- Santa Fe, N. M.
- 22. Denver, Colo.
- 23. Cheyenne, Wyo.
- 24. Omaha, Neb. Des Moines, Iowa
- 26. Kansas City, Mo.
- 27. Topeka, Kans.
- 28. Oklahoma City, Okla.
- 29. Dallas, Tex.
- 30. Little Rock, Ark.
- 31. Memphis, Tenn. 32. Jackson, Miss.
- 33. New Orleans, La.

- 34. Birmingham, Ala.
- 35. Atlanta, Ga.
- 36. Jacksonville, Fla.
- 37. Columbia, S. C. 38. Raleigh, N. C.
- 39. Richmond, Va.
- 40. Washington, D. C.
- 41. Boston, Mass.
- 42. Portland, Me. A. Baltimore, Md.
- B. Wilmington, Del.
- C. Philadelphia, Penn.
- D. Newark, N. J.
- E. New York, N. Y.
- F. Hartford, Conn.
- G. Providence, R. I.

TABLE I

ROAD DISTANCES BETWEEN CITIES IN ADJUSTED UNITS The figures in the table are mileages between the two specified numbered cities, less 11, divided by 17, and rounded to the nearest integer.

```
50 49 21 15
    61 62 21
    58 60 16 17 18
    59 60 15 20 26 17 10
    62 66
           20 25 31 22 15
    81 81
           40 44 50 41 35 24 20
                  72 63
12 108 117 66 71 77 68
                         61 51 46
13 145 149 104 108 114 106 99 88 84 63
14 181 185 140 144 150 142 135 124 120 99 85
15 187 191 146 150 156 142 137 130 125 105 90 81 41 10
16 161 170 120 124 130 115 110 104 105 90
   142 146 101 104 111 97 91 85 86
                                    75
18 174 178 133 138 143 129 123 117 118 107
19 185 186 142 143 140 130 126 124 128 118
                                       93 101
20 | 164 165 120 123 124 106 106 105 110 104
                                       86
                                              71 93 82 62 42 45 22
                                    77
                                       56 64 65
   117 122 77 80 83 68
                                6i 50
59 48
                                       34
28
                         62
                             60
                                          42
                                              49
                                                     77
23 114 118 73 78 84 69 63 57
                                           36
                                                  77
                                                     72
                         34 28 29 22 23 35 69 105 102
              48 53 41
                                                             64 96 107
                     34 27 19 21 14 29 40
                     30 28 29 32
                                    27
                                          47 78 116 112 84
                                       36
                                36
                                          45 77 115 110 83 63 97
59 85 119 115 88 66 98
                                    30
                                       34 45
   105 106 62 63 64 47
                            49 54 48 46
56 61 57 59
                                                            75 98 85
                                       (9 71 96 130 126 98
                            38 43 49 60 71 103 141 136 109 90 115 99
              43 38 22 26 32 36 51 63 75 106 142 140 112 93 126 108 88 60
                                                                                  78 52
82 62
                                       76 87 120 155 150 123 100 123 109 86 62
                                                                              71
                                       86 97 126 160 155 128 104 128 113 90 67 76
                                       78 89 121 159 155 127 108 136 124 101 75
                                                                              79 81
                                    62
                     25 32 41 46 64 83 90 130 164 160 133 114 146 134 111 85
                                                                              84 86
                                                                                     59
                                                                                         52
                  42 44 51 60 66 83 102 110 147 185 179 155 133 159 146 122 98 105 107 79
                                                                                         71
                                52 71 93 98 136 172 172 148 126 158 147 124 121 97 99 71 65
                                                                                                63 67 62
              41 25 30 36 47
                                                                                         67
                                53 73 96 99 137 176 178 151 131 163 159 135 108 102 103 73
                                                                                            64
                                                                                                69 75
                                                                                                       72
                         36 46 51
                                                                                     71
                                                                                         65
                                                                                            65
                                                                                                70
                                       93 97 134 171 176 151 129 161 163 139 118 102 101
                            40 45 65 87 91 117 166 171 144 125 157 156 139 113 95 97 67 60 62 67 79 82 62 53 59 66
                         55 58 63 83 105 109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88 101 108 88 80 86
                         61 61 66 84 111 113 150 186 192 166 147 180 188 167 140 124 119 90 87 90 94 107 114 77
```

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

The (Unique) Optimal Tour (699 Units \approx 12,345 miles)

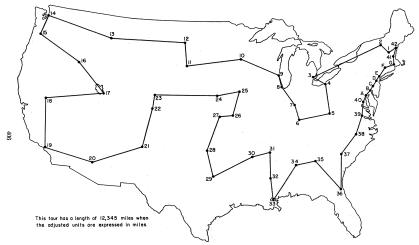


Fig. 16. The optimal tour of 49 cities.

Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

- (Serial) Sorting Algorithms -
- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

- (Serial) Sorting Algorithms —
- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance
 - Sorting Networks ———
- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance

- (Serial) Sorting Algorithms -
- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance
 - Sorting Networks —
- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance
- Comparisons can be performed in parallel

Allows to sort *n* numbers in sublinear time!

(Serial) Sorting Algorithms -

- we already know several (comparison-based) sorting algorithms: Insertion sort, Bubble sort, Merge sort, Quick sort, Heap sort
- execute one operation at a time
- can handle arbitrarily large inputs
- sequence of comparisons is not set in advance

Sorting Networks —

- only perform comparisons
- can only handle inputs of a fixed size
- sequence of comparisons is set in advance

Allows to sort *n* numbers Comparisons can be performed in parallel a

in sublinear time!

Simple concept, but surprisingly deep and complex theory!

Comparison Network ————

A comparison network consists solely of wires and comparators:

Comparison Network -

- A comparison network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs $x' = \min(x, y)$ and $y' = \max(x, y)$

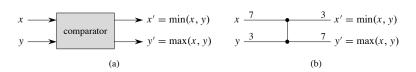


Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Network -

• A comparison network consists solely of wires and comparators: comparator is a device with, on given two inputs, x and y, returns two outputs $x' = \min(x, y)$ and $y' = \max(x, y)$

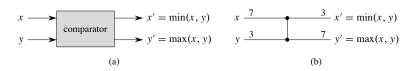


Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Network -

- A comparison network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs x' = min(x, y) and y' = max(x, y)
 - wire connect output of one comparator to the input of another

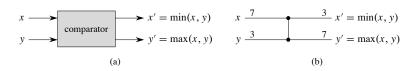


Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Network -

- A comparison network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs $x' = \min(x, y)$ and $y' = \max(x, y)$
 - wire connect output of one comparator to the input of another
 - special wires: n input wires a_1, a_2, \ldots, a_n and n output wires b_1, b_2, \ldots, b_n

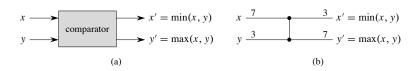


Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Network -

- A comparison network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs $x' = \min(x, y)$ and $y' = \max(x, y)$
 - wire connect output of one comparator to the input of another
 - special wires: n input wires a_1, a_2, \ldots, a_n and n output wires b_1, b_2, \ldots, b_n

Convention: use the same name for both a wire and its value.



Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

Comparison Network

A sorting network is a comparison network which works correctly (that is, it sorts every input)

- A comparison network consists solely of wires and comparators:
 - comparator is a device with, on given two inputs, x and y, returns two outputs $x' = \min(x, y)$ and $y' = \max(x, y)$
 - wire connect output of one comparator to the input of another
 - special wires: n input wires a_1, a_2, \ldots, a_n and n output wires b_1, b_2, \ldots, b_n

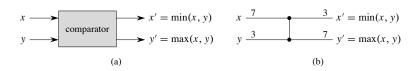
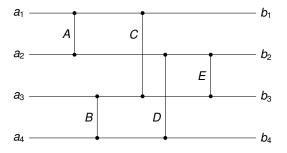
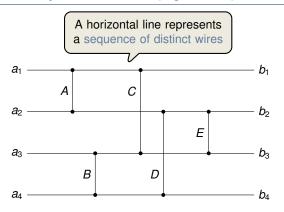
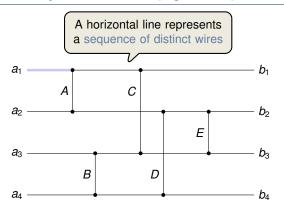
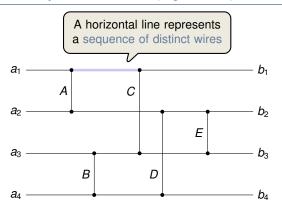


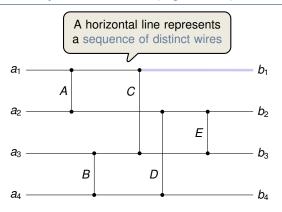
Figure 27.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The same comparator, drawn as a single vertical line. Inputs x = 7, y = 3 and outputs x' = 3, y' = 7 are shown.

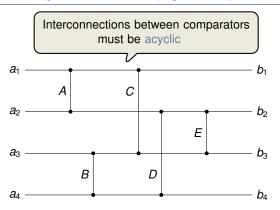


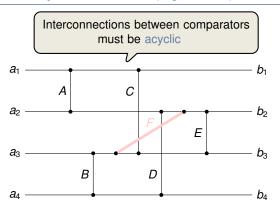


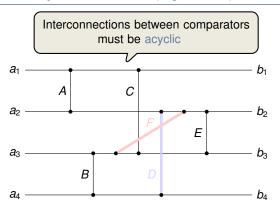


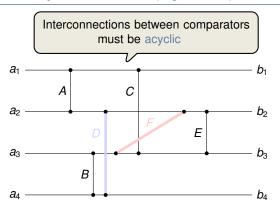


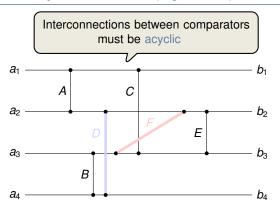


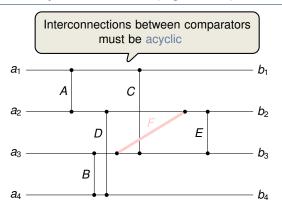


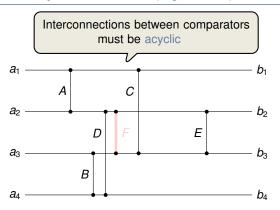


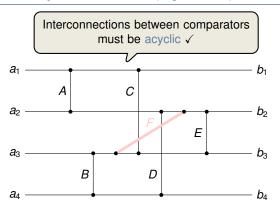


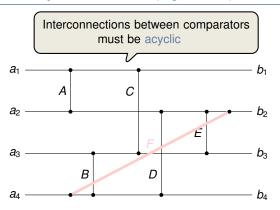


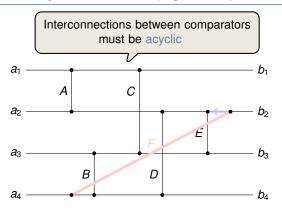


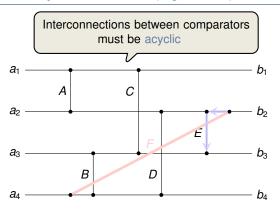


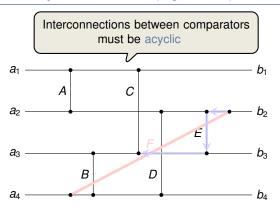


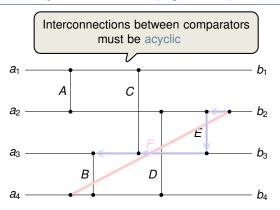


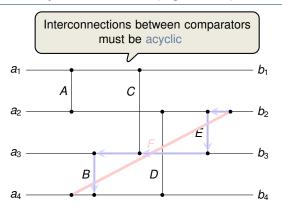


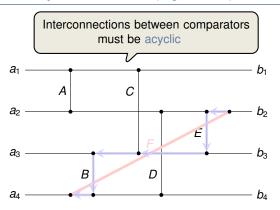


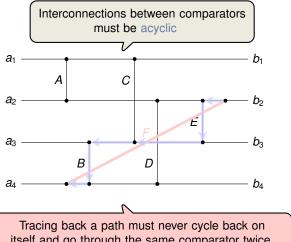




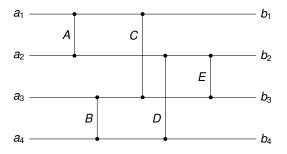


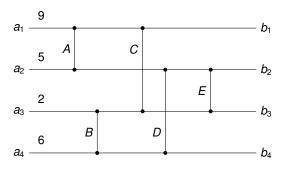


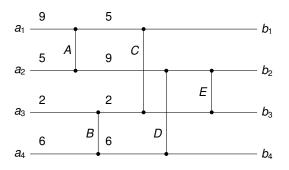


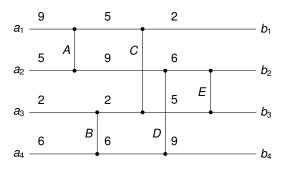


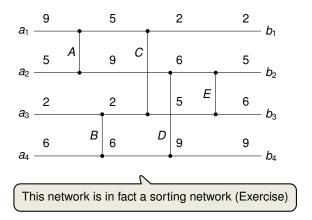
itself and go through the same comparator twice.

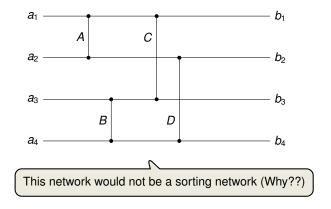


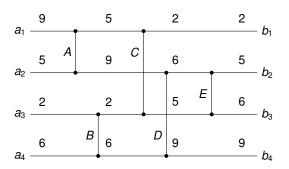


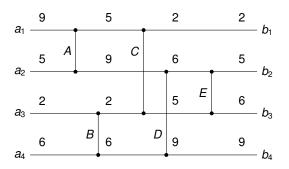






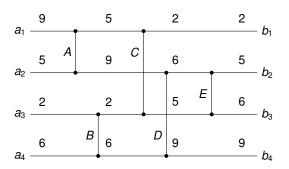




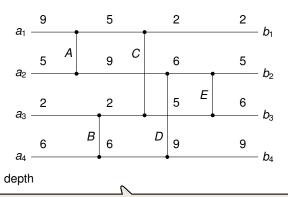


Depth of a wire:

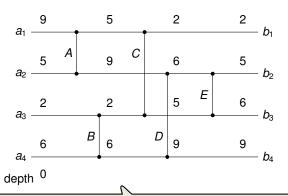
Input wire has depth 0



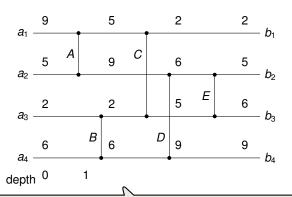
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



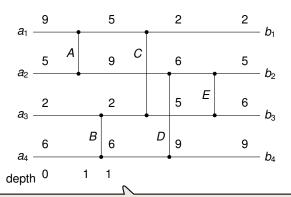
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



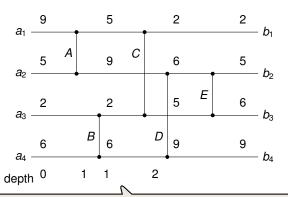
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



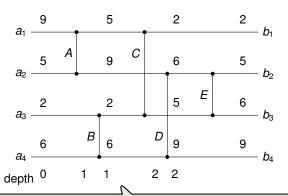
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



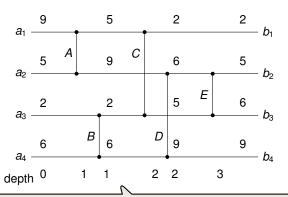
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



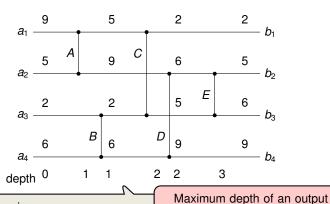
- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth max $\{d_x, d_y\} + 1$



Depth of a wire:

- Input wire has depth 0
- If a comparator has two inputs of depths d_x and d_y , then outputs have depth $\max\{d_x, d_y\} + 1$

wire equals total running time

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, \ldots, a_n \rangle$ into the output $b = \langle b_1, b_2, \ldots, b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), \ldots, f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), \ldots, f(b_n) \rangle$.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, \ldots, a_n \rangle$ into the output $b = \langle b_1, b_2, \ldots, b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), \ldots, f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), \ldots, f(b_n) \rangle$.

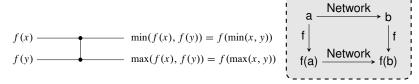


Figure 27.4 The operation of the comparator in the proof of Lemma 27.1. The function f is monotonically increasing.

Zero-One Principle: A sorting networks works correctly on arbitrary inputs if it works correctly on binary inputs.

- Lemma 27.1

If a comparison network transforms the input $a = \langle a_1, a_2, \ldots, a_n \rangle$ into the output $b = \langle b_1, b_2, \ldots, b_n \rangle$, then for any monotonically increasing function f, the network transforms $f(a) = \langle f(a_1), f(a_2), \ldots, f(a_n) \rangle$ into $f(b) = \langle f(b_1), f(b_2), \ldots, f(b_n) \rangle$.

Theorem 27.2 (Zero-One Principle)

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof of the Zero-One Principle

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

• For the sake of contradiction, suppose the network does not correctly sort.

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function f as:

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function f as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function f as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

• Since the network places a_i before a_i , by the previous lemma

Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

Proof:

- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function f as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

Since the network places a_j before a_i, by the previous lemma
 ⇒ f(a_i) is placed before f(a_i)

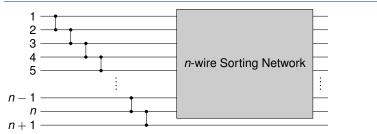
Theorem 27.2 (Zero-One Principle) -

If a comparison network with n inputs sorts all 2^n possible sequences of 0's and 1's correctly, then it sorts all sequences of arbitrary numbers correctly.

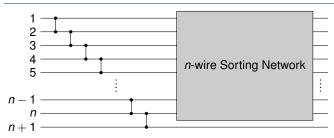
- For the sake of contradiction, suppose the network does not correctly sort.
- Let a = ⟨a₁, a₂,..., a_n⟩ be the input with a_i < a_j, but the network places a_j before a_i in the output
- Define a monotonically increasing function f as:

$$f(x) = \begin{cases} 0 & \text{if } x \leq a_i, \\ 1 & \text{if } x > a_i. \end{cases}$$

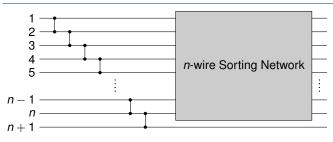
- Since the network places a_i before a_i, by the previous lemma
 ⇒ f(a_i) is placed before f(a_i)
- But $f(a_i) = 1$ and $f(a_i) = 0$, which contradicts the assumption that the network sorts all sequences of 0's and 1's correctly



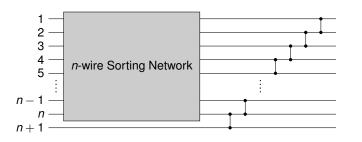
???



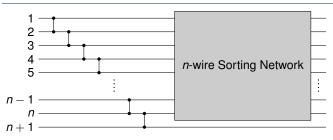
Bubble Sort



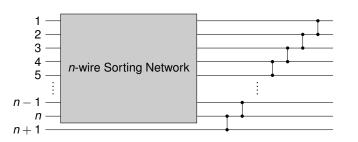
Bubble Sort



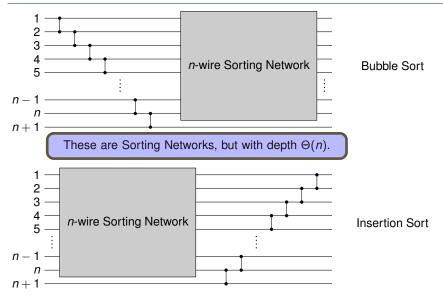
???



Bubble Sort



Insertion Sort



Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Sequences of one or two numbers are defined to be bitonic.

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Examples:

(1, 4, 6, 8, 3, 2) ?

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

Examples:

• ⟨1, 4, 6, 8, 3, 2⟩ ✓

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- (1, 4, 6, 8, 3, 2) √
- (6, 9, 4, 2, 3, 5) **?**

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- (1, 4, 6, 8, 3, 2)
 √
- ⟨6, 9, 4, 2, 3, 5⟩

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- ⟨6, 9, 4, 2, 3, 5⟩
- (9, 8, 3, 2, 4, 6)

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- ⟨6, 9, 4, 2, 3, 5⟩
- ⟨9, 8, 3, 2, 4, 6⟩✓

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- (6, 9, 4, 2, 3, 5) √
- ⟨9, 8, 3, 2, 4, 6⟩
- ⟨4,5,7,1,2,6⟩ ?

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- (6, 9, 4, 2, 3, 5) √
- ⟨9, 8, 3, 2, 4, 6⟩
- **4**, 5, 7, 1, 2, 6

Bitonic Sequence -

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- (6, 9, 4, 2, 3, 5) √
- ⟨9, 8, 3, 2, 4, 6⟩
- ⟨4,5,7,1,2,6⟩
- binary sequences: ?

Bitonic Sequence

A sequence is bitonic if it monotonically increases and then monotonically decreases, or can be circularly shifted to become monotonically increasing and then monotonically decreasing.

- ⟨1, 4, 6, 8, 3, 2⟩ √
- (6, 9, 4, 2, 3, 5) √
- ⟨9, 8, 3, 2, 4, 6⟩
- (4,5,7,1,2,6)
- binary sequences: $0^i 1^j 0^k$, or, $1^i 0^j 1^k$, for $i, j, k \ge 0$.

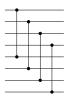
- Half-Cleaner -

- Half-Cleaner

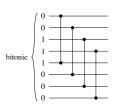
A half-cleaner is a comparison network of depth 1 in which input wire i is compared with wire i + n/2 for i = 1, 2, ..., n/2.

We always assume that n is even.

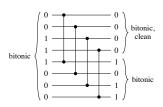
- Half-Cleaner



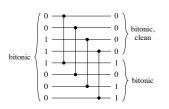
- Half-Cleaner

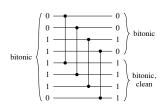


- Half-Cleaner



- Half-Cleaner





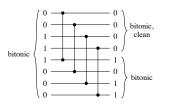
Half-Cleaner

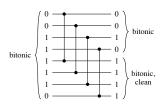
A half-cleaner is a comparison network of depth 1 in which input wire i is compared with wire i + n/2 for i = 1, 2, ..., n/2.

- Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0's and 1's, then the output satisfies the following properties:

- both the top half and the bottom half are bitonic.
- every element in the top is not larger than any element in the bottom,
- at least one half is clean.





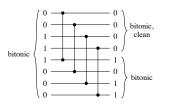
Half-Cleaner

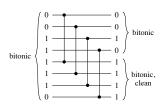
A half-cleaner is a comparison network of depth 1 in which input wire i is compared with wire i + n/2 for i = 1, 2, ..., n/2.

- Lemma 27.3

If the input to a half-cleaner is a bitonic sequence of 0's and 1's, then the output satisfies the following properties:

- both the top half and the bottom half are bitonic,
- every element in the top is not larger than any element in the bottom,
- at least one half is clean.



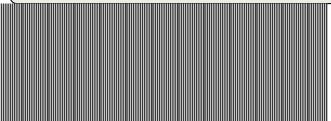


Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form $0^i 1^j 0^k$, for some $i, j, k \ge 0$.

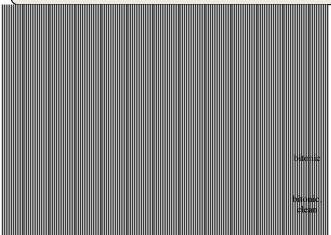
Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form $0^{i}1^{j}0^{k}$, for some $i, j, k \geq 0$.



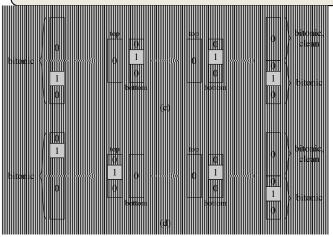
Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form $0^{i}1^{j}0^{k}$, for some $i, j, k \ge 0$.



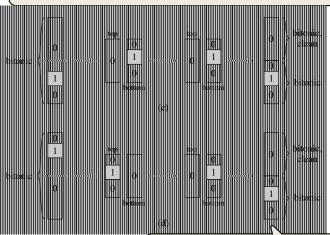
Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form $0^i 1^j 0^k$, for some $i, j, k \ge 0$.



Proof of Lemma 27.3

W.l.o.g. assume that the input is of the form $0^i 1^j 0^k$, for some $i, j, k \ge 0$.



This suggests a recursive approach, since it now suffices to sort the top and bottom half separately.

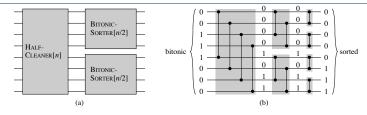


Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

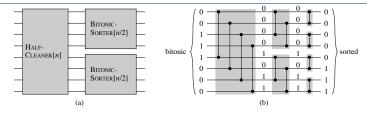


Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEAMER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

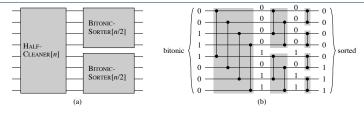


Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

Henceforth we will always assume that n is a power of 2.

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

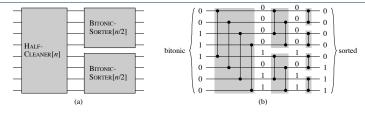


Figure 27.9 The comparison network BITONIC-SORTER[n], shown here for n = 8. (a) The recursive construction: HALF-CLEANER[n] followed by two copies of BITONIC-SORTER[n/2] that operate in parallel. (b) The network after unrolling the recursion. Each half-cleaner is shaded. Sample zero-one values are shown on the wires.

Recursive Formula for depth D(n):

Henceforth we will always assume that n is a power of 2.

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + 1 & \text{if } n = 2^k. \end{cases}$$

BITONIC-SORTER[n] has depth log n and sorts any zero-one bitonic sequence.

Merging Networks ——

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Merging Networks ———

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

Merging Networks ——

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

• consider two given sequences X = 000001111, Y = 00001111

Merging Networks —

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

- consider two given sequences X = 00000111, Y = 00001111
- concatenating X with Y^R (the reversal of Y) \Rightarrow 00000111111110000

Merging Networks -

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

- consider two given sequences X = 00000111, Y = 00001111
- concatenating X with Y^R (the reversal of Y) \Rightarrow 00000111111110000

This sequence is bitonic!

Merging Networks

- can merge two sorted input sequences into one sorted output sequence
- will be based on a modification of BITONIC-SORTER[n]

Basic Idea:

- consider two given sequences X = 00000111, Y = 00001111
- concatenating X with Y^R (the reversal of Y) \Rightarrow 00000111111110000

This sequence is bitonic!

Hence in order to merge the sequences X and Y, it suffices to perform a bitonic sort on X concatenated with Y^R .

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \dots, a_{n/2}, a_n, a_{n-1}, \dots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \dots, a_{n/2}, a_n, a_{n-1}, \dots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[n] compares inputs i and n i + 1 for i = 1, 2, ..., n/2

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \dots, a_{n/2}, a_n, a_{n-1}, \dots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[n] compares inputs i and n i + 1 for i = 1, 2, ..., n/2

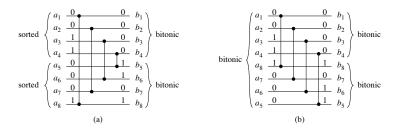


Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n=8. (a) The first stage of MERGER[n] transforms the two monotonic input sequences $(a_1, a_2, \ldots, a_n/2)$ and $(a_n/2+1, a_n/2+2, \ldots, a_n)$ into two bitonic sequences $(b_1, b_2, \ldots, b_n/2)$ and $(b_n/2+1, b_n/2+2, \ldots, b_n)$. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence $(a_1, a_2, \ldots, a_n/2-1, a_n/2, a_n, a_{n-1}, \ldots, a_n/2+2, a_n/2+1)$ is transformed into the two bitonic sequences $(b_1, b_2, \ldots, b_n/2)$ and $(b_n, b_{n-1}, \ldots, b_n/2+1)$.

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \dots, a_{n/2}, a_n, a_{n-1}, \dots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- \Rightarrow First part of MERGER[n] compares inputs i and n-i+1 for $i=1,2,\ldots,n/2$

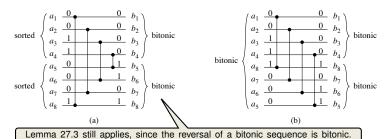
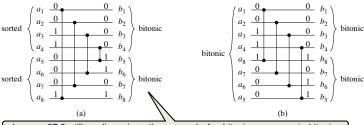


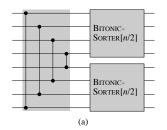
Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n=8. (a) The first stage of MERGER[n] transforms the two monotonic input sequences $\langle a_1, a_2, \ldots, a_{n/2} \rangle$ and $\langle a_n/2+1, a_n/2+2, \ldots, a_n \rangle$ into two bitonic sequences $\langle b_1, b_2, \ldots, b_{n/2} \rangle$ and $\langle b_n/2+1, b_n/2+2, \ldots, b_n \rangle$. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence $\langle a_1, a_2, \ldots, a_{n/2-1}, a_{n/2}, a_n, a_{n-1}, \ldots, a_{n/2+2}, a_{n/2+1} \rangle$ is transformed into the two bitonic sequences $\langle b_1, b_2, \ldots, b_{n/2} \rangle$ and $\langle b_n, b_{n-1}, \ldots, b_{n/2+1} \rangle$.

- Given two sorted sequences $\langle a_1, a_2, \dots, a_{n/2} \rangle$ and $\langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle$
- We know it suffices to bitonically sort $\langle a_1, a_2, \dots, a_{n/2}, a_n, a_{n-1}, \dots, a_{n/2+1} \rangle$
- Recall: first half-cleaner of BITONIC-SORTER[n] compares i and n/2 + i
- ⇒ First part of MERGER[n] compares inputs i and n i + 1 for i = 1, 2, ..., n/2
 - Remaining part is identical to BITONIC-SORTER[n]



Lemma 27.3 still applies, since the reversal of a bitonic sequence is bitonic.

Figure 27.10 Comparing the first stage of MERGER[n] with HALF-CLEANER[n], for n=8. (a) The first stage of MERGER[n] transforms the two monotonic input sequences $\langle a_1,a_2,\ldots,a_{n/2}\rangle$ and $\langle a_{n/2+1},a_{n/2+2},\ldots,a_n\rangle$ into two bitonic sequences $\langle b_1,b_2,\ldots,b_{n/2}\rangle$ and $\langle b_{n/2+1},b_{n/2+2},\ldots,b_n\rangle$. (b) The equivalent operation for HALF-CLEANER[n]. The bitonic input sequence $\langle a_1,a_2,\ldots,a_{n/2-1},a_{n/2},a_n,a_{n-1},\ldots,a_{n/2+2},a_{n/2+1}\rangle$ is transformed into the two bitonic sequences $\langle b_1,b_2,\ldots,b_{n/2}\rangle$ and $\langle b_n,b_{n-1},\ldots,b_{n/2+1}\rangle$.



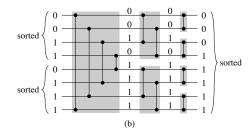
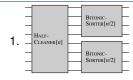


Figure 27.11 A network that merges two sorted input sequences into one sorted output sequence. The network MERGER[n] can be viewed as BITONIC-SORTER[n] with the first half-cleaner altered to compare inputs i and n-i+1 for $i=1,2,\ldots,n/2$. Here, n=8. (a) The network decomposed into the first stage followed by two parallel copies of BITONIC-SORTER[n/2]. (b) The same network with the recursion unrolled. Sample zero-one values are shown on the wires, and the stages are shaded.

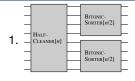
Main Components -

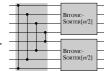
- 1. BITONIC-SORTER[n]
 - sorts any bitonic sequence
 - depth log n



Main Components -

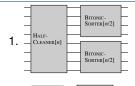
- 1. BITONIC-SORTER[n]
 - sorts any bitonic sequence
 - depth log n
- 2. MERGER[n]
 - merges two sorted input sequences
 - depth log n

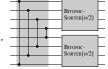




Main Components

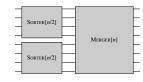
- 1. BITONIC-SORTER[n]
 - sorts any bitonic sequence
 - depth log n
- 2. MERGER[n]
 - merges two sorted input sequences
 - depth log n





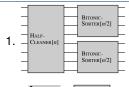
Batcher's Sorting Network

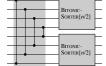
- SORTER[n] is defined recursively:
 - If n = 2^k, use two copies of SORTER[n/2] to sort two subsequences of length n/2 each. Then merge them using MERGER[n].
 - If n = 1, network consists of a single wire.



Main Components

- 1. BITONIC-SORTER[n]
 - sorts any bitonic sequence
 - depth log n
- 2. MERGER[n]
 - merges two sorted input sequences
 - depth log n





Batcher's Sorting Network

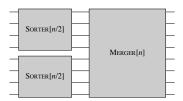
- SORTER[n] is defined recursively:
 - If n = 2^k, use two copies of SORTER[n/2] to sort two subsequences of length n/2 each. Then merge them using MERGER[n].
 - If n = 1, network consists of a single wire.

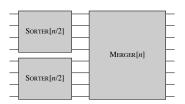
SORTER[n/2]

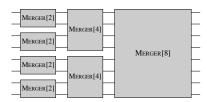
MERGER[n]

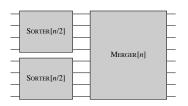
SORTER[n/2]

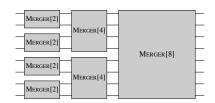
can be seen as a parallel version of merge sort

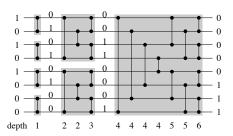


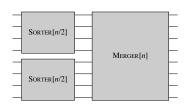


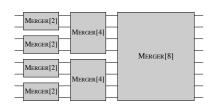


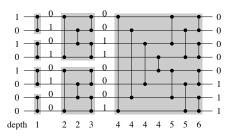






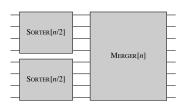


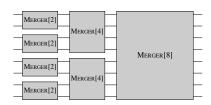


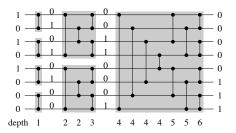


Recursion for D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + \log n & \text{if } n = 2^k. \end{cases}$$



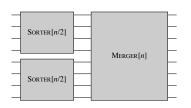


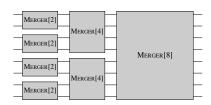


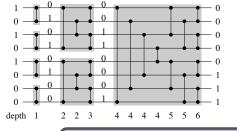
Recursion for D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + \log n & \text{if } n = 2^k. \end{cases}$$

Solution: $D(n) = \Theta(\log^2 n)$.







Recursion for D(n):

$$D(n) = \begin{cases} 0 & \text{if } n = 1, \\ D(n/2) + \log n & \text{if } n = 2^k. \end{cases}$$

Solution: $D(n) = \Theta(\log^2 n)$.

SORTER[n] has depth $\Theta(\log^2 n)$ and sorts any input.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Ajtai, Komlós, Szemerédi (1983) -

There exists a sorting network with depth $O(\log n)$.

Quite elaborate construction, and involves huges constants.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver -

A perfect halver is a comparison network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver

A perfect halver is a comparison network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Perfect halver of depth $\log n$ exist \rightsquigarrow yields sorting networks of depth $\Theta((\log n)^2)$.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver -

A perfect halver is a comparison network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Approximate Halver ——

An (n,ϵ) -approximate halver, $\epsilon<1$, is a comparison network that for every $k=1,2,\ldots,n/2$ places at most ϵk of its k smallest keys in $b_{n/2+1},\ldots,b_n$ and at most ϵk of its k largest keys in $b_1,\ldots,b_{n/2}$.

Ajtai, Komlós, Szemerédi (1983)

There exists a sorting network with depth $O(\log n)$.

Perfect Halver -

A perfect halver is a comparison network that, given any input, places the n/2 smaller keys in $b_1, \ldots, b_{n/2}$ and the n/2 larger keys in $b_{n/2+1}, \ldots, b_n$.

Approximate Halver —

An (n,ϵ) -approximate halver, $\epsilon<1$, is a comparison network that for every $k=1,2,\ldots,n/2$ places at most ϵk of its k smallest keys in $b_{n/2+1},\ldots,b_n$ and at most ϵk of its k largest keys in $b_1,\ldots,b_{n/2}$.

We will prove that such networks can be constructed in constant depth!

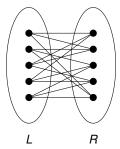
Expander Graphs

Expander Graphs

A bipartite (n, d, μ) -expander is a graph with:

- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of *d* perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$|\mathcal{N}(\mathcal{S})| > \min\{\mu \cdot |\mathcal{S}|, n/2 - |\mathcal{S}|\}$$

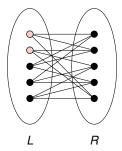


Expander Graphs

A bipartite (n, d, μ) -expander is a graph with:

- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of *d* perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$|\mathcal{N}(\mathcal{S})| > \min\{\mu \cdot |\mathcal{S}|, n/2 - |\mathcal{S}|\}$$

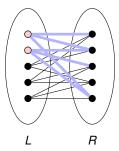


Expander Graphs

A bipartite (n, d, μ) -expander is a graph with:

- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of *d* perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$|\mathcal{N}(\mathcal{S})| > \min\{\mu \cdot |\mathcal{S}|, n/2 - |\mathcal{S}|\}$$

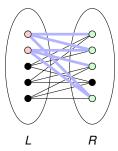


Expander Graphs

A bipartite (n, d, μ) -expander is a graph with:

- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of *d* perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$|N(S)| > \min\{\mu \cdot |S|, n/2 - |S|\}$$



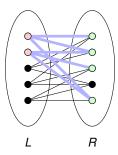
Expander Graphs -

A bipartite (n, d, μ) -expander is a graph with:

- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of *d* perfect matchings
- For every subset $S \subseteq V$ being in one part,

$$|\mathcal{N}(\mathcal{S})| > \min\{\mu \cdot |\mathcal{S}|, n/2 - |\mathcal{S}|\}$$

Specific definition tailored for sorting network - many other variants exist!

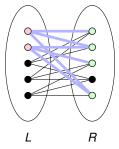


Expander Graphs

A bipartite (n, d, μ) -expander is a graph with:

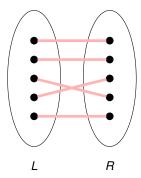
- *G* has *n* vertices (*n*/2 on each side)
- the edge-set is union of d perfect matchings
- For every subset $S \subseteq V$ being in one part,

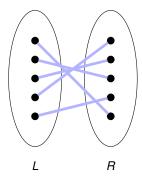
$$|\mathcal{N}(\mathcal{S})| > \min\{\mu \cdot |\mathcal{S}|, n/2 - |\mathcal{S}|\}$$

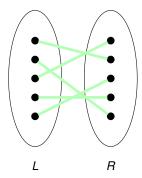


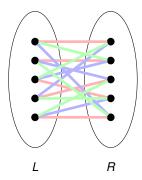
Expander Graphs:

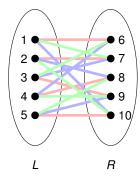
- probabilistic construction "easy": take d (disjoint) random matchings
- explicit construction is a deep mathematical problem with ties to number theory, group theory, combinatorics etc.
- many applications in networking, complexity theory and coding theory

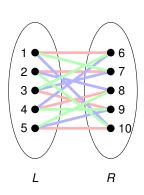


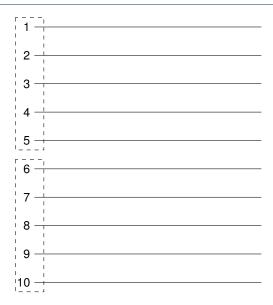


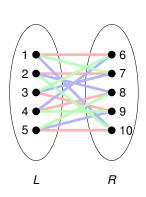


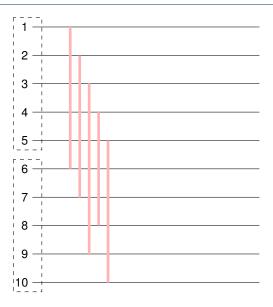


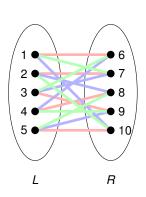




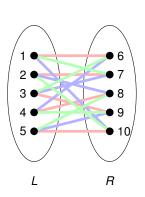


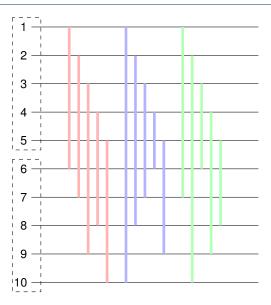


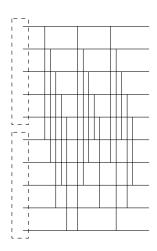






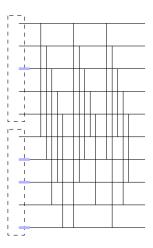




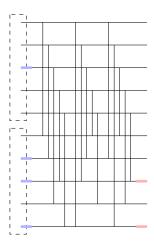


Proof:

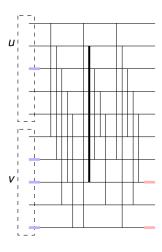
X := keys with the k smallest inputs



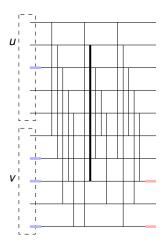
- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs



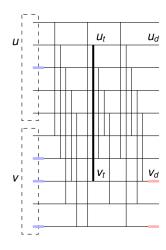
- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$



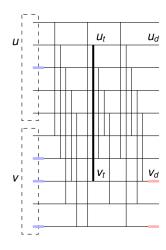
- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)



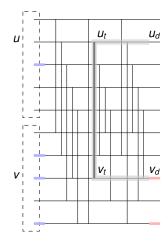
- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)



- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)

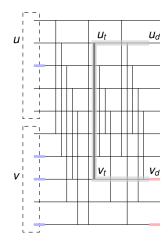


- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d \le u_t \le v_t \le v_d$



- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

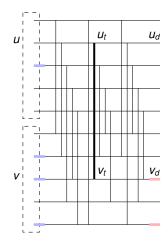
$$|Y|+|N(Y)|\leq k.$$



Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y| + |N(Y)| \le k.$$

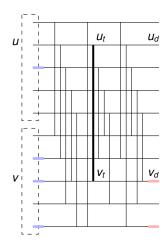


Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since *u* was arbitrary:

$$|Y| + |N(Y)| \le k.$$

$$|Y| + |N(Y)|$$

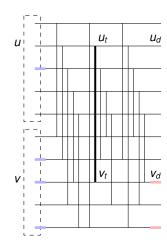


Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y| + |N(Y)| \le k.$$

$$|Y| + |N(Y)| > |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$



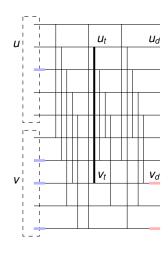
Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y| + |N(Y)| \le k.$$

$$|Y| + |N(Y)| > |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= $\min\{(1 + \mu)|Y|, n/2\}.$



Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y| + |N(Y)| \le k.$$

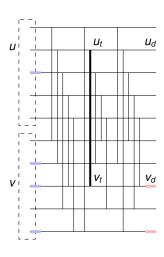
• Since *G* is a bipartite (n, d, μ) -expander:

$$|Y| + |N(Y)| > |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= $\min\{(1 + \mu)|Y|, n/2\}.$

Combining the two bounds above yields:

$$(1+\mu)|Y| \leq k.$$



Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d < u_t < v_t < v_d \Rightarrow u_d \in X$
- Since u was arbitrary:

$$|Y| + |N(Y)| \le k.$$

• Since *G* is a bipartite (n, d, μ) -expander:

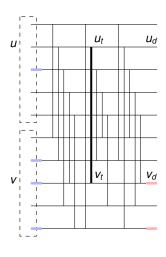
$$|Y| + |N(Y)| > |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= \text{min}\{(1 + \mu)|Y|, n/2\}.

Combining the two bounds above yields:

$$(1+\mu)|Y| \leq k.$$

Here we used that $k \le n/2$



Proof:

- X := keys with the k smallest inputs
- Y := wires in lower half with k smallest outputs
- For every $u \in N(Y)$: \exists comparat. $(u, v), v \in Y$
- Let u_t, v_t be their keys after the comparator Let u_d, v_d be their keys at the output (note v_d ∈ X)
- Further: $u_d \le u_t \le v_t \le v_d \Rightarrow u_d \in X$
- Since *u* was arbitrary:

$$|Y| + |N(Y)| \le k.$$

• Since *G* is a bipartite (n, d, μ) -expander:

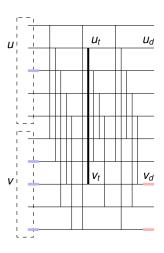
$$|Y| + |N(Y)| > |Y| + \min\{\mu|Y|, n/2 - |Y|\}$$

= \text{min}\{(1 + \mu)|Y|, n/2\}.

Combining the two bounds above yields:

$$(1+\mu)|Y| < k.$$

■ Same argument \Rightarrow at most $\epsilon \cdot k$, $\epsilon := 1/(\mu + 1)$, of the k largest input keys are placed in $b_1, \ldots, b_{n/2}$.



- typical application of expander graphs in parallel algorithms
- Much more work needed to construct the AKS sorting network

AKS network vs. Batcher's network

Donald E. Knuth (Stanford)

"Batcher's method is much better, unless n exceeds the total memory capacity of all computers on earth!"

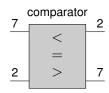
Richard J. Lipton (Georgia Tech)

"The AKS sorting network is **galactic**: it needs that n be larger than 2⁷⁸ or so to finally be smaller than Batcher's network for n items."

Siblings of Sorting Network

Sorting Networks -

- sorts any input of size n
- special case of Comparison Networks



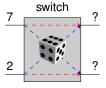
Siblings of Sorting Network

Sorting Networks -

- sorts any input of size n
- special case of Comparison Networks

Switching (Shuffling) Networks —

- creates a random permutation of n items
- special case of Permutation Networks



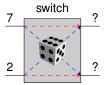
Siblings of Sorting Network

Sorting Networks —

- sorts any input of size n
- special case of Comparison Networks

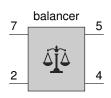
Switching (Shuffling) Networks ———

- creates a random permutation of n items
- special case of Permutation Networks



Counting Networks ————

- balances any stream of tokens over n wires
- special case of Balancing Networks



Outline

Outline of this Course

Some Highlights

Introduction to Sorting Networks

Batcher's Sorting Network

Counting Networks

Counting Network

Distributed Counting —

Processors collectively assign successive values from a given range.

Distributed Counting -

Processors collectively assign successive values from a given range.

Values could represent addresses in memories or destinations on an interconnection network

Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

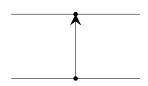
- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks _____

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

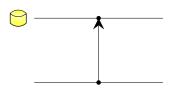


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

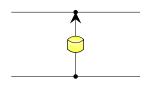


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks ——

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

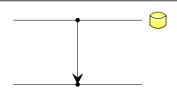


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks ————

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

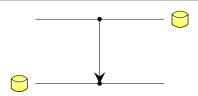


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

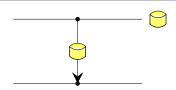


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks ——

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

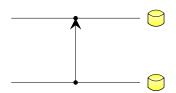


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

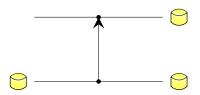


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

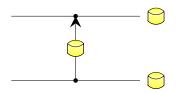


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks ——

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

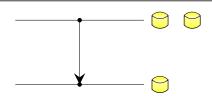


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks —

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)

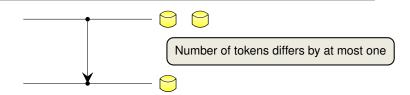


Distributed Counting —

Processors collectively assign successive values from a given range.

Balancing Networks ——

- constructed in a similar manner like sorting networks
- instead of comparators, consists of balancers
- balancers are asynchronous flip-flops that forward tokens from its inputs to one of its two outputs alternately (top, bottom, top,...)



Bitonic Counting Network

Counting Network (Formal Definition) ——

- 1. Let x_1, x_2, \ldots, x_n be the number of tokens (ever received) on the designated input wires
- 2. Let y_1, y_2, \ldots, y_n be the number of tokens (ever received) on the designated output wires

Bitonic Counting Network

Counting Network (Formal Definition)

- 1. Let x_1, x_2, \ldots, x_n be the number of tokens (ever received) on the designated input wires
- 2. Let y_1, y_2, \dots, y_n be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a balancing network with the step-property:

$$0 \le y_i - y_j \le 1$$
 for any $i < j$.

Bitonic Counting Network

Counting Network (Formal Definition)

- 1. Let x_1, x_2, \ldots, x_n be the number of tokens (ever received) on the designated input wires
- 2. Let y_1, y_2, \dots, y_n be the number of tokens (ever received) on the designated output wires
- 3. In a quiescent state: $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$
- 4. A counting network is a balancing network with the step-property:

$$0 \le y_i - y_j \le 1$$
 for any $i < j$.

Bitonic Counting Network: Take Batcher's Sorting Network and replace each comparator by a balancer.

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! \ j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.

Key Lemma

Consider a MERGER[n]. Then if the inputs $x_1, \ldots, x_{n/2}$ and $x_{n/2+1}, \ldots, x_n$ have the step property, then so does the output y_1, \ldots, y_n .

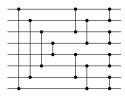
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

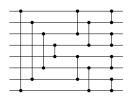
3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! \ j = 1, 2, \dots, n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.



Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! \ j = 1, 2, \dots, n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.



Proof (by induction on *n* being a power of 2)

• Case n = 2 is clear, since MERGER[2] is a single balancer

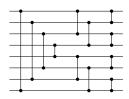
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



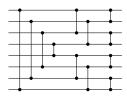
- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2:

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

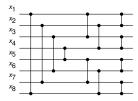
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z_1', \ldots, z_{n/2}'$ be the outputs of the MERGER[n/2] subnetworks

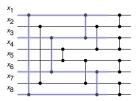
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z_1', \ldots, z_{n/2}'$ be the outputs of the MERGER[n/2] subnetworks

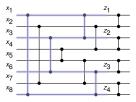
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.

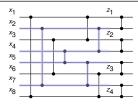


- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.

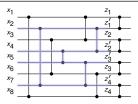


- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z_1', \ldots, z_{n/2}'$ be the outputs of the MERGER[n/2] subnetworks

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.



- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property

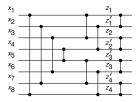
Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

2. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$
, then $x_i = y_i$ for $i = 1, ..., n$.

3. If
$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$$
, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



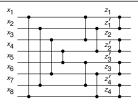
- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z_i'$

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! \ j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.



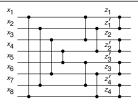
- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \dots, z_{n/2}$ and $z'_1, \dots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z_i'$
- Claim: $|Z Z'| \le 1$ (since $Z' = \lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rceil$)

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

1. We have
$$\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$$
, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$

- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! \ j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.

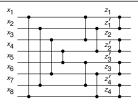


- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \dots, z_{n/2}$ and $z'_1, \dots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z_i'$
- Claim: $|Z Z'| \le 1$ (since $Z' = \lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rceil$)

Facts

Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! j = 1, 2, ..., n$ with $x_i = y_i + 1$ and $x_i = y_i$ for $j \neq i$.

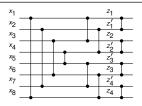


- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z'_1, \ldots, z'_{n/2}$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \dots, z_{n/2}$ and $z'_1, \dots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z_i'$
- Claim: $|Z Z'| \le 1$ (since $Z' = \lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lceil \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rceil$)
- Case 1: If Z = Z', then F2 implies the output of MERGER[n] is $y_i = z_{1+\lfloor (i-1)/2 \rfloor} \checkmark$

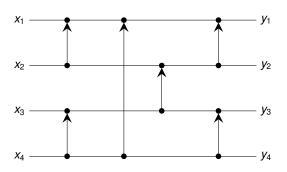
Facts

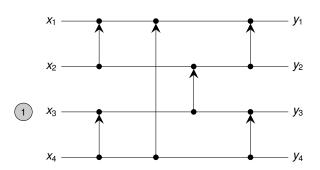
Let x_1, \ldots, x_n and y_1, \ldots, y_n have the step property. Then:

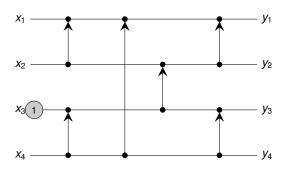
- 1. We have $\sum_{i=1}^{n/2} x_{2i-1} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$, and $\sum_{i=1}^{n/2} x_{2i} = \left[\frac{1}{2} \sum_{i=1}^{n} x_i\right]$
- 2. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, then $x_i = y_i$ for i = 1, ..., n.
- 3. If $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + 1$, then $\exists ! \ j = 1, 2, ..., n$ with $x_j = y_j + 1$ and $x_i = y_i$ for $j \neq i$.

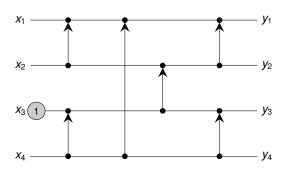


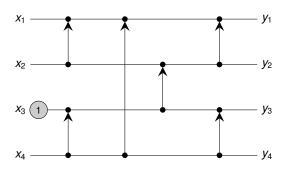
- Case n = 2 is clear, since MERGER[2] is a single balancer
- n > 2: Let $z_1, \ldots, z_{n/2}$ and $z_1', \ldots, z_{n/2}'$ be the outputs of the MERGER[n/2] subnetworks
- IH $\Rightarrow z_1, \dots, z_{n/2}$ and $z'_1, \dots, z'_{n/2}$ have the step property
- Let $Z := \sum_{i=1}^{n/2} z_i$ and $Z' := \sum_{i=1}^{n/2} z_i'$
- Claim: $|Z Z'| \le 1$ (since $Z' = \lfloor \frac{1}{2} \sum_{i=1}^{n/2} x_i \rfloor + \lfloor \frac{1}{2} \sum_{i=n/2+1}^{n} x_i \rfloor$)
- Case 1: If Z = Z', then F2 implies the output of MERGER[n] is $y_i = z_{1+|(i-1)/2|} \checkmark$
- Case 2: If |Z Z'| = 1, F3 implies $z_i = z_i'$ for i = 1, ..., n/2 except a unique j with $z_j \neq z_j'$. Balancer between z_i and z_i' will ensure that the step property holds.

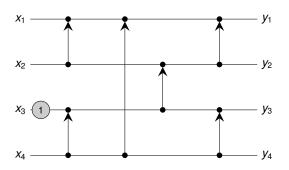


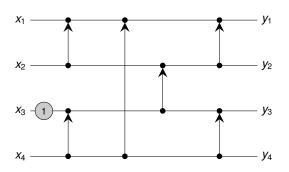


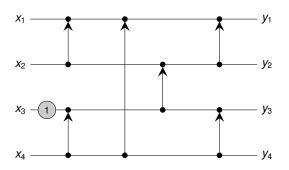


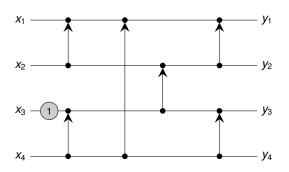


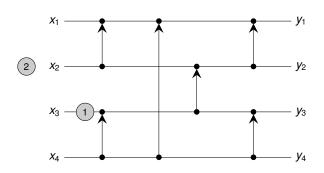


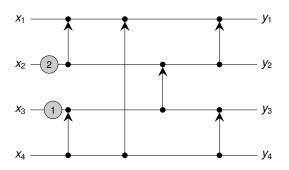


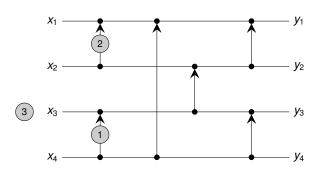


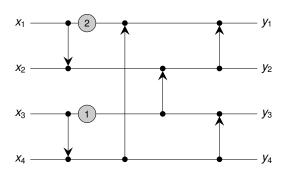


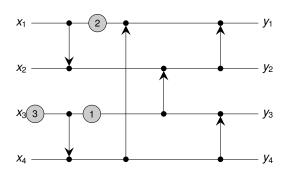


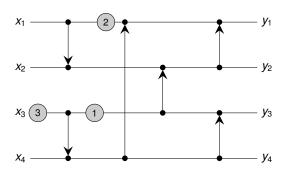


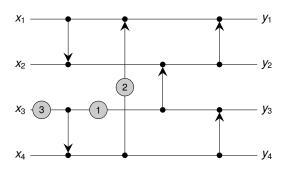


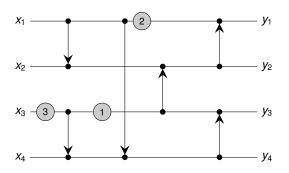


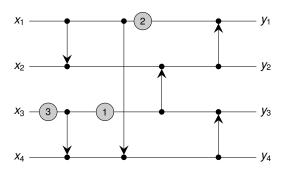


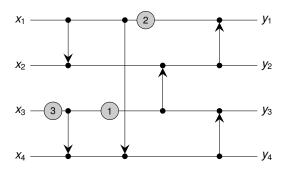


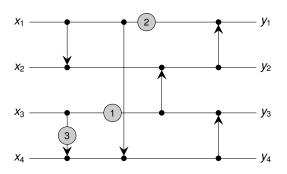


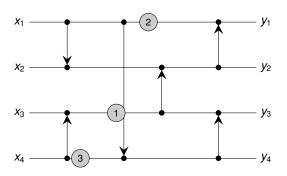


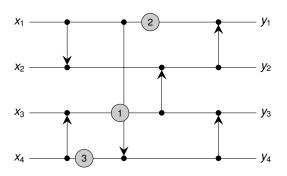


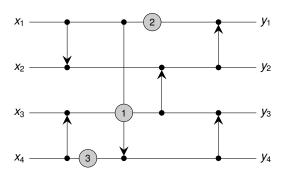


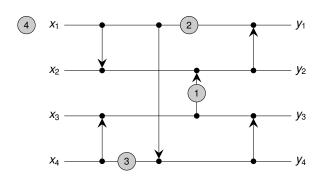


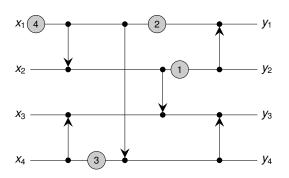


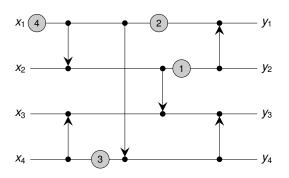


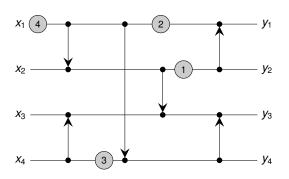


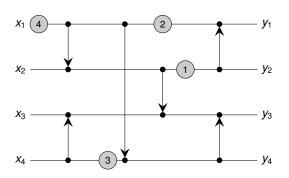


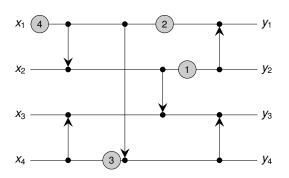


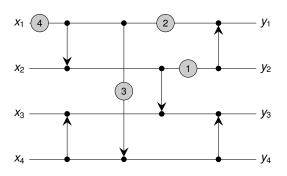


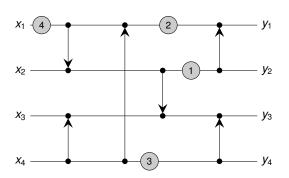


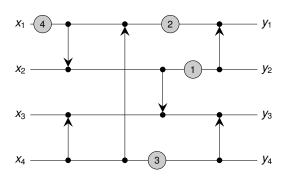


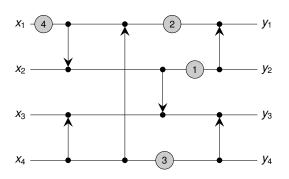


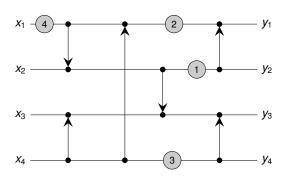


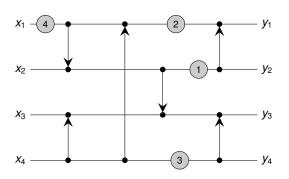


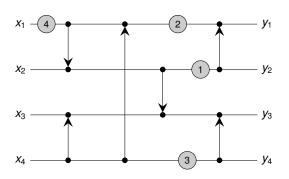


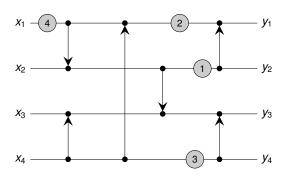


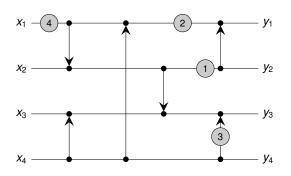


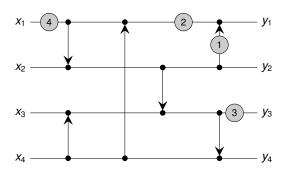


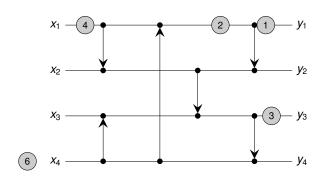


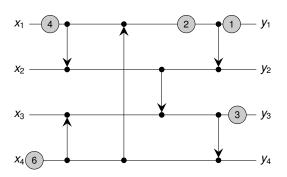


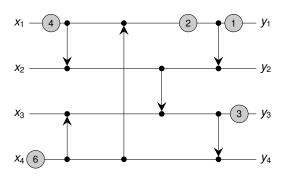


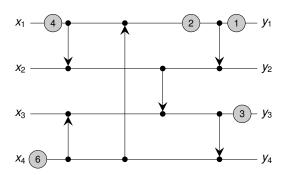


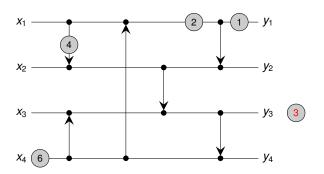


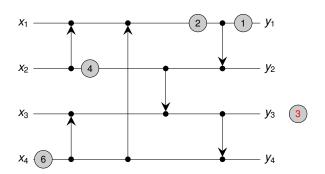


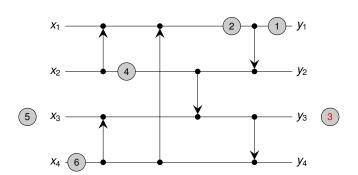


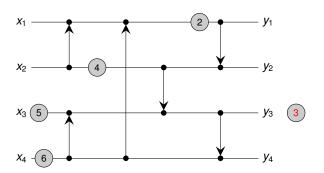


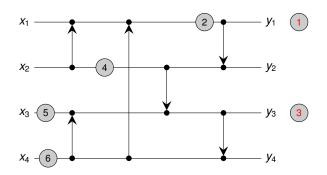


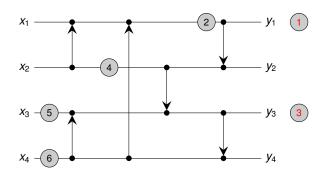


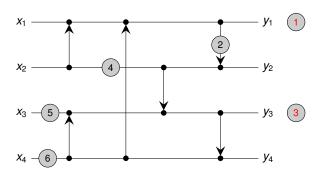


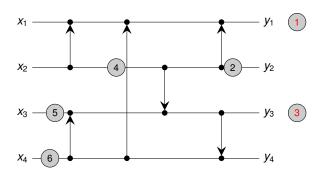


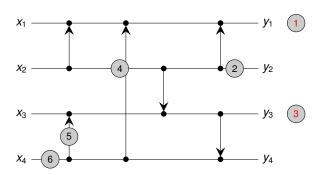




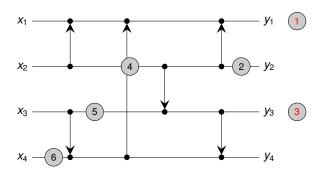


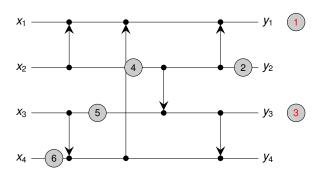


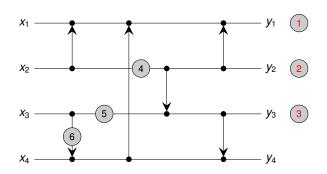


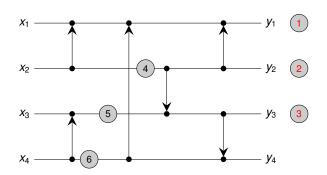


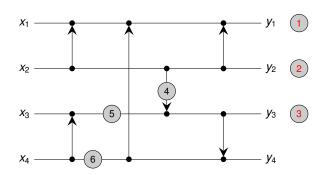


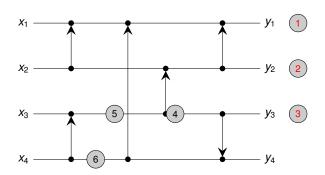


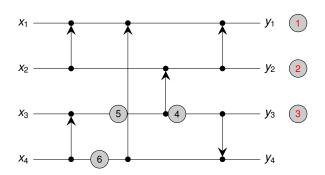


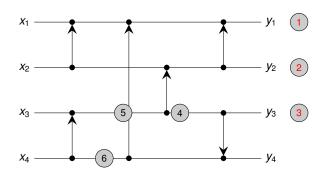


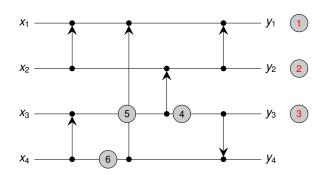


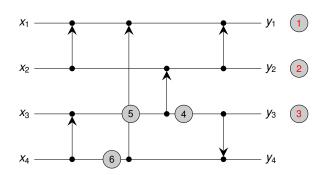


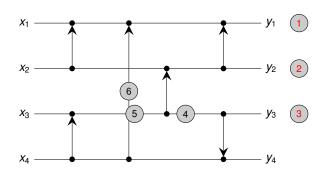


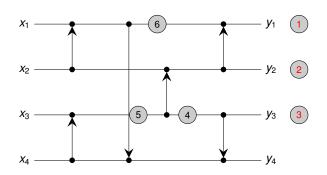


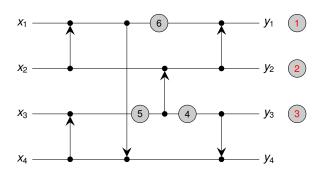


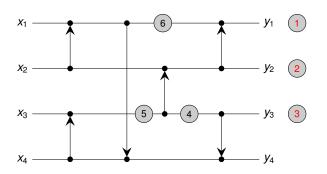


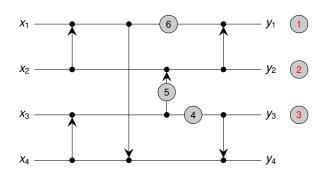


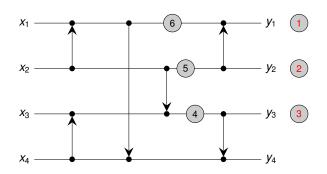


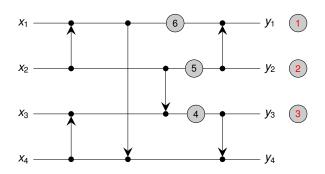


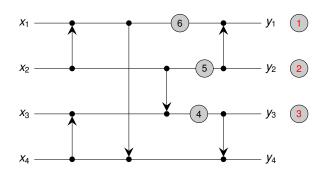


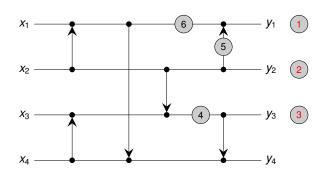


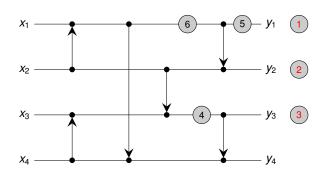


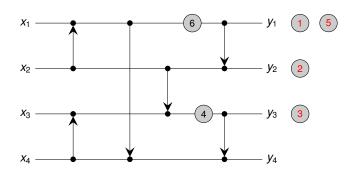


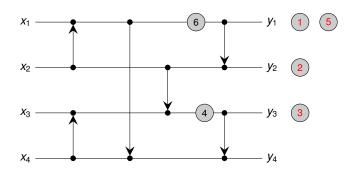


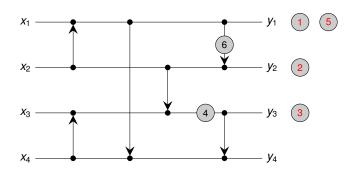


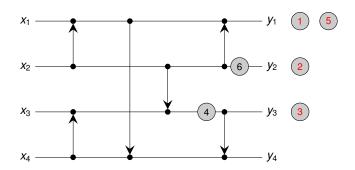


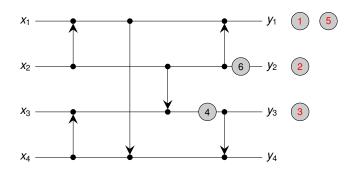


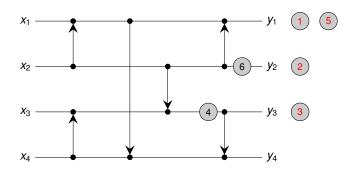


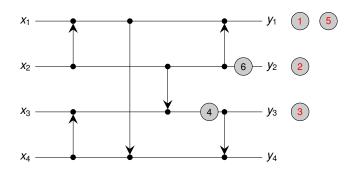


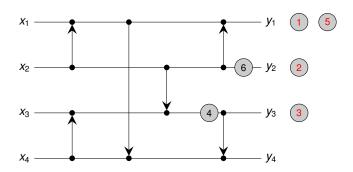


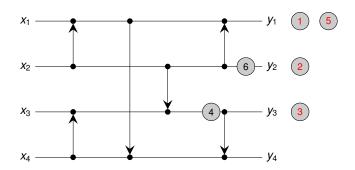


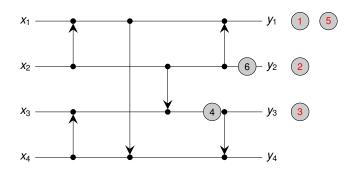


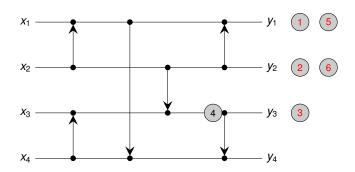


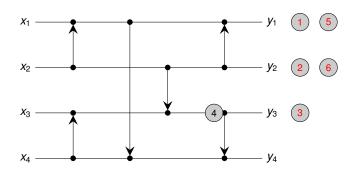


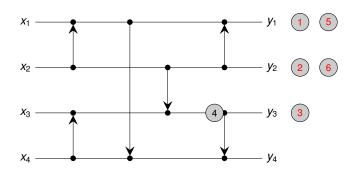


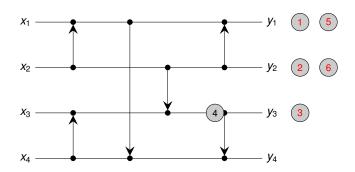


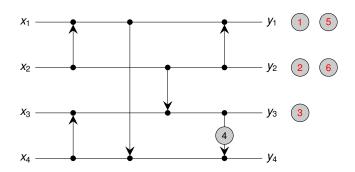


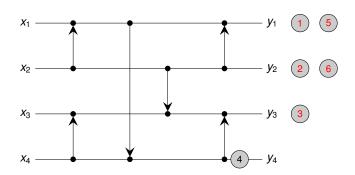


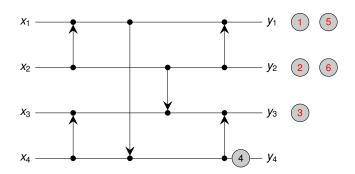


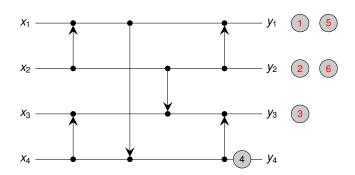


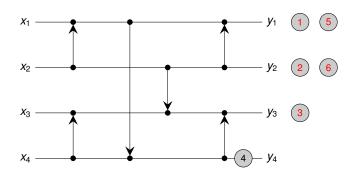


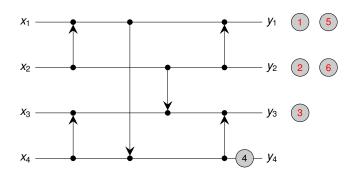


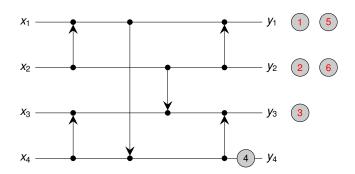


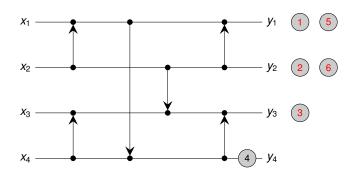


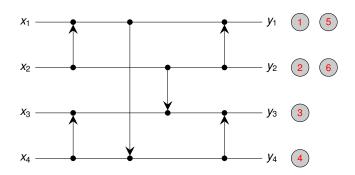


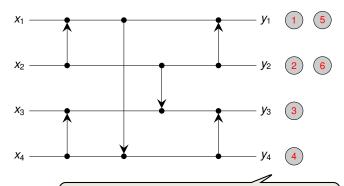






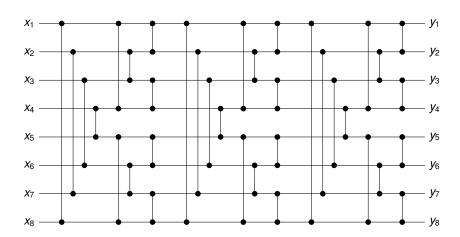




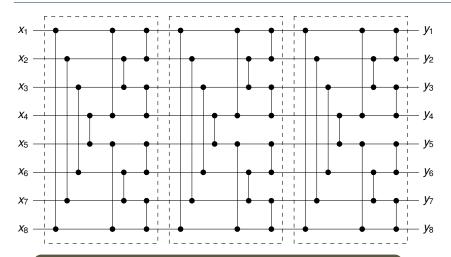


Counting can be done as follows: Add **local counter** to each output wire i, to assign consecutive numbers i, i + n, i + 2 · n, . . .

A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]



A Periodic Counting Network [Aspnes, Herlihy, Shavit, JACM 1994]



Consists of $\log n$ BLOCK[n] networks each of which has depth $\log n$

Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

The converse is not true!

Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Counting vs. Sorting

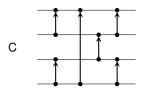
If a network is a counting network, then it is also a sorting network.

Counting vs. Sorting —

If a network is a counting network, then it is also a sorting network.

Proof.

• Let *C* be a counting network, and *S* be the corresponding sorting network

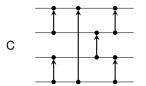


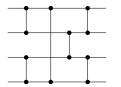
Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

• Let *C* be a counting network, and *S* be the corresponding sorting network



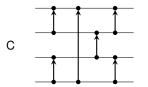


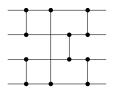
Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, ..., a_n \in \{0, 1\}^n$ to S



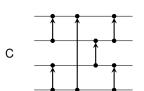


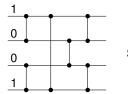
Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, ..., a_n \in \{0, 1\}^n$ to S



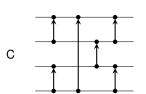


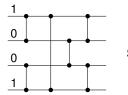
Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.

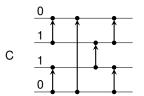


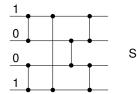


Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \dots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires

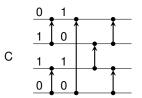


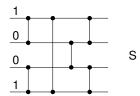


Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \dots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires

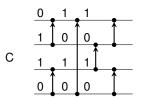


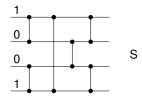


Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \dots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires

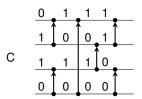


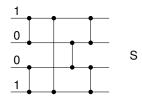


Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires

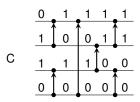


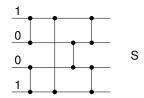


Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires





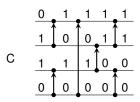
From Counting to Sorting

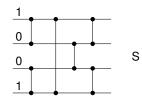
Counting vs. Sorting -

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires
- S corresponds to C ⇒ all zeros will be routed to the lower wires





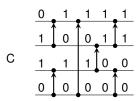
From Counting to Sorting

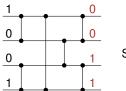
Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires
- S corresponds to $C \Rightarrow$ all zeros will be routed to the lower wires





S

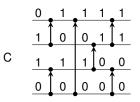
From Counting to Sorting

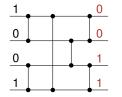
Counting vs. Sorting

If a network is a counting network, then it is also a sorting network.

Proof.

- Let C be a counting network, and S be the corresponding sorting network
- Consider an input sequence $a_1, a_2, \ldots, a_n \in \{0, 1\}^n$ to S
- Define an input $x_1, x_2, ..., x_n \in \{0, 1\}^n$ to C by $x_i = 1$ iff $a_i = 0$.
- C is a counting network ⇒ all ones will be routed to the lower wires
- S corresponds to C ⇒ all zeros will be routed to the lower wires
- By the Zero-One Principle, S is a sorting network.





S

Thomas Sauerwald

Easter 2018

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \quad \forall i, j = 1, 2, \dots, n.$$

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \quad \forall i, j = 1, 2, \ldots, n.$$

```
SQUARE-MATRIX-MULTIPLY (A, B)
```

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}
```

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \quad \forall i, j = 1, 2, \dots, n.$$

```
SQUARE-MATRIX-MULTIPLY (A, B)
```

```
1 n = A.rows

2 let C be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}
```

SQUARE-MATRIX-MULTIPLY(A, B) takes time $\Theta(n^3)$.

Remember: If $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices, then the matrix product $C = A \cdot B$ is defined by

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \quad \forall i, j = 1, 2, \dots, n.$$

SQUARE-MATRIX-MULTIPLY (A, B)

- $1 \quad n = A.rows$
- 2 let C be a new $n \times n$ matrix
- 3 **for** i = 1 **to** n
- 4 for j = 1 to n
- $5 c_{ij} = 0$
- 6 **for** k = 1 **to** n
 - $c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}$
- R return C

SQUARE-MATRIX-MULTIPLY(A, B) takes time $\Theta(n^3)$.

This definition suggests that $n^2 \cdot n = n^3$

arithmetic operations are necessary.

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

Assumption: *n* is always an exact power of 2.

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

This corresponds to the four equations:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Assumption: *n* is always an exact power of 2.

Divide & Conquer:

Partition A, B, and C into four $n/2 \times n/2$ matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}.$$

Hence the equation $C = A \cdot B$ becomes:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

This corresponds to the four equations:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Each equation specifies two multiplications of $C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} \setminus n/2 \times n/2$ matrices and the addition of their products.

$$\begin{split} C_{11} &= A_{11} \cdot B_{11} + A_{12} \cdot B_{21} \\ C_{12} &= A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ C_{21} &= A_{21} \cdot B_{11} + A_{22} \cdot B_{21} \\ C_{11} &= A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{split}$$

```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
 3 if n == 1
 4
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SOUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{11} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

```
n = A.rows
                                   Line 5: Handle submatrices implicitly through
   let C be a new n \times n matrix
                                    index calculations instead of creating them.
  if n == 1
       c_{11} = a_{11} \cdot b_{11}
   else partition A, B, and C as in equations (4.9)
        C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
6
            + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
        C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
            + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
8
        C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
            + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
9
        C_{22} = \text{SOUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
            + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
   return C
```

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{11} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
 3 if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
 9
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
 3 if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SOUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ & \text{if } n > 1 \end{cases}$$


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
 9
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ & \text{if } n > 1. \end{cases}$$
8 Multiplications


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) & \text{if } n > 1. \end{cases}$$
8 Multiplications


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) & \text{if } n > 1. \end{cases}$$
8 Multiplications 4 Additions and Partitioning

```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
        c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$
8 Multiplications 4 Additions and Partitioning


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
 2 let C be a new n \times n matrix
 3 if n == 1
     c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: T(n) =


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
 2 let C be a new n \times n matrix
 3 if n == 1
     c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution: $T(n) = \Theta(8^{\log_2 n})$


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
      c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
 9
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution:
$$T(n) = \Theta(8^{\log_2 n}) = \Theta(n^3)$$
 No improvement over the naive algorithm!


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
 2 let C be a new n \times n matrix
 3 if n == 1
     c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
 8
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
    return C
```

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8 \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution:
$$T(n) = \Theta(8^{\log_2 n}) = \Theta(n^3)$$


```
SOUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
    n = A.rows
   let C be a new n \times n matrix
   if n == 1
      c_{11} = a_{11} \cdot b_{11}
    else partition A, B, and C as in equations (4.9)
         C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
 6
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
         C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
 8
         C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
 9
         C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
              + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
10
    return C
```

Let T(n) be the runtime of this procedure. Then:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ \mathbf{8} \cdot T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases}$$

Solution:
$$T(n) = \Theta(8^{\log_2 n}) = \Theta(n^3)$$
 Goal: Reduce the number of multiplications

II. Matrix Multiplication

6

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only **7** recursive multiplications of $n/2 \times n/2$ matrices.

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only **7** recursive multiplications of $n/2 \times n/2$ matrices.

Strassen's Algorithm (1969)

- 1. Partition each of the matrices into four $n/2 \times n/2$ submatrices
- 2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.
- 3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$
- 4. Compute $n/2 \times n/2$ submatrices of C by adding and subtracting various combinations of the P_i .

Divide & Conquer: Second Approach

Idea: Make the recursion tree less bushy by performing only **7** recursive multiplications of $n/2 \times n/2$ matrices.

Strassen's Algorithm (1969)

- 1. Partition each of the matrices into four $n/2 \times n/2$ submatrices
- 2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.
- 3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$
- 4. Compute $n/2 \times n/2$ submatrices of *C* by adding and subtracting various combinations of the P_i .

Time for steps 1,2,4: $\Theta(n^2)$, hence $T(n) = 7 \cdot T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^{\log 7})$.

Solving the Recursion

 $T(n) = \frac{7}{2} \cdot T(n/2) + c \cdot n^2$

Details of Strassen's Algorithm

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11}+A_{12}B_{21} & A_{11}B_{12}+A_{12}B_{21} \\ A_{21}B_{11}+A_{22}B_{21} & A_{21}B_{12}+A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5+P_4-P_2+P_6 & P_1+P_2 \\ P_3+P_4 & P_5+P_1-P_3-P_7 \end{pmatrix}$$

$$P_5 + P_4 - P_2 + P_6 =$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

$$P_5 + P_4 - P_2 + P_6 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{22}B_{11} - A_{11}B_{22} - A_{12}B_{22} + A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22}$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

$$P_5 + P_4 - P_2 + P_6 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{22}B_{11} - A_{12}B_{22} - A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22}$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

$$\begin{split} P_5 + P_4 - P_2 + P_6 &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{22}B_{11} \\ &- A_{11}B_{22} - A_{12}B_{22} + A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\ &= A_{11}B_{11} + A_{12}B_{21} \end{split}$$

The 10 Submatrices and 7 Products

$$\begin{split} P_1 &= A_{11} \cdot S_1 = A_{11} \cdot (B_{12} - B_{22}) \\ P_2 &= S_2 \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22} \\ P_3 &= S_3 \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11} \\ P_4 &= A_{22} \cdot S_4 = A_{22} \cdot (B_{21} - B_{11}) \\ P_5 &= S_5 \cdot S_6 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) \\ P_6 &= S_7 \cdot S_8 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) \\ P_7 &= S_9 \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12}) \end{split}$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

Proof:

Other three blocks can be verified similarly.

$$\begin{split} P_5 + P_4 - P_2 + P_6 &= A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{22}B_{11} \\ &- A_{11}B_{22} - A_{12}B_{22} + A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\ &= A_{11}B_{11} + A_{12}B_{21} \end{split}$$

The 10 Submatrices and 7 Products

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot (B_{12} - B_{22})$$

$$P_{2} = S_{2} \cdot B_{22} = (A_{11} + A_{12}) \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11} = (A_{21} + A_{22}) \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$P_{5} = S_{5} \cdot S_{6} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$P_{6} = S_{7} \cdot S_{8} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

$$P_{7} = S_{9} \cdot S_{10} = (A_{11} - A_{21}) \cdot (B_{11} + B_{12})$$

Claim

$$\begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{21} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

Proof:

Other three blocks can be verified similarly.

$$\begin{array}{c} P_5 + P_4 - P_2 + P_6 = A_{11}B_{11} + A_{11}B_{22} + A_{22}B_{11} + A_{22}B_{22} + A_{22}B_{21} - A_{22}B_{11} \\ - A_{11}B_{22} - A_{12}B_{22} + A_{12}B_{21} + A_{12}B_{22} - A_{22}B_{21} - A_{22}B_{22} \\ = A_{11}B_{11} + A_{12}B_{21} \end{array} \quad \Box$$

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

• $O(n^3)$, naive approach

Current State-of-the-Art

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

- $O(n^3)$, naive approach
- $O(n^{2.808})$, Strassen (1969)

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

- O(n³), naive approach
- $O(n^{2.808})$, Strassen (1969)
- $O(n^{2.796})$, Pan (1978)
- *O*(*n*^{2.522}), Schönhage (1981)
- $O(n^{2.517})$, Romani (1982)
- O(n^{2.496}), Coppersmith and Winograd (1982)
- O(n^{2.479}), Strassen (1986)
- O(n^{2.376}), Coppersmith and Winograd (1989)

Open Problem: Is there an algorithm with quadratic complexity?

Asymptotic Complexities:

- O(n³), naive approach
- $O(n^{2.808})$, Strassen (1969)
- $O(n^{2.796})$, Pan (1978)
- *O*(*n*^{2.522}), Schönhage (1981)
- $O(n^{2.517})$, Romani (1982)
- O(n^{2.496}), Coppersmith and Winograd (1982)
- O(n^{2.479}), Strassen (1986)
- O(n^{2.376}), Coppersmith and Winograd (1989)
- $O(n^{2.374})$, Stothers (2010)
- $O(n^{2.3728642})$, V. Williams (2011)
- $O(n^{2.3728639})$, Le Gall (2014)
- **.** . . .

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

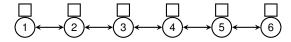
Multithreaded Matrix Multiplication

Distributed Memory ——

- Each processor has its private memory
- Access to memory of another processor via messages

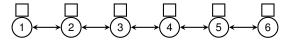
Distributed Memory -

- Each processor has its private memory
- Access to memory of another processor via messages



Distributed Memory -

- Each processor has its private memory
- Access to memory of another processor via messages

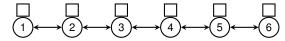


Shared Memory -

- Central location of memory
- Each processor has direct access

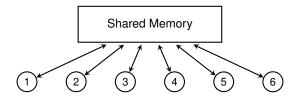
Distributed Memory -

- Each processor has its private memory
- Access to memory of another processor via messages



Shared Memory -

- Central location of memory
- Each processor has direct access



Programming shared-memory parallel computer difficult

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

Scheduling jobs, communication protocols, load balancing etc.

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

Functionalities:

spawn

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

- spawn
 - (optional) prefix to a procedure call statement
 - procedure is executed in a separate thread
- sync

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

- spawn
 - (optional) prefix to a procedure call statement
 - procedure is executed in a separate thread
- sync
 - wait until all spawned threads are done
- parallel

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

- spawn
 - (optional) prefix to a procedure call statement
 - procedure is executed in a separate thread
- sync
 - wait until all spawned threads are done
- parallel
 - (optinal) prefix to the standard loop for
 - each iteration is called in its own thread

- Programming shared-memory parallel computer difficult
- Use concurrency platform which coordinates all resources

Functionalities:

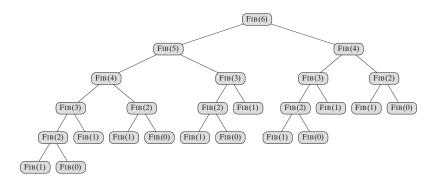
- spawn
 - (optional) prefix to a procedure call statement
 - procedure is executed in a separate thread
- sync
 - wait until all spawned threads are done
- parallel
 - (optinal) prefix to the standard loop for
 - each iteration is called in its own thread

Only logical parallelism, but not actual! Need a scheduler to map threads to processors.

Computing Fibonacci Numbers Recursively (Fig. 27.1)

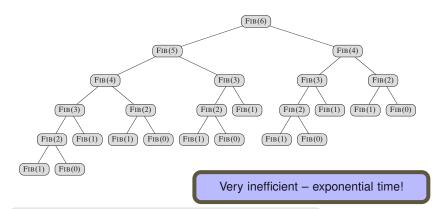
```
0: FIB(n)
1:    if n<=1 return n
2:    else x=FIB(n-1)
3:        y=FIB(n-2)
4:        return x+y</pre>
```

Computing Fibonacci Numbers Recursively (Fig. 27.1)



```
0: FIB(n)
1:    if n<=1 return n
2:    else x=FIB(n-1)
3:        y=FIB(n-2)
4:        return x+y</pre>
```


Computing Fibonacci Numbers Recursively (Fig. 27.1)



```
0: FIB(n)
```

1: if n<=1 return n
2: else x=FIB(n-1)
3: y=FIB(n-2)
4: return x+y</pre>


```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y</pre>
```

- Without spawn and sync same pseudocode as before
- spawn does not imply parallel execution (depends on scheduler)

```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y</pre>
```



```
Computation Dag G = (V, E)
```

```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y</pre>
```



```
Computation Dag G = (V, E)
```

• *V* set of threads (instructions/strands without parallel control)

```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```


Computation Dag G = (V, E)

- *V* set of threads (instructions/strands without parallel control)
- E set of dependencies

```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y
```

II. Matrix Multiplication

Computation Dag G = (V, E)

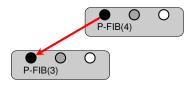
- *V* set of threads (instructions/strands without parallel control)
- E set of dependencies

```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y</pre>
```

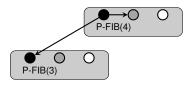

II. Matrix Multiplication Digress

```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

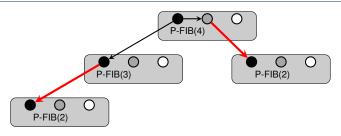




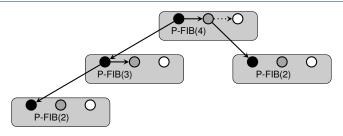
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

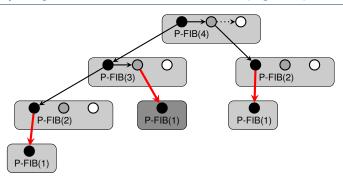



```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y
```

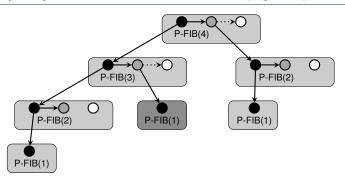



```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:        y=P-FIB(n-2)
4:        sync
5:        return x+y</pre>
```

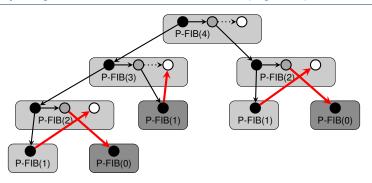




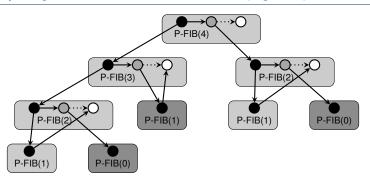
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

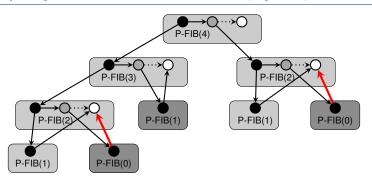



```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

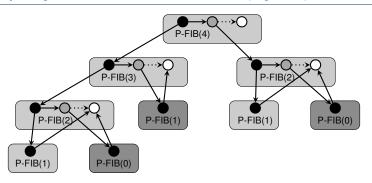



```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

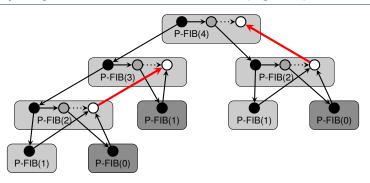




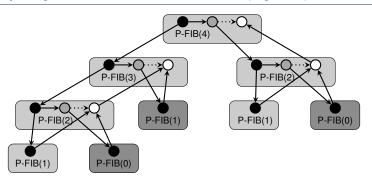
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

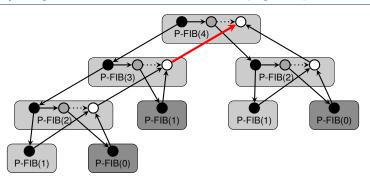
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:        y=P-FIB(n-2)
4:        sync
5:        return x+y</pre>
```



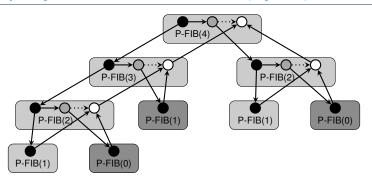
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

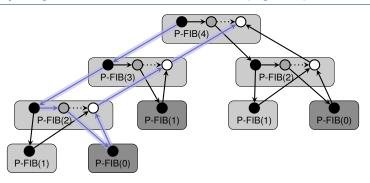
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```



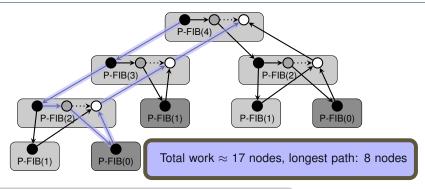
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```



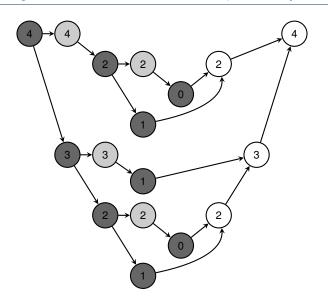
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:         y=P-FIB(n-2)
4:         sync
5:         return x+y</pre>
```

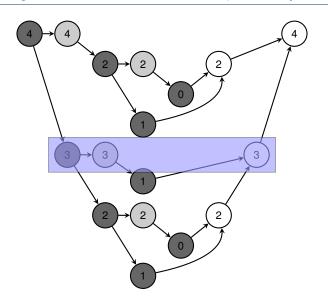



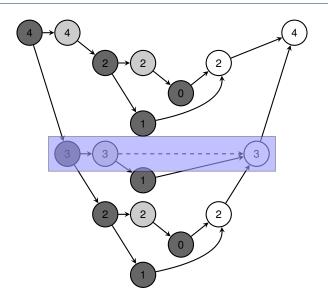
```
0: P-FIB(n)
1: if n<=1 return n
2: else x=spawn P-FIB(n-1)
3: y=P-FIB(n-2)
4: sync
5: return x+y</pre>
```

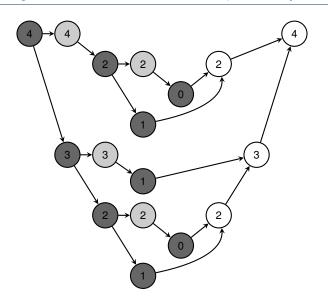



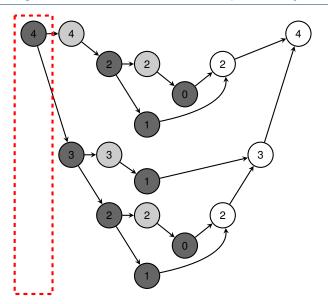
```
0: P-FIB(n)
1:    if n<=1 return n
2:    else x=spawn P-FIB(n-1)
3:        y=P-FIB(n-2)
4:        sync
5:        return x+y</pre>
```

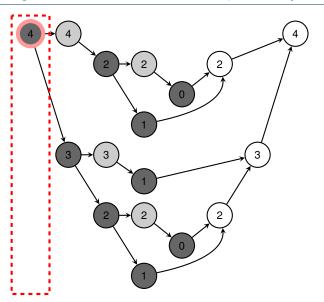



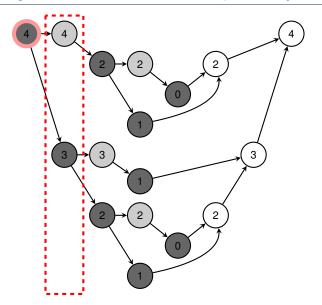


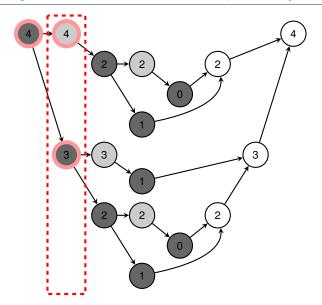


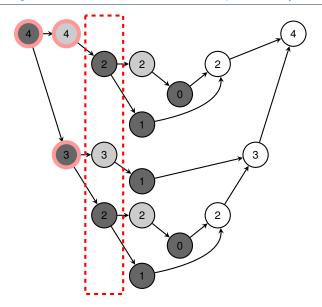


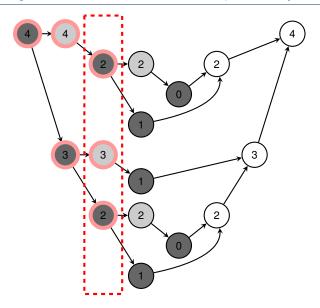


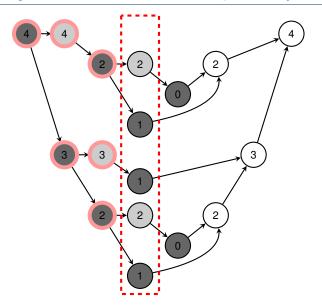


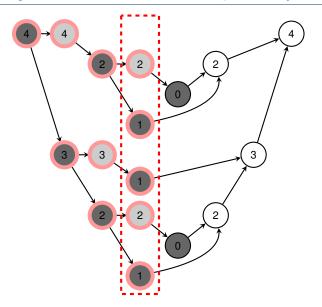


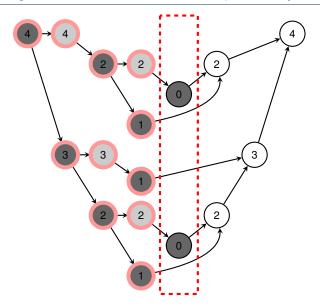


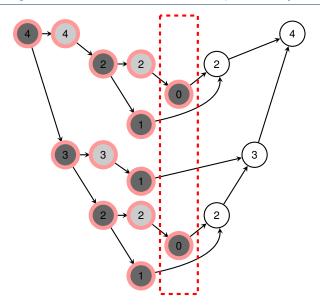


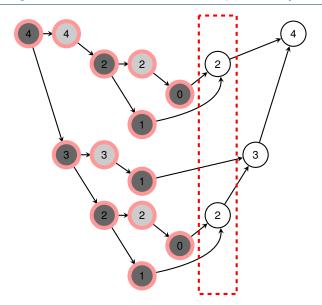


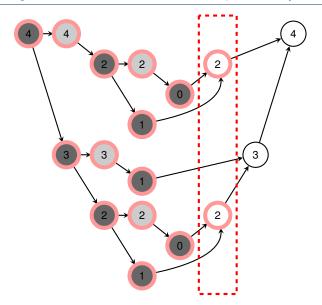


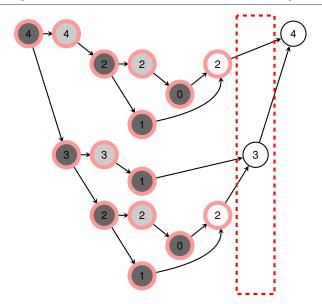


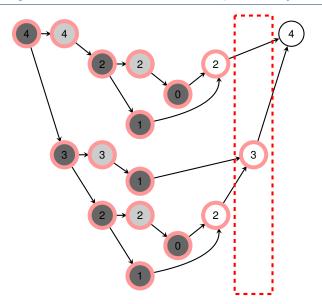




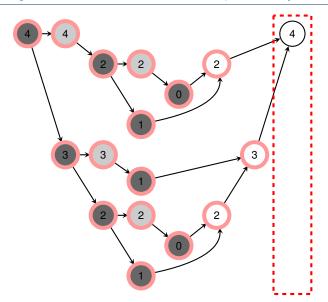




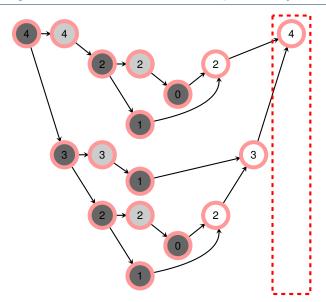




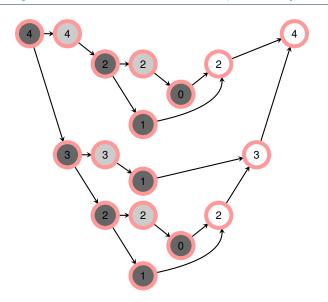
Computing Fibonacci Numbers in Parallel (DAG Perspective)



Computing Fibonacci Numbers in Parallel (DAG Perspective)



Computing Fibonacci Numbers in Parallel (DAG Perspective)

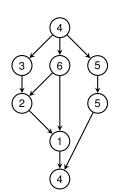


Work —

Total time to execute everything on a single processor.

– Work –

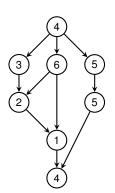
Total time to execute everything on a single processor.



– Work –

Total time to execute everything on a single processor.

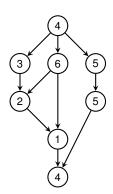
$$\sum = 30$$



— Work —

Total time to execute everything on a single processor.

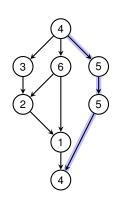
Span —————



— Work —

Total time to execute everything on a single processor.

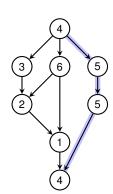
Span ————



- Work -

Total time to execute everything on a single processor.

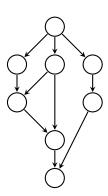
Span —



- Work -

Total time to execute everything on a single processor.

Span —————



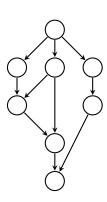
– Work –

Total time to execute everything on a single processor.

Span -

Longest time to execute the threads along any path.

If each thread takes unit time, span is the length of the critical path.



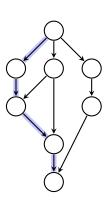
– Work –

Total time to execute everything on a single processor.

Span -

Longest time to execute the threads along any path.

If each thread takes unit time, span is the length of the critical path.



- Work ----

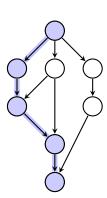
Total time to execute everything on a single processor.

Span -

Longest time to execute the threads along any path.

If each thread takes unit time, span is the length of the critical path.

#nodes = 5



• $T_1 = \text{work}, T_\infty = \text{span}$

- $T_1 = \text{work}, T_\infty = \text{span}$
- *P* = number of (identical) processors
- T_P = running time on P processors

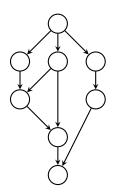
- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

Running time actually also depends on scheduler etc.!

- $T_1 = \text{work}, T_\infty = \text{span}$
- *P* = number of (identical) processors
- *T_P* = running time on *P* processors

Work Law

$$T_P \geq \frac{T_1}{P}$$

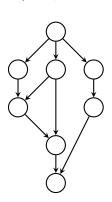


- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

$$T_1 = 8, P = 2$$

Work Law

$$T_P \geq \frac{T_1}{P}$$

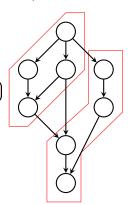


- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

$$T_1 = 8, P = 2$$

Work Law

$$T_P \geq \frac{T_1}{P}$$

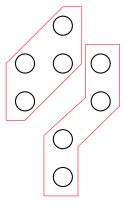


- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

$$T_1 = 8, P = 2$$

Work Law

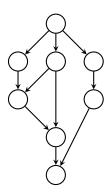
$$T_P \geq \frac{T_1}{P}$$



- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

Work Law

$$T_P \geq \frac{T_1}{P}$$



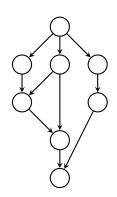
- $T_1 = \text{work}, T_\infty = \text{span}$
- *P* = number of (identical) processors
- T_P = running time on P processors

Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law -

$$T_P > T_{\infty}$$



- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

 $T_{\infty}=5$

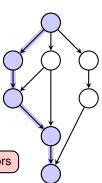
Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law -

$$T_P \geq T_{\infty}$$

Time on P processors can't be shorter than time on ∞ processors



- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

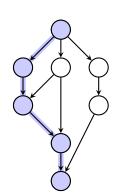
 $T_{\infty}=5$

Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law -

$$T_P > T_{\infty}$$



■ Speed-Up: $\frac{T_1}{T_P}$

- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

 $T_{\infty}=5$

Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law ———

$$T_P \geq T_{\infty}$$

- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

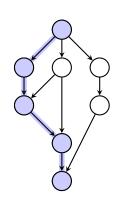
 $T_{\infty}=5$

Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law -

$$T_P \geq T_{\infty}$$



- Speed-Up: $\frac{T_1}{T_P}$
- Parallelism: $\frac{T_1}{T_{\infty}}$

- $T_1 = \text{work}, T_\infty = \text{span}$
- P = number of (identical) processors
- T_P = running time on P processors

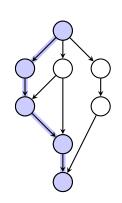
 $T_{\infty}=5$

Work Law

$$T_P \geq \frac{T_1}{P}$$

Span Law -

$$T_P \geq T_{\infty}$$



- Speed-Up: $\frac{T_1}{T_P}$
- Parallelism: $\frac{I_1}{T_{\infty}}$

Maximum Speed-Up for ∞ processors!

Outline

Introduction

Serial Matrix Multiplication

Digression: Multithreading

Multithreaded Matrix Multiplication

Remember: Multiplying an $n \times n$ matrix $A = (a_{ij})$ and n-vector $x = (x_j)$ yields an n-vector $y = (y_i)$ given by

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 for $i = 1, 2, ..., n$.

Remember: Multiplying an $n \times n$ matrix $A = (a_{ij})$ and n-vector $x = (x_j)$ yields an n-vector $y = (y_i)$ given by

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 for $i = 1, 2, ..., n$.

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

5 parallel for i = 1 to n

6 for j = 1 to n

7 y_i = y_i + a_{ij}x_j

8 return y
```

Remember: Multiplying an $n \times n$ matrix $A = (a_{ij})$ and n-vector $x = (x_j)$ yields an n-vector $y = (y_i)$ given by

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 for $i = 1, 2, ..., n$.

```
MAT-VEC(A, x)

1  n = A.rows

2  let y be a new vector of length n

3  parallel for i = 1 to n

4  y_i = 0

5  parallel for i = 1 to n

6  for j = 1 to n

7  y_i = y_i + a_{ij}x_j

8  return y
```

Remember: Multiplying an $n \times n$ matrix $A = (a_{ij})$ and n-vector $x = (x_j)$ yields an n-vector $y = (y_i)$ given by

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 for $i = 1, 2, ..., n$.

```
MAT-VEC(A, x)

1  n = A.rows

2  let y be a new vector of length n

3  parallel for i = 1 to n

4  y_i = 0

5  parallel for i = 1 to n

6  for j = 1 to n

7  y_i = y_i + a_{ij}x_j

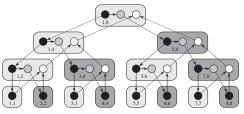
8  return y
```

How can a compiler implement the **parallel for**-loop?

Implementing parallel for based on Divide-and-Conquer

```
Mat-Vec(A, x)
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')
                                                                 1 \quad n = A.rows
   if i == i'
                                                                   let y be a new vector of length n
        for j = 1 to n
                                                                    parallel for i = 1 to n
            y_i = y_i + a_{ii}x_i
                                                                        v_i = 0
   else mid = \lfloor (i + i')/2 \rfloor
                                                                   parallel for i = 1 to n
        spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
                                                                        for i = 1 to n
6
        MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')
                                                                             y_i = y_i + a_{ii}x_i
        sync
                                                                    return v
```

Implementing parallel for based on Divide-and-Conquer



```
\begin{array}{lll} \text{Mat-Vec-Main-Loop}(A, x, y, n, i, i') \\ 1 & \text{if } i = i' \\ 2 & \text{for } j = 1 \text{ to } n \\ 3 & y_i = y_i + a_{ij}x_j \\ 4 & \text{else } mid = \lfloor (i + i')/2 \rfloor \\ 5 & \text{spawn Mat-Vec-Main-Loop}(A, x, y, n, i, mid) \\ 6 & \text{Mat-Vec-Main-Loop}(A, x, y, n, mid + 1, i') \\ 7 & \text{sync} \end{array}
```

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

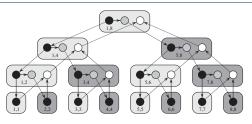
5 parallel for i = 1 to n

6 for j = 1 to n

7 y_i = y_i + a_{ij}x_j

8 return y
```

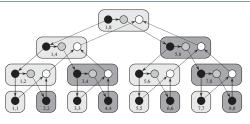
Implementing parallel for based on Divide-and-Conquer



```
\begin{array}{ll} \text{Mat-Vec-Main-Loop}(A, x, y, n, i, i') \\ 1 & \text{if } i = i' \\ 2 & \text{for } j = 1 \text{ to } n \\ 3 & y_i = y_i + a_{ij} x_j \\ 4 & \text{else } mid = \lfloor (i + i')/2 \rfloor \\ 5 & \text{spawn Mat-Vec-Main-Loop}(A, x, y, n, i, mid) \\ 6 & \text{Mat-Vec-Main-Loop}(A, x, y, n, mid + 1, i') \\ 7 & \text{sync} \end{array}
```

```
 \begin{aligned} & \text{Mat-Vec}(A, x) \\ 1 \quad & n = A. rows \\ 2 \quad & \text{let } y \text{ be a new vector of length } n \\ 3 \quad & \text{parallel for } i = 1 \text{ to } n \\ 4 \quad & y_i = 0 \\ 5 \quad & \text{parallel for } i = 1 \text{ to } n \\ 6 \quad & \text{for } j = 1 \text{ to } n \\ 7 \quad & y_i = y_i + a_{ij}x_j \\ 8 \quad & \text{return } y \end{aligned}
```

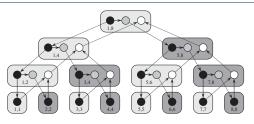
 $T_1(n) =$



```
MAT-VEC(A, x)
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')
                                                                    n = A.rows
   if i == i'
                                                                    let y be a new vector of length n
        for i = 1 to n
                                                                    parallel for i = 1 to n
            v_i = v_i + a_{ii}x_i
                                                                         v_i = 0
   else mid = \lfloor (i + i')/2 \rfloor
                                                                    parallel for i = 1 to n
        spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
                                                                        for j = 1 to n
6
        MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')
                                                                             v_i = v_i + a_{ii}x_i
        sync
                                                                    return v
```

$$T_1(n) =$$

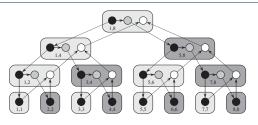
Work is equal to running time of its serialization; overhead of recursive spawning does not change asymptotics.



```
MAT-VEC(A, x)
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')
                                                                   n = A.rows
   if i == i'
                                                                   let y be a new vector of length n
       for i = 1 to n
                                                                   parallel for i = 1 to n
            v_i = v_i + a_{ii}x_i
                                                                        v_i = 0
   else mid = \lfloor (i + i')/2 \rfloor
                                                                  parallel for i = 1 to n
       spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
                                                                        for j = 1 to n
        MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')
                                                                            v_i = v_i + a_{ii}x_i
       sync
                                                                   return v
```

$$T_1(n) = \Theta(n^2)$$

Work is equal to running time of its serialization; overhead of recursive spawning does not change asymptotics.



```
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')

1 if i = i'

2 for j = 1 to n

3 y_i = y_i + a_{ij}x_j

4 else mid = \lfloor (i + i')/2 \rfloor

5 spawn MAT-VEC-MAIN-LOOP (A, x, y, n, i, mid)

6 MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')

7 sync

8
```

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

5 parallel for i = 1 to n

6 for j = 1 to n
```

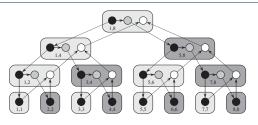
for
$$j = 1$$
 to n
 $y_i = y_i + a_{ij}x_j$
return y

$$T_1(n) = \Theta(n^2)$$

Work is equal to running time of its serialization; overhead of recursive spawning does not change asymptotics.

$$T_{\infty}(n) =$$

Span is the depth of recursive callings plus the maximum span of any of the n iterations.



```
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')

1 if i = i'

2 for j = 1 to n

3 y_i = y_i + a_{ij}x_j

4 else mid = \lfloor (i + i')/2 \rfloor

5 spawn MAT-VEC-MAIN-LOOP (A, x, y, n, i, mid)

6 MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')

7 sync

8
```

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

5 parallel for i = 1 to n

6 for j = 1 to n
```

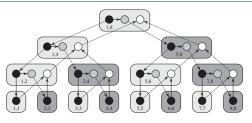
for
$$j = 1$$
 to n
 $y_i = y_i + a_{ij}x_j$
return y

$$T_1(n) = \Theta(n^2)$$

Work is equal to running time of its serialization; overhead of recursive spawning does not change asymptotics.

$$T_{\infty}(n) =$$

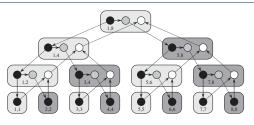
Span is the depth of recursive callings plus the maximum span of any of the n iterations.



```
Mat-Vec(A, x)
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')
                                                                 n = A.rows
   if i == i'
                                                                 let y be a new vector of length n
       for i = 1 to n
                                                                 parallel for i = 1 to n
           v_i = v_i + a_{ii}x_i
                                                                      v_i = 0
   else mid = |(i + i')/2|
                                                                parallel for i = 1 to n
       spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
                                                                     for j = 1 to n
       MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')
                                                                          v_i = v_i + a_{ii}x_i
       sync
                                                                 return v
```

$$T_1(n) = \Theta(n^2)$$
 Work is equal to running time of its serialization; overhead of recursive spawning does not change asymptotics.

$$T_{\infty}(n) = \Theta(\log n) + \max_{1 \le i \le n} \operatorname{iter}(n)$$
 Span is the depth of recursive callings plus the maximum span of any of the n iterations.



```
Mat-Vec(A, x)
MAT-VEC-MAIN-LOOP (A, x, y, n, i, i')
                                                                 n = A.rows
   if i == i'
                                                                 let y be a new vector of length n
       for i = 1 to n
                                                                 parallel for i = 1 to n
            v_i = v_i + a_{ii}x_i
                                                                      v_i = 0
   else mid = |(i + i')/2|
                                                                parallel for i = 1 to n
       spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
                                                                     for j = 1 to n
       MAT-VEC-MAIN-LOOP (A, x, y, n, mid + 1, i')
                                                                          v_i = v_i + a_{ii}x_i
       sync
                                                                 return v
```

$$T_{\infty}(n) = \Theta(\log n) + \max_{1 \le i \le n} \text{iter}(n)$$
 Span is the depth of recursive callings plus the maximum span of any of the n iterations.

Naive Algorithm in Parallel

```
P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be a new n \times n matrix

3 parallel for i = 1 to n

4 parallel for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

8 return C
```

Naive Algorithm in Parallel

```
P-SQUARE-MATRIX-MULTIPLY (A, B)

1 n = A.rows

2 let C be a new n \times n matrix

3 parallel for i = 1 to n

4 parallel for j = 1 to n

5 c_{ij} = 0

6 for k = 1 to n

7 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

With a more careful implementation,

8 return C
```

P-SQUARE-MATRIX-MULTIPLY(
$$A, B$$
) has work $T_1(n) = \Theta(n^3)$ and span $T_{\infty}(n) = \Theta(n)$.

The first two nested for-loops parallelise perfectly.

```
P-MATRIX-MULTIPLY-RECURSIVE (C, A, B)
 1 \quad n = A \text{ rows}
 2 if n == 1
         c_{11} = a_{11}b_{11}
     else let T be a new n \times n matrix
          partition A, B, C, and T into n/2 \times n/2 submatrices
              A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22}; C_{11}, C_{12}, C_{21}, C_{22};
              and T_{11}, T_{12}, T_{21}, T_{22}; respectively
 6
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{21}, A_{21}, B_{11})
 9
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})
10
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{11}, A_{12}, B_{21})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{12}, A_{12}, B_{22})
11
12
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T21, A22, B21)
          P-MATRIX-MULTIPLY-RECURSIVE (T_{22}, A_{22}, B_{22})
13
14
          sync
          parallel for i = 1 to n
15
              parallel for i = 1 to n
16
```

 $c_{ii} = c_{ii} + t_{ii}$

17

```
P-MATRIX-MULTIPLY-RECURSIVE (C, A, B)
    n = A rows
    if n == 1
         c_{11} = a_{11}b_{11}
     else let T be a new n \times n matrix
         partition A, B, C, and T into n/2 \times n/2 submatrices
              A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22}; C_{11}, C_{12}, C_{21}, C_{22};
              and T_{11}, T_{12}, T_{21}, T_{22}; respectively
 6
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{21}, A_{21}, B_{11})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})
10
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{11}, A_{12}, B_{21})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{12}, A_{12}, B_{22})
11
12
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T21, A22, B21)
         P-MATRIX-MULTIPLY-RECURSIVE (T_{22}, A_{22}, B_{22})
13
14
         sync
15
         parallel for i = 1 to n
16
              parallel for i = 1 to n
17
                   c_{ii} = c_{ii} + t_{ii}
                                                         The same as before.
```

P-MATRIX-MULTIPLY-RECURSIVE has work $T_1(n) = \Theta(n^3)$ and span $T_{\infty}(n) =$

```
P-MATRIX-MULTIPLY-RECURSIVE (C, A, B)
     n = A rows
     if n == 1
          c_{11} = a_{11}b_{11}
     else let T be a new n \times n matrix
          partition A, B, C, and T into n/2 \times n/2 submatrices
              A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22}; C_{11}, C_{12}, C_{21}, C_{22};
              and T_{11}, T_{12}, T_{21}, T_{22}; respectively
 6
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{21}, A_{21}, B_{11})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})
10
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{11}, A_{12}, B_{21})
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{12}, A_{12}, B_{22})
11
12
          spawn P-MATRIX-MULTIPLY-RECURSIVE (T21, A22, B21)
          P-MATRIX-MULTIPLY-RECURSIVE (T_{22}, A_{22}, B_{22})
13
14
          sync
15
          parallel for i = 1 to n
16
              parallel for i = 1 to n
17
                   c_{ii} = c_{ii} + t_{ii}
```

The same as before.

P-MATRIX-MULTIPLY-RECURSIVE has work $T_1(n) = \Theta(n^3)$ and span $T_{\infty}(n) =$

$$T_{\infty}(n) = T_{\infty}(n/2) + \Theta(\log n)$$


```
P-MATRIX-MULTIPLY-RECURSIVE (C, A, B)
     n = A rows
     if n == 1
         c_{11} = a_{11}b_{11}
     else let T be a new n \times n matrix
         partition A, B, C, and T into n/2 \times n/2 submatrices
              A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22}; C_{11}, C_{12}, C_{21}, C_{22};
              and T_{11}, T_{12}, T_{21}, T_{22}; respectively
 6
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{21}, A_{21}, B_{11})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})
10
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{11}, A_{12}, B_{21})
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{12}, A_{12}, B_{22})
11
12
         spawn P-MATRIX-MULTIPLY-RECURSIVE (T21, A22, B21)
         P-MATRIX-MULTIPLY-RECURSIVE (T_{22}, A_{22}, B_{22})
13
14
         sync
15
         parallel for i = 1 to n
16
              parallel for i = 1 to n
17
                   c_{ii} = c_{ii} + t_{ii}
                                                         The same as before.
```

P-MATRIX-MULTIPLY-RECURSIVE has work $T_1(n) = \Theta(n^3)$ and span $T_{\infty}(n) = \Theta(\log^2 n)$.

$$T_{\infty}(n) = T_{\infty}(n/2) + \Theta(\log n)$$

Strassen's Algorithm (parallelised) -

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

Strassen's Algorithm (parallelised) -

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

Strassen's Algorithm (parallelised)

- 1. Partition each of the matrices into four $n/2 \times n/2$ submatrices
 - This step takes $\Theta(1)$ work and span by index calculations.
- 2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Strassen's Algorithm (parallelised)

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

Strassen's Algorithm (parallelised)

- 1. Partition each of the matrices into four $n/2 \times n/2$ submatrices
 - This step takes $\Theta(1)$ work and span by index calculations.
- 2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$

Strassen's Algorithm (parallelised)

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$

Recursively **spawn** the computation of the seven products.

Strassen's Algorithm (parallelised)

- 1. Partition each of the matrices into four $n/2 \times n/2$ submatrices
 - This step takes $\Theta(1)$ work and span by index calculations.
- 2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.
 - Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.
- 3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$
 - Recursively ${\bf spawn}$ the computation of the seven products.
- 4. Compute $n/2 \times n/2$ submatrices of *C* by adding and subtracting various combinations of the P_i .

Strassen's Algorithm (parallelised)

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$

Recursively **spawn** the computation of the seven products.

4. Compute $n/2 \times n/2$ submatrices of *C* by adding and subtracting various combinations of the P_i .

Using doubly nested **parallel for** this takes $\Theta(n^2)$ work and $\Theta(\log n)$ span.

Strassen's Algorithm (parallelised)

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$

Recursively **spawn** the computation of the seven products.

4. Compute $n/2 \times n/2$ submatrices of *C* by adding and subtracting various combinations of the P_i .

Using doubly nested **parallel for** this takes $\Theta(n^2)$ work and $\Theta(\log n)$ span.

 $T_1(n) = \Theta(n^{\log 7})$

Strassen's Algorithm (parallelised)

1. Partition each of the matrices into four $n/2 \times n/2$ submatrices

This step takes $\Theta(1)$ work and span by index calculations.

2. Create 10 matrices S_1, S_2, \dots, S_{10} . Each is $n/2 \times n/2$ and is the sum or difference of two matrices created in the previous step.

Can create all 10 matrices with $\Theta(n^2)$ work and $\Theta(\log n)$ span using doubly nested **parallel for** loops.

3. Recursively compute 7 matrix products P_1, P_2, \dots, P_7 , each $n/2 \times n/2$

Recursively **spawn** the computation of the seven products.

4. Compute $n/2 \times n/2$ submatrices of *C* by adding and subtracting various combinations of the P_i .

Using doubly nested **parallel for** this takes $\Theta(n^2)$ work and $\Theta(\log n)$ span.

 $T_1(n) = \Theta(n^{\log 7})$ $T_{\infty}(n) = \Theta(\log^2 n)$

III. Linear Programming

Thomas Sauerwald

Easter 2018

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Linear Programming (informal definition) ————

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

- Example: Political Advertising —————

Linear Programming (informal definition)

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

Imagine you are a politician trying to win an election

Linear Programming (informal definition) ———

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters

Linear Programming (informal definition) ——

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you

Linear Programming (informal definition) —

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

Example: Political Advertising

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- Possible Solution:
 - \$20,000 on advertising to building roads
 - \$0 on advertising to gun control
 - \$4,000 on advertising to farm subsidies
 - \$9,000 on advertising to a gasoline tax
- Total cost: \$33,000

What is the best possible strategy?

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x₃ = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 > 50$$

•
$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 > 50$$

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 > 25$$

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$$

•
$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25$$

Objective: Minimize
$$x_1 + x_2 + x_3 + x_4$$

Linear Program for the Advertising Problem —

Linear Program for the Advertising Problem -

The solution of this linear program yields the optimal advertising strategy.

Linear Program for the Advertising Problem -

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program ————

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program —

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, \dots, x_n) = b$
- Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

Given a₁, a₂,..., a_n and a set of variables x₁, x₂,..., x_n, a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, \dots, x_n) = b$
- Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints

Linear Program for the Advertising Problem —

The solution of this linear program yields the optimal advertising strategy.

Formal Definition of Linear Program -

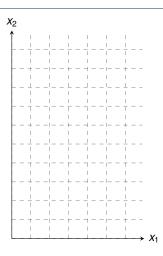
• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

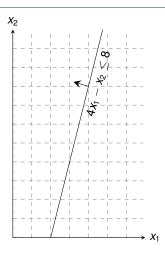
- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints
- Linear-Progamming Problem: either minimize or maximize a linear function subject to a set of linear constraints

*X*₁

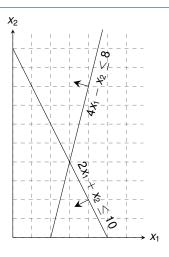
maximize
$$x_1 + x_2$$
 subject to $4x_1 - x_2 \le 8$ $2x_1 + x_2 \le 10$ $5x_1 - 2x_2 \ge -2$ $x_1, x_2 \ge 0$

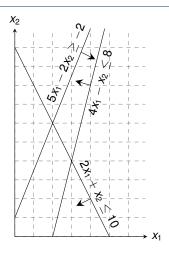


maximize
$$x_1 + x_2$$
 subject to $4x_1 - x_2 \le 8$ $2x_1 + x_2 \le 10$ $5x_1 - 2x_2 \ge -2$ $x_1, x_2 \ge 0$



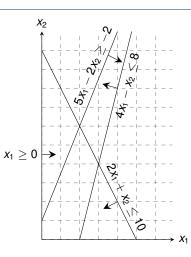
maximize
$$x_1 + x_2$$
 subject to $4x_1 - x_2 \le 8$ $2x_1 + x_2 \le 10$ $5x_1 - 2x_2 \ge -2$ $x_1, x_2 \ge 0$





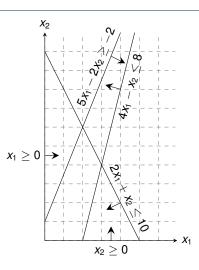
maximize subject to

$$x_1 + x_2$$



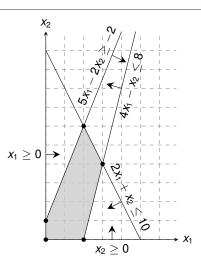
maximize subject to

$$x_1 + x_2$$



maximize subject to

$$x_1 + x_2$$

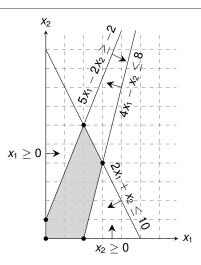


maximize subject to

$$x_1 + x_2$$

$$4x_1 - x_2 \leq$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



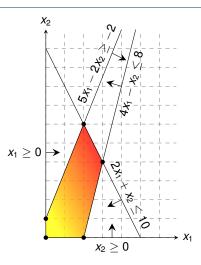
maximize subject to

*X*₂

$$5x_1 - 2x_2 \ge -$$

$$x_1, x_2 \ge$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

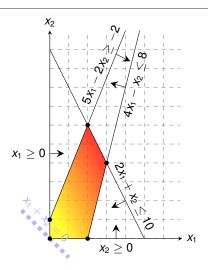


maximize subject to

$$x_1 + x_2$$

 $4x_1 - x_2 \le 8$
 $2x_1 + x_2 < 10$

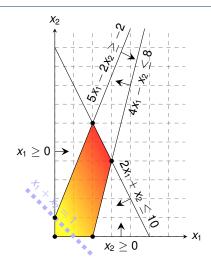
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

$$X_1 + X_2$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

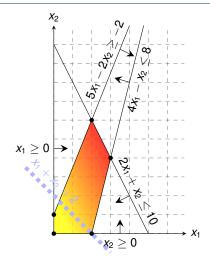


maximize subject to

*X*₂

$$\begin{array}{ccccc}
2x_1 & x_2 & & \\
5x_1 & - & 2x_2 & & \\
x_1, x_2 & & & \\
\end{array}$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



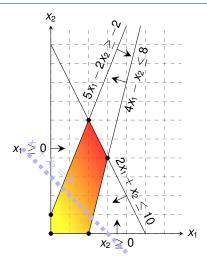
maximize subject to

*X*₂

$$5x_1 - 2x_2 \ge -$$

$$x_1, x_2 \ge$$

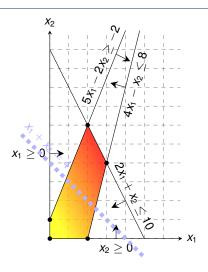
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

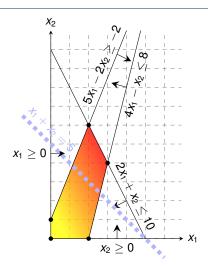
$$x_1 + x_2$$
 $4x_1 - x_2 \le$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

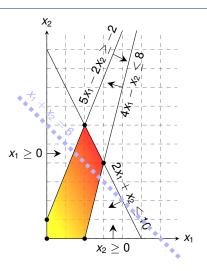


maximize subject to

$$x_1 + x_2$$

 $4x_1 - x_2 \le 8$
 $2x_1 + x_2 \le 10$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

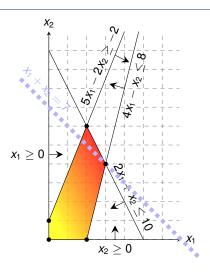


maximize subject to

*X*₂

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

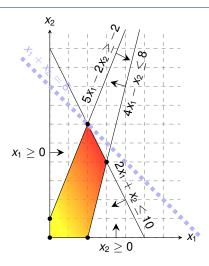
 X_1, X_2



maximize subject to

*X*₂

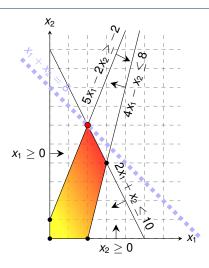
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

*X*₂

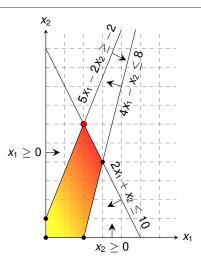
Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



maximize subject to

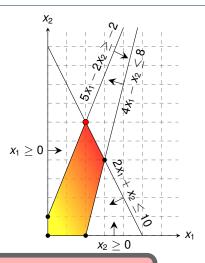
$$x_1 + x_2$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



$$x_1 + x_2$$

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.



While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Standard Form -

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

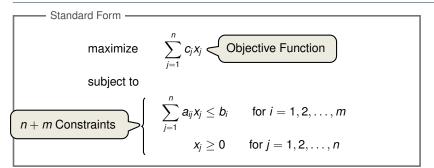
$$x_j \ge 0$$
 for $j = 1, 2, \ldots, r_j$

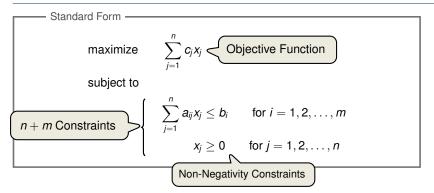
Standard Form -

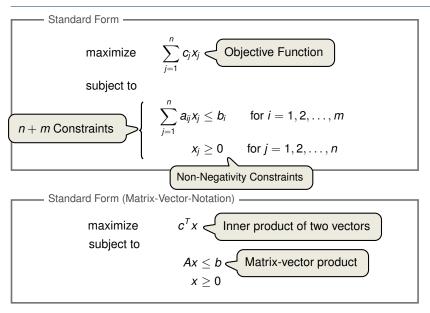
maximize
$$\sum_{j=1}^{n} c_j x_j$$
 Objective Function

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$







Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

Reasons for a LP not being in standard form:

- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

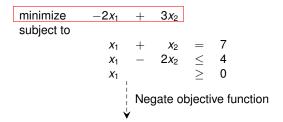
When switching from maximization to minimization, sign of objective value changes.

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

minimize	$-2x_{1}$	+	3 <i>x</i> ₂		
subject to					
	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_{2}$	\leq	4
	<i>X</i> ₁			\geq	0

Reasons for a LP not being in standard form:



Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

$$2x_1 - 3x_2' + 3x_2''$$

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize subject to

$$2x_1 - 3x_2' + 3x_2''$$

$$2x_1 - 3x_2' + 3x_2''$$

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

$$2x_1 - 3x_2' + 3x_2''$$

$$\begin{array}{c|ccccc} x_1 & + & x_2' & - & x_2'' & \leq & 7 \\ \hline x_1 & + & x_2' & - & x_2'' & \geq & 7 \\ \hline x_1 & - & 2x_2' & + & 2x_2'' & \leq & 4 \\ x_1, x_2', x_2'' & & \geq & 0 \end{array}$$

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to

$$2x_1 - 3x_2' + 3x_2''$$

Negate respective inequalities.

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with \geq instead of \leq).

Rename variable names (for consistency).

$$2x_1 - 3x_2 + 3x_3$$

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

• Let $\sum_{i=1}^{n} a_{ij} x_j \leq b_i$ be an inequality constraint

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

$$s \ge 0$$
.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s > 0.$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

 $s \ge 0.$

• Denote slack variable of the *i*th inequality by x_{n+i}

$$x_4 = 7 - x_1 - x_2 + x_3$$

$$2x_1 - 3x_2 + 3x_3$$
 $x_1 + x_2 - x_3 \le 7$
 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

$$x_4 = 7 - x_1 - x_2 + x_3$$

 $x_5 = -7 + x_1 + x_2 - x_3$

$$2x_1 - 3x_2 + 3x_3$$
 $x_1 + x_2 - x_3 \le 7$
 $-x_1 - x_2 + x_3 \le -7$
 $x_1 - 2x_2 + 2x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$
Introduce slack variables

 $X_1, X_2, X_3, X_4, X_5, X_6$

$$2x_1 - 3x_2 + 3x_3$$

maximize subject to

$$2x_1 - 3x_2 + 3x_3$$

Use variable *z* to denote objective function and omit the nonnegativity constraints.

maximize subject to

$$2x_1 - 3x_2 + 3x_3$$

Use variable z to denote objective function and omit the nonnegativity constraints.

Z	=			2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃
χ_4	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3
<i>X</i> ₅	=	-7	+	<i>X</i> ₁	+	x_2	_	<i>X</i> ₃
<i>X</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	$2x_{3}$

maximize
$$2x_1 - 3x_2$$
 subject to $x_4 = 7 - x_1 - x_2$ $x_5 = -7 + x_1 + x_2$ $x_6 = 4 - x_1 + 2x_2$

 $X_1, X_2, X_3, X_4, X_5, X_6$

Use variable z to denote objective function and omit the nonnegativity constraints.

 $3x_3$

*X*₃

*X*₃

 $2x_{3}$

This is called slack form.

Basic Variables: $B = \{4, 5, 6\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Slack Form (Formal Definition) -

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$
 $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Slack Form (Formal Definition) -

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$
 $x_i = b_i - \sum_{i \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by B and N.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{3} + \frac{x_5}{3}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

•

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

•

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

•

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

v = 28

Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

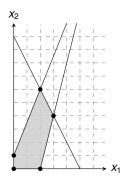
Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.



Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

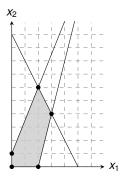
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex



Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set. \sim

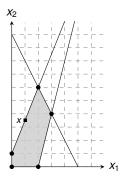
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

• Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex



Definition

A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set. \sim

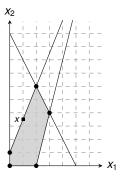
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible



Definition

A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

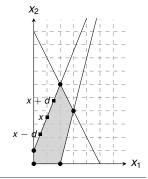
The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

Proof Sketch (informal and non-examinable):

■ Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x - d and x + d are feasible



Definition

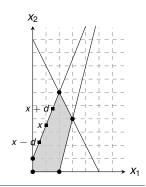
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$



Definition

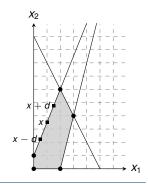
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)



Definition

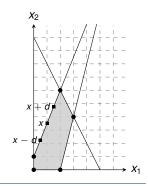
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set. \sim

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$



Definition

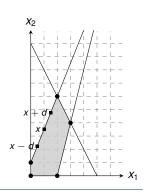
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$



Definition

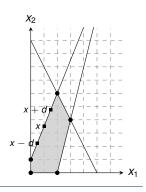
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$
- Case 1: There exists j with d_i < 0</p>
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero



Definition

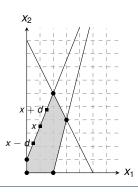
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$
- Case 1: There exists j with d_i < 0</p>
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d > 0$



Definition

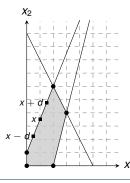
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$
- Case 1: There exists j with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of $x + \lambda d$ becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$
 - $\mathbf{c}^T(\mathbf{x} + \lambda^T \mathbf{d}) = \mathbf{c}^T \mathbf{x} + \mathbf{c}^T \lambda^T \mathbf{d} > \mathbf{c}^T \mathbf{x}$



Definition

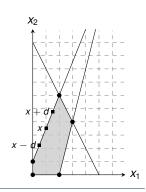
A point x is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set. \sim

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$
- Case 2: For all j, $d_j \ge 0$



Definition

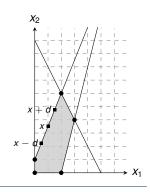
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$



Definition

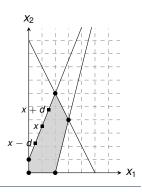
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda > 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d > x > 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$



Definition

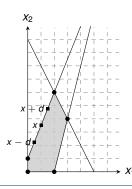
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - This contradicts the assumption that there exists an optimal solution.



Definition

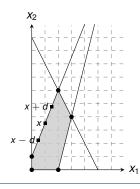
A point *x* is a vertex if it cannot be represented as a strict convex combination of two other points in the feasible set.

The set of feasible solutions is a convex set.

Theorem

If the slack form has an optimal solution, one of them occurs at a vertex.

- Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex $\Rightarrow \exists$ vector d s.t. x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.l.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all j, $d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - ⇒ This contradicts the assumption that there exists an optimal solution.



Outline

Introduction

Standard and Slack Forms

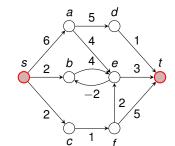
Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

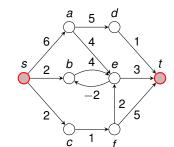
Single-Pair Shortest Path Problem

■ Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$



Single-Pair Shortest Path Problem

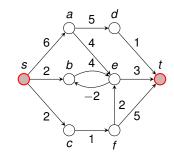
- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G



Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

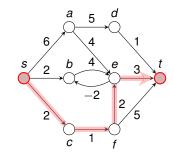
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

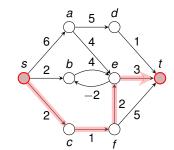
$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



- Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



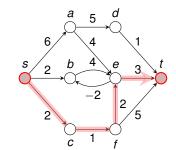
- Shortest Paths as LP -

subject to

Single-Pair Shortest Path Problem —

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Shortest Paths as LP -

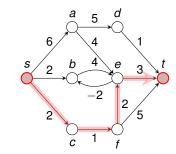
subject to

$$egin{array}{lcl} \emph{d}_v & \leq & \emph{d}_u & + & \emph{w}(\emph{u},\emph{v}) & \mbox{for each edge } (\emph{u},\emph{v}) \in \emph{E}, \ \emph{d}_s & = & 0. \end{array}$$

Single-Pair Shortest Path Problem —

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Shortest Paths as I P =

$$d_t$$

$$egin{array}{lcl} d_v & \leq & d_u & + & w(u,v) & ext{for each edge } (u,v) \in E, \ d_s & = & 0. \end{array}$$

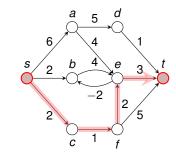
for each edge
$$(u, v) \in E$$
,

$$d_s = 0$$

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Shortest Paths as I P =

maximize subject to dŧ

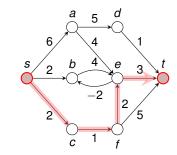
 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$, = 0.

this is a maximization problem!

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



Shortest Paths as LP -

dŧ

maximize subject to

Recall: When Bellman-Ford terminates. all these inequalities are satisfied.

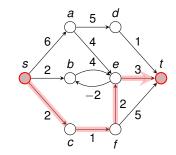
 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$,

this is a maximization problem!

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimized.



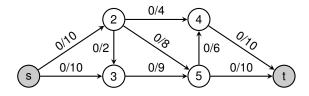
Shortest Paths as LP Recall: When Bellman-Ford terminates, all these inequalities are satisfied. Solution \overline{d} satisfies $\overline{d}_v = \min_{u : (u,v) \in E} \left\{ \overline{d}_u + w(u,v) \right\}$

- Maximum Flow Problem -

• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$

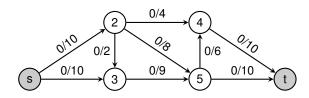
- Maximum Flow Problem

• Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$



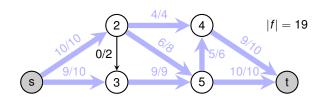
- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation



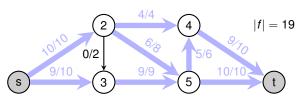
- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation



Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation



Maximum Flow as LP

$$\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}$$

$$\begin{array}{cccc} f_{uv} & \leq & c(u,v) & \text{ for each } u,v \in V, \\ \sum_{v \in V} f_{vu} & = & \sum_{v \in V} f_{uv} & \text{ for each } u \in V \setminus \{s,t\}, \\ f_{uv} & \geq & 0 & \text{ for each } u,v \in V. \end{array}$$

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

• Given: directed graph G=(V,E) with capacities $c:E\to\mathbb{R}^+$, pair of vertices $s,t\in V$, cost function $a:E\to\mathbb{R}^+$, flow demand of d units

Minimum-Cost Flow

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v) \in E} a(u,v) f_{uv}$ incurred by the flow.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

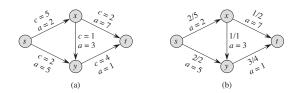


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Optimal Solution with total cost:
$$\sum_{(u,v)\in E} a(u,v) f_{uv} = (2\cdot2) + (5\cdot2) + (3\cdot1) + (7\cdot1) + (1\cdot3) = 27$$

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize
$$\sum_{(u,v)\in E} a(u,v) f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for each } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for each } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for each } u,v\in V.$$

Minimum-Cost Flow as a LP

Minimum Cost Flow as LP

minimize
$$\sum_{(u,v)\in \mathcal{E}} a(u,v) f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for each } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for each } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for each } u,v\in V.$$

Real power of Linear Programming comes from the ability to solve **new problems**!

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm ——

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm: Introduction

- Simplex Algorithm ——
- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm: Introduction

- Simplex Algorithm —
- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

maximize subject to

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

This basic solution is feasible

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$
This basic solution is **feasible**
Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

This basic solution is feasible

Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

• Substitute this into x_1 in the other three equations

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{4}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}$$

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

• Substitute this into x_3 in the other three equations

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
.

• Substitute this into x_2 in the other three equations

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

All coefficients are negative, and hence this basic solution is optimal!

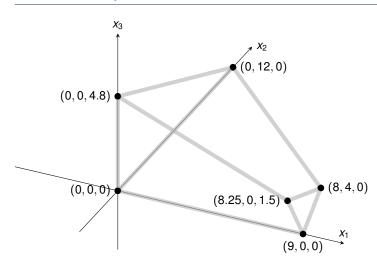
$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

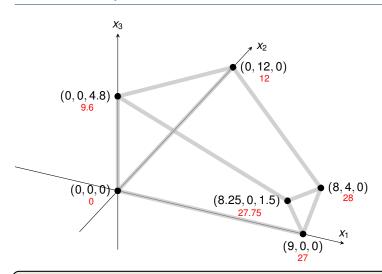
$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

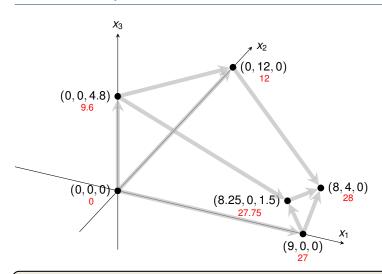
$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

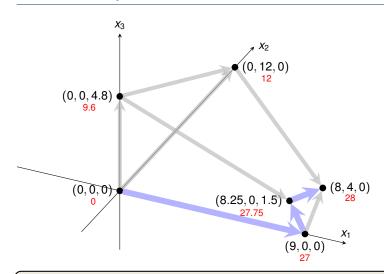




Exercise: How many basic solutions (including non-feasible ones) are there?



Exercise: How many basic solutions (including non-feasible ones) are there?



Exercise: How many basic solutions (including non-feasible ones) are there?

$$z$$
 = $3x_1 + x_2 + 2x_3$
 x_4 = 30 - x_1 - x_2 - $3x_3$
 x_5 = 24 - $2x_1$ - $2x_2$ - $5x_3$
 x_6 = 36 - $4x_1$ - x_2 - $2x_3$

$$z$$
 = $3x_1 + x_2 + 2x_3$
 x_4 = 30 - x_1 - x_2 - $3x_3$
 x_5 = 24 - $2x_1$ - $2x_2$ - $5x_3$
 x_6 = 36 - $4x_1$ - x_2 - $2x_3$

Switch roles of x_1 and x_6

Switch roles of x_1 and x_6

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_6}{8} - \frac{x_6}{16}$$

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_5 \text{ witch roles of } x_3 \text{ and } x_5$$

$$z = 48 \frac{5}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_6

$$\frac{1}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$\frac{3}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$\frac{3}{4} - \frac{3x_2}{8} - \frac{x_6}{4} + \frac{x_6}{8}$$

$$\frac{3}{4} - \frac{3x_2}{8} - \frac{x_6}{4} + \frac{x_6}{8}$$

<u>69</u>

z

X₁

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_5 - x_5 - 2x_5$$

$$x_6 = 36 - 4x_5 - x_5 - 2x_5$$

$$x_6 = 36 - 4x_5 - x_5 - 2x_5$$

$$x_6 = \frac{48}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} + \frac{3x_5}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_6

$$x_6 = \frac{132}{6} - \frac{11x_6}{16} \qquad z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$\frac{3}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16} \qquad x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_5}{3}$$

$$\frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \qquad x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$\frac{94}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} \qquad x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

<u>69</u>

z

X₁

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
 2 let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
 4 for each j \in N - \{e\}
      \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
 7 // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
     \hat{b}_i = b_i - a_{ie}\hat{b}_e
10 for each j \in N - \{e\}
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
    \hat{a}_{il} = -a_{ie}\hat{a}_{el}
     // Compute the objective function.
14 \hat{v} = v + c_a \hat{b}_a
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```



```
PIVOT(N, B, A, b, c, v, l, e)
```

- 1 // Compute the coefficients of the equation for new basic variable x_e .
- let \widehat{A} be a new $m \times n$ matrix
- $3 \quad \hat{b}_e = b_l/a_{le}$
- 4 **for** each $j \in N \{e\}$
 - $\hat{a}_{ei} = a_{li}/a_{le}$
- $6 \quad \hat{a}_{el} = 1/a_{le}$
- 7 // Compute the coefficients of the remaining constraints.
- 8 **for** each $i \in B \{l\}$
 - $\hat{b}_i = b_i a_{ie}\hat{b}_e$
- 10 **for** each $j \in N \{e\}$
- $\hat{a}_{ii} = a_{ii} a_{ie}\hat{a}_{ei}$
- $a_{ij} = a_{ij} a_{ie}a_{e}$ $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$
- $a_{il} = -a_{ie}a_{el}$
- 13 // Compute the objective function.
- $14 \quad \hat{v} = v + c_e \hat{b}_e$
- 15 **for** each $j \in N \{e\}$
- $\hat{c}_j = c_j c_e \hat{a}_{ej}$
- $17 \quad \hat{c}_l = -c_e \hat{a}_{el}$
- 18 // Compute new sets of basic and nonbasic variables.
- 19 $\hat{N} = N \{e\} \cup \{l\}$
- 20 $\hat{B} = B \{l\} \cup \{e\}$
- 21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Rewrite "tight" equation for enterring variable x_e .

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                 Rewrite "tight" equation
 4 for each j \in N - \{e\}
      \hat{a}_{ei} = a_{li}/a_{le}
                                                                                for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
    // Compute the coefficients of the remaining constraints.
    for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                                 Substituting x_e into
     for each j \in N - \{e\}
                                                                                   other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{\mathbf{v}} = \mathbf{v} + c_a \hat{\mathbf{h}}_a
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
17 \hat{c}_i = -c_a \hat{a}_{ai}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
```

21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

PIVOT(N, B, A, b, c, v, l, e)

- 1 // Compute the coefficients of the equation for new basic variable x_e .
- let \widehat{A} be a new $m \times n$ matrix
- $3 \quad \hat{b}_e = b_l/a_{le}$

for each
$$j \in N - \{e\}$$

- 5 $\hat{a}_{ej} = a_{lj}/a_{le}$ 6 $\hat{a}_{el} = 1/a_{le}$
- 7 // Compute the coefficients of the remaining constraints.
- 8 **for** each $i \in B \{l\}$
 - $\hat{b}_i = b_i a_{ie}\hat{b}_e$
- for each $j \in N \{e\}$
 - $\hat{a}_{ij} = a_{ij} a_{ie}\hat{a}_{ej}$
 - $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$
- 13 // Compute the objective function.
- $14 \quad \hat{v} = v + c_a \hat{b}_a$
- 15 **for** each $j \in N \{e\}$
- $\hat{c}_j = c_j c_e \hat{a}_{ej}$
- $17 \quad \hat{c}_l = -c_e \hat{a}_{el}$
- 18 // Compute new sets of basic and nonbasic variables.
- 19 $\hat{N} = N \{e\} \cup \{l\}$
- 20 $\hat{B} = B \{l\} \cup \{e\}$
- 21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Rewrite "tight" equation for enterring variable x_e .

Substituting x_e into other equations.

Substituting x_e into objective function.

PIVOT(N, B, A, b, c, v, l, e)

- 1 // Compute the coefficients of the equation for new basic variable x_e .
- let \widehat{A} be a new $m \times n$ matrix
- $3 \quad \hat{b}_e = b_l/a_{le}$
 - for each $j \in N \{e\}$
- $\hat{a}_{ej} = a_{lj}/a_{le}$
- $6 \quad \hat{a}_{el} = 1/a_{le}$
- 7 // Compute the coefficients of the remaining constraints.
- 8 **for** each $i \in B \{l\}$
- $\hat{b}_i = b_i a_{ie}\hat{b}_e$
- 10 **for** each $j \in N \{e\}$
- $\hat{a}_{ij} = a_{ij} a_{ie}\hat{a}_{ej}$
 - $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$
- 13 // Compute the objective function.
- $4 \quad \hat{v} = v + c_a \hat{b}_a$
- 15 **for** each $j \in N \{e\}$
- $\hat{c}_j = c_j c_e \hat{a}_{ej}$
- $17 \quad \hat{c}_l = -c_e \hat{a}_{el}$
- 18 // Compute new sets of basic and nonbasic variables.
- 19 $\hat{N} = N \{e\} \cup \{l\}$
- 20 $\hat{B} = B \{l\} \cup \{e\}$
- 21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Rewrite "tight" equation for enterring variable x_e .

Substituting x_e into other equations.

Substituting x_e into objective function.

Update non-basic and basic variables

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                              Rewrite "tight" equation
    for each j \in N - \{e\} Need that a_{le} \neq 0!
          \hat{a}_{ei} = a_{li}/a_{le}
                                                                              for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
     for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                              Substituting x_e into
     for each j \in N - \{e\}
                                                                                other equations.
               \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{\mathbf{v}} = \mathbf{v} + c_a \hat{\mathbf{h}}_a
                                                                              Substituting x<sub>e</sub> into
15 for each j \in N - \{e\}
\hat{c}_i = c_i - c_e \hat{a}_{ei}
                                                                               objective function.
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
                                                                               Update non-basic
20 \hat{B} = B - \{l\} \cup \{e\}
                                                                              and basic variables
```

21 **return** $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie} \widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e$$

- Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie} \widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

$$\overline{X}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
     let \Delta be a new vector of length m
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
10
          if \Delta_I == \infty
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in B
               \bar{x}_i = b_i
15
16
          else \bar{x}_i = 0
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                        feasible basic solution (if it exists)
     let \Delta be a new vector of length n
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in B
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                       feasible basic solution (if it exists)
    let \Delta be a new vector of length n
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                          Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{n}
    while some index j \in N has c_i > 0
                                                                              Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B
               if a_{ie} > 0
                    \Delta_i = b_i/a_{ie}
               else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
               return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                        feasible basic solution (if it exists)
    let \Delta be a new vector of length n
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{i,a} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = \text{PIVOT}(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in R
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

Main Loop:

- terminates if all coefficients in objective function are negative
- Line 4 picks enterring variable x_e with negative coefficient
- Lines 6 9 pick the tightest constraint, associated with x1 Line 11 returns "unbounded" if
- there are no constraints
- Line 12 calls PIVOT, switching roles of x_i and x_e

```
SIMPLEX(A, b, c)
                                                                         Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length n
    while some index j \in N has c_i > 0
                                                                             Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B

    terminates if all coefficients in

                                                                                 objective function are negative
               if a_{i,a} > 0
                    \Delta_i = b_i/a_{ie}

    Line 4 picks enterring variable

               else \Delta_i = \infty
                                                                                 x<sub>e</sub> with negative coefficient
          choose an index l \in B that minimizes \Delta_i
                                                                               ■ Lines 6 — 9 pick the tightest
          if \Delta_I == \infty
10
                                                                                 constraint, associated with x1
11
               return "unbounded"
                                                                               Line 11 returns "unbounded" if
          else (N, B, A, b, c, v) = \text{PIVOT}(N, B, A, b, c, v, l, e)
                                                                                 there are no constraints
     for i = 1 to n
                                                                               Line 12 calls PIVOT, switching
14
          if i \in R
                                                                                 roles of x_i and x_e
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

Return corresponding solution.

```
SIMPLEX(A, b, c)
                                                                         Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length n
    while some index j \in N has c_i > 0
          choose an index e \in N for which c_e > 0
          for each index i \in B
               if a_{ie} > 0
                    \Delta_i = b_i/a_{ie}
               else \Delta_i = \infty
        choose an index l \in B that minimizes \Delta_i
        if \Delta_I == \infty
10
11
               return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in R
     \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,v) = INITIALIZE-SIMPLEX (A,b,c)

2 \underline{\text{let } \Delta \text{ be a new vector of length } n}

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty

11 return "unbounded"
```

Proof is based on the following three-part loop invariant:

Lemma 29 2 =

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

III. Linear Programming

```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,\nu) = INITIALIZE-SIMPLEX (A,b,c)

2 |\det\Delta be a new vector of length n

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29 2 -

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if Simplex returns a solution, it is a feasible solution. If Simplex returns "unbounded", the linear program is unbounded.


```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,\nu) = INITIALIZE-SIMPLEX (A,b,c)

2 |\det\Delta be a new vector of length n

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29 2 -

Suppose the call to Initialize-Simplex in line 1 returns a slack form for which the basic solution is feasible. Then if Simplex returns a solution, it is a feasible solution. If Simplex returns "unbounded", the linear program is unbounded.

The formal procedure SIMPLEX

```
SIMPLEX(A,b,c)

1 (N,B,A,b,c,\nu) = \text{INITIALIZE-SIMPLEX}(A,b,c)

2 let \Delta be a new vector of length n

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 —

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

$$z$$
 = x_1 + x_2 + x_3
 x_4 = 8 - x_1 - x_2
 x_5 = x_2 - x_3
Pivot with x_1 entering and x_4 leaving

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = x_1 + x_2 + x_3$$

 $x_4 = 8 - x_1 - x_2$

$$X_5 = X_2 - X_3$$

Pivot with x_1 entering and x_4 leaving

 X_4

$$z = 8$$

$$x_1 = 8 - x_2 - x_4$$

*X*₃

$$x_5 = x_2 - x_3$$

Cycling: If additionally slack at two iterations are identical, SIMPLEX fails to terminate!

Pivot with x_3 entering and x_5 leaving

$$z = 8 + x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4$$

$$X_3 = X_2 - X_5$$

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

1. Bland's rule: Choose entering variable with smallest index

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

- Lemma 29.7 -

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7 ·

Assuming Initialize-Simplex returns a slack form for which the basic solution is feasible, Simplex either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Finding an Initial Solution

 $2x_1 -$

*X*₂

Finding an Initial Solution

$$2x_1$$
 - x_2
 $2x_1$ - x_2 \leq 2
 x_1 - $5x_2$ \leq -4
 x_1, x_2 \geq 0

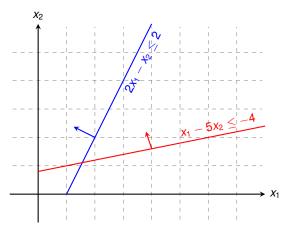
Finding an Initial Solution

maximize
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \le 2$$
 $x_1 - 5x_2 \le -4$ $x_1, x_2 \ge 0$ Conversion into slack form
$$z = 2x_1 - x_2$$
 $x_3 = 2 - 2x_1 - x_2$ $x_4 = -4 - x_1 + 5x_2$
Basic solution $(x_1, x_2, x_3, x_4) = (0, 0, 2, -4)$ is not feasible!

Geometric Illustration

maximize subject to

$$2x_1 - x_2$$



Geometric Illustration

maximize subject to

$$2x_1 - x_2$$



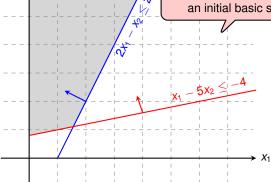
Geometric Illustration

maximize subject to

$$2x_1 - x_2$$

Questions:

- How to determine whether there is any feasible solution?
- If there is one, how to determine an initial basic solution?



maximize subject to

$$\sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m,$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$
 Formulating an Auxiliary Linear Program

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximize subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} \geq 0 \quad \text{for } j=0,1,\ldots,n$$

maximize subject to
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$

$$\bigvee$$
 Formulating an Auxiliary Linear Program maximize subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximize subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} \geq 0 \quad \text{for } j=0,1,\ldots,n$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{ccc} \sum_{j=1}^n a_{ij} x_j - x_0 & \leq & b_i & \text{ for } i = 1, 2, \dots, m, \\ x_i & \geq & 0 & \text{ for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof.

• " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{ for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{ for } j=1,2,\ldots,n \end{array}$$
 Formulating an Auxiliary Linear Program

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
- Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- "←": Suppose that the optimal objective value of Laux is 0

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

maximize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m,$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

Formulating an Auxiliary Linear Program

maximize $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 - Since $\overline{x}_0 \ge 0$ and the objective is to maximize $-x_0$, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L. \square

INITIALIZE-SIMPLEX

```
INITIALIZE-SIMPLEX (A, b, c)
    let k be the index of the minimum b_k
 2 if b_k > 0
                                  // is the initial basic solution feasible?
 3
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
    form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
 5 let (N, B, A, b, c, v) be the resulting slack form for L_{min}
 6 l = n + k
    //L_{\text{any}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
    // The basic solution is now feasible for L_{aux}.
10 iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{max} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
13
               perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
```


else return "infeasible"

Test solution with $N = \{1, 2, ..., n\}$, $B = \{n + 1, n + 2, ..., n + m\}$, $\overline{x}_i = b_i$ for $i \in B$, $\overline{x}_i = 0$ otherwise.

- INITIALIZE-SIMPLEX (A, b, c)
 - 1 let k be the index of the minimum b_i
- 2 if $b_k \ge 0$ // is the initial basic solution feasible?
- return $(\{1, 2, ..., n\}, \{n+1, n+2, ..., n+m\}, A, b, c, 0)$ 4 form L_{aux} by adding $-x_0$ to the left-hand side of each constraint
- and setting the objective function to $-x_0$
- 5 let (N, B, A, b, c, ν) be the resulting slack form for L_{aux}
- 6 l = n + k
- 7 // L_{aux} has n+1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for L_{aux} .
- 10 iterate the **while** loop of lines 3–12 of SIMPLEX until an optimal solution to L_{min} is found
- 11 **if** the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 if \bar{x}_0 is basic
- 13 perform one (degenerate) pivot to make it nonbasic
- from the final slack form of L_{aux} , remove x_0 from the constraints and restore the original objective function of L, but replace each basic
 - variable in this objective function by the right-hand side of its associated constraint
- 15 return the modified final slack form
- 16 else return "infeasible"

INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A, b, c)

Test solution with $N = \{1, 2, ..., n\}$, $B = \{n + 1, n + 2, ..., n + m\}$, $\overline{x}_i = b_i$ for $i \in B$, $\overline{x}_i = 0$ otherwise.

 ℓ will be the leaving variable so

that x_{ℓ} has the most negative value.

- 1 let k be the index of the minimum b_i
- 2 if $b_k \ge 0$ // is the initial basic solution feasible?
- 3 **return** $(\{1,2,\ldots,n\},\{n+1,n+2,\ldots,n+m\},A,b,c,0)$
- 4 form L_{aux} by adding $-x_0$ to the left-hand side of each constraint and setting the objective function to $-x_0$
- 5 let (N, B, A, b, c, ν) be the resulting slack form for L_{aux}
- $6 \quad l = n + k$
- 7 // L_{aux} has n+1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for $L_{\rm aux}$.
- 10 iterate the \mathbf{while} loop of lines 3–12 of SIMPLEX until an optimal solution to L_{aux} is found
- 11 if the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 **if** \bar{x}_0 is basic perform one
 - perform one (degenerate) pivot to make it nonbasic
- from the final slack form of L_{aux}, remove x₀ from the constraints and restore the original objective function of L, but replace each basic variable in this objective function by the right-hand side of its associated constraint
- 15 return the modified final slack form
- 16 else return "infeasible"

INITIALIZE-SIMPLEX

```
Test solution with N = \{1, 2, ..., n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                  2, \ldots, n+m, \overline{x}_i = b_i for i \in B, \overline{x}_i = 0 otherwise.
     let k be the index of the minimum b_k
   if b_k > 0
                                  // is the initial basic solution feasible?
 3
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                              \ell will be the leaving variable so
    let (N, B, A, b, c, v) be the resulting slack form for L_{min}
    l = n + k
                                                                           that x_{\ell} has the most negative value.
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                                Pivot step with x_{\ell} leaving and x_0 entering.
     // The basic solution is now feasible for L_{aux}.
    iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{max} is found
     if the optimal solution to L_{aux} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
13
              perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{max}}, remove x_0 from the constraints and
              restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
              associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

INITIALIZE-SIMPLEX

```
Test solution with N = \{1, 2, ..., n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                 2, \ldots, n+m, \overline{x}_i = b_i for i \in B, \overline{x}_i = 0 otherwise.
     let k be the index of the minimum b_k
   if b_k > 0
                                 // is the initial basic solution feasible?
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
 3
     form L_{\text{aux}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                             \ell will be the leaving variable so
   let (N, B, A, b, c, \nu) be the resulting slack form for L_{min}
    l = n + k
                                                                          that x_{\ell} has the most negative value.
     //L_{aux} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                               Pivot step with x_{\ell} leaving and x_0 entering.
     // The basic solution is now feasible for L_{aux}.
    iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
         to L_{max} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
                                                                           This pivot step does not change
12
         if \bar{x}_0 is basic
                                                                               the value of any variable.
13
              perform one (degenerate) pivot to make it nonbasic
14
          from the final slack form of L_{\text{max}}, remove x_0 from the constraints and
              restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
              associated constraint
          return the modified final slack form
15
     else return "infeasible"
```


maximize subject to

$$2x_1 - x_2$$

$$2x_1 - x_2 \le 2$$

$$x_1 - 5x_2 \le -4$$

$$x_1, x_2 \ge 0$$
Formulating the auxiliary linear program
$$- x_0$$

Example of Initialize-SIMPLEX (1/3)

maximize subject to

$$2x_1 - x_2$$
 $2x_1 - x_2 \le 2$
 $x_1 - 5x_2 \le -4$
 $x_1, x_2 \ge 0$
Formulating the auxiliary linear program
 $-x_0$

$$2x_1 - x_2 - x_0 \le 2$$

 $x_1 - 5x_2 - x_0 \le -4$
 $x_1, x_2, x_0 \ge 0$
Converting into slack form

Example of Initialize-SIMPLEX (1/3)

 X_4

maximize
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \leq 2$$

$$x_1 - 5x_2 \leq -4$$

$$x_1, x_2 \geq 0$$
Formulating the auxiliary linear program with the subject to
$$2x_1 - x_2 - x_0 \leq 2$$

$$2x_1 - x_2 - x_0 \leq 2$$

$$x_1 - 5x_2 - x_0 \leq 2$$

$$x_1 - 5x_2 - x_0 \leq -4$$

$$x_1, x_2, x_0 \geq 0$$
Basic solution $(0, 0, 0, 2, -4)$ not feasible!
$$x_1, x_2, x_0 \geq 0$$
Converting into slack form
$$x_1, x_2, x_1 + x_2 + x_0$$

$$x_2 = x_1 - x_2 + x_1 + x_2 + x_2 + x_0$$

$$x_3 = x_1 - x_2 + x_2 + x_1 + x_2 + x_2 + x_2 + x_1 + x_2 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_2 + x_3 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_3 + x_4 = -4 - x_1 + 5x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 = -4 - x_1 + x_2 + x_3 + x_4 + x_4 + x_4 + x_5 + x_5$$

$$z = x_3 = 2 - 2x_1 + x_2 + x_0$$

 $x_4 = -4 - x_1 + 5x_2 + x_0$
Pivot with x_0 entering and x_4 leaving

Basic solution (4,0,0,6,0) is feasible!

Pivot with x_0 entering and x_4 leaving

$$z = -4 - x_1 + 5x_2 - x_4$$

 $x_0 = 4 + x_1 - 5x_2 + x_4$
 $x_3 = 6 - x_1 - 4x_2 + x_4$

Basic solution (4,0,0,6,0) is feasible!

Pivot with x_2 entering and x_0 leaving

$$\begin{array}{rclcrcr}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_4}{5}
\end{array}$$

Optimal solution has $x_0 = 0$, hence the initial problem was feasible!

$$\begin{array}{rclcrcr}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_4}{5}
\end{array}$$

$$\begin{array}{rcl}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_4}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_4}{5}
\end{array}$$

by non-basic variables

Set $x_0 = 0$ and express objective function

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$\begin{aligned}
 z &= & - & x_0 \\
 x_2 &= & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
 x_3 &= & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5} \\
 \end{aligned}$$

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

Set $x_0 = 0$ and express objective function by non-basic variables

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

$$\begin{array}{rcl}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5}
\end{array}$$

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

Set $x_0 = 0$ and express objective function by non-basic variables

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

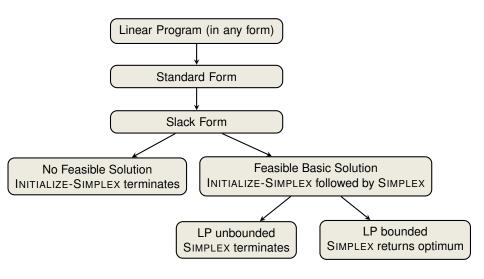
Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Workflow for Solving Linear Programs



Linear Programming and Simplex: Summary and Outlook Linear Programming

	Linear Programming ————	
ı	Enleat Fregramming	
ı	l .	
ı		
ı		
ı		
ı	l .	
ı		
ı	l .	

extremely versatile tool for modelling problems of all kinds

Linear Programming ————

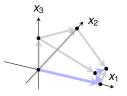
- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm -

• In practice: usually terminates in polynomial time, i.e., O(m+n)

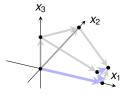


Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time



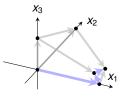
Linear Programming ——

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?



Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

x₂

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

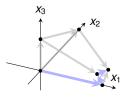
Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

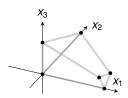
- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?



Polynomial-Time Algorithms —

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)



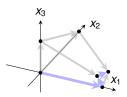
Linear Programming

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

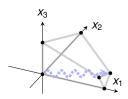
- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?



Polynomial-Time Algorithms —

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)



IV. Approximation Algorithms: Covering Problems

Thomas Sauerwald

Easter 2018

Outline

Introduction

Vertex Cover

The Set-Covering Problem

Motivation

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Motivation

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: Hamilton, 3-SAT, Vertex-Cover, Knapsack,...

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: Hamilton, 3-SAT, VERTEX-COVER, KNAPSACK,...

Strategies to cope with NP-complete problems -

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- Develop algorithms which find near-optimal solutions in polynomial-time.

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: Hamilton, 3-SAT, VERTEX-COVER, KNAPSACK,...

Strategies to cope with NP-complete problems

- 1. If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Many fundamental problems are **NP-complete**, yet they are too important to be abandoned.

Examples: Hamilton, 3-SAT, Vertex-Cover, Knapsack,...

Strategies to cope with NP-complete problems

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- Develop algorithms which find near-optimal solutions in polynomial-time.

We will call these approximation algorithms.

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n).$$

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

This covers both maximization and minimization problems.

Approximation Ratio -

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n).$$

• Maximization problem: $\frac{C^*}{C} \ge 1$

This covers both maximization and minimization problems.

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$

• Maximization problem: $\frac{C^*}{C} \geq 1$
• Minimization problem: $\frac{C}{C^*} \geq 1$

This covers both maximization and minimization problems.

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n). \quad \begin{array}{c} \bullet \text{ Maximization problem: } \frac{C^*}{C} \geq 1 \\ \bullet \text{ Minimization problem: } \frac{C}{C^*} \geq 1 \end{array}$$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Ratio –

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n). \quad \begin{array}{|l|l|} \hline & \text{Maximization problem: } \frac{C^*}{C} \geq 1 \\ \hline & \text{Minimization problem: } \frac{C}{C^*} \geq 1 \\ \hline \end{array}$$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$
• Maximization problem: $\frac{C^*}{C} \geq 1$
• Minimization problem: $\frac{C}{C^*} \geq 1$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes -

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

Approximation Ratio —

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$
• Maximization problem: $\frac{C^*}{C} \geq 1$
• Minimization problem: $\frac{C}{C^*} \geq 1$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes -

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

 It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in *n*.

Approximation Ratio –

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$
• Maximization problem: $\frac{C^*}{C} \geq 1$
• Minimization problem: $\frac{C}{C^*} \geq 1$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes -

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

 It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. (For example, $O(n^{2/\epsilon})$.)

Approximation Ratio =

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n).$$
• Maximization problem: $\frac{C^*}{C} \geq 1$
• Minimization problem: $\frac{C}{C^*} \geq 1$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. (For example, $O(n^{2/\epsilon})$).
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n.

Approximation Ratio =

An algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(\frac{C}{C^*},\frac{C^*}{C}\right) \leq \rho(n). \quad \begin{array}{c} \bullet \quad \text{Maximization problem: } \frac{C^*}{C} \geq 1 \\ \bullet \quad \text{Minimization problem: } \frac{C}{C^*} \geq 1 \end{array}$$

This covers both maximization and minimization problems.

For many problems: tradeoff between runtime and approximation ratio.

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon > 0$, is a $(1 + \epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. (For example, $O(n^{2/\epsilon})$.)
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. (For example, $O((1/\epsilon)^2 \cdot n^3)$.

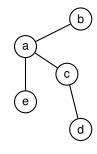
Outline

Introduction

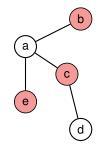
Vertex Cover

The Set-Covering Problem

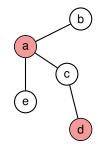
- Given: Undirected graph *G* = (*V*, *E*)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.



- Given: Undirected graph *G* = (*V*, *E*)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

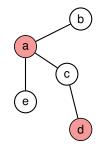


- Given: Undirected graph *G* = (*V*, *E*)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.



We are covering edges by picking vertices!

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

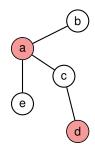


We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is an NP-hard problem.

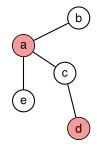


We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is an NP-hard problem.



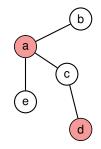
Applications:

We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is an NP-hard problem.



Applications:

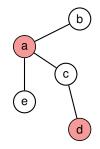
 Every edge forms a task, and every vertex represents a person/machine which can execute that task

We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is an NP-hard problem.



Applications:

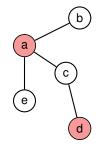
- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Perform all tasks with the minimal amount of resources

We are covering edges by picking vertices!

Vertex Cover Problem

- Given: Undirected graph G = (V, E)
- Goal: Find a minimum-cardinality subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is an NP-hard problem.



Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Perform all tasks with the minimal amount of resources
- Extensions: weighted vertices or hypergraphs (~> Set-Covering Problem)

```
APPROX-VERTEX-COVER(G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

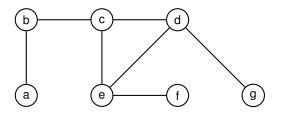
4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

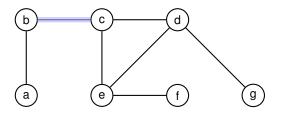
remove from E' every edge incident on either u or v

7 return C
```

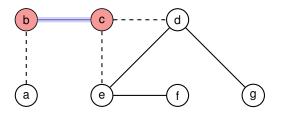
- $1 \quad C = \emptyset$
- $2 \quad E' = G.E$
- 3 **while** $E' \neq \emptyset$
- let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- for remove from E' every edge incident on either u or v
- 7 return C



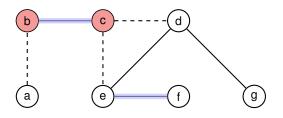
- $1 \quad C = \emptyset$
- 2 E' = G.E3 **while** $E' \neq \emptyset$
- 4 let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- for remove from E' every edge incident on either u or v
- 7 return C



- $\begin{array}{ccc}
 1 & C = \emptyset \\
 2 & E' = G.E
 \end{array}$
- 3 while $E' \neq \emptyset$
- let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- for remove from E' every edge incident on either u or v
 - 7 return C



- $1 \quad C = \emptyset$
- E' = G.E
- 3 while $E' \neq \emptyset$
 - let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- for remove from E' every edge incident on either u or v
 - 7 return C



remove from E' every edge incident on either u or v

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

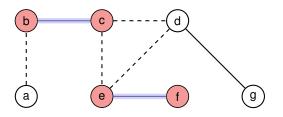
2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}
```

7 return C



```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

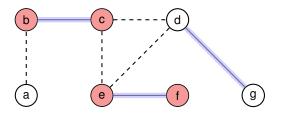
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```



```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

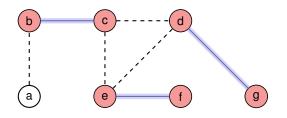
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```




```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

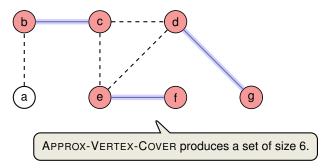
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

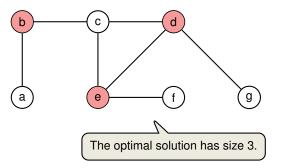
5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```



- $1 \quad C = \emptyset$
- $2 \quad E' = G.E$
- 3 while $E' \neq \emptyset$
 - let (u, v) be an arbitrary edge of E'
- $C = C \cup \{u, v\}$
- for remove from E' every edge incident on either u or v
- 7 return C



Analysis of Greedy for Vertex Cover

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

7 return C
```

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```

— Theorem 35.1 -

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

■ Running time is O(V + E) (using adjacency lists to represent E')

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

Proof:

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A,

IV. Covering Problems

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint:

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $|C^*| \ge |A|$

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $|C^*| \ge |A|$
- Every edge in A contributes 2 vertices to |C|:

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v
```

- Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $|C^*| \ge |A|$
- Every edge in A contributes 2 vertices to |C|: |C| = 2|A|

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $C^* > |A|$
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E' every edge incident on either u or v

7 return C
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊂ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $C^* > |A|$
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

```
APPROX-VERTEX-COVER(G)

1 C = \emptyset

2 E' = G.E

3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

remove from E'

We can bound the size of the returned solution without knowing the (size of an) optimal solution!
```

Theorem 35.1

APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊂ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $C^* > |A|$
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

```
APPROX-VERTEX-COVER (G A "vertex-based" Greedy that adds one vertex at each iteration fails to achieve an approximation ratio of 2 (Exercise)!

2 E' = G.E

3 while E' \neq \emptyset
4 let (u, v) be an arbitrary edge of E'
5 C = C \cup \{u, v\}
7 remove from E'
We can bound the size of the returned solution without knowing the (size of an) optimal solution!
```

Theorem 35.1

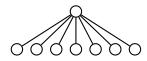
APPROX-VERTEX-COVER is a poly-time 2-approximation algorithm.

- Running time is O(V + E) (using adjacency lists to represent E')
- Let A ⊆ E denote the set of edges picked in line 4
- Every optimal cover C^* must include at least one endpoint of edges in A, and edges in A do not share a common endpoint: $C^* > |A|$
- Every edge in A contributes 2 vertices to |C|: $|C| = 2|A| \le 2|C^*|$.

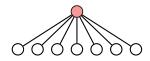
- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

- 1. If inputs are small, an algorithm with exponential running time may be satisfactory.
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

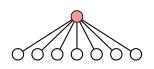
- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.



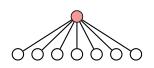
- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- Develop algorithms which find near-optimal solutions in polynomial-time.



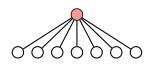
- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- Develop algorithms which find near-optimal solutions in polynomial-time.

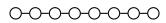


- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- Develop algorithms which find near-optimal solutions in polynomial-time.

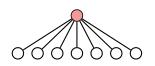


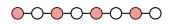
- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

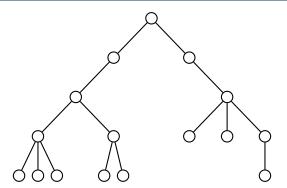


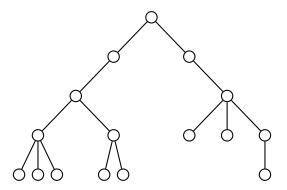


- If inputs are small, an algorithm with exponential running time may be satisfactory.
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

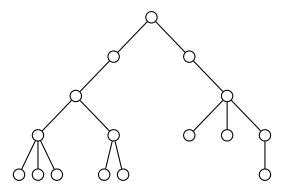








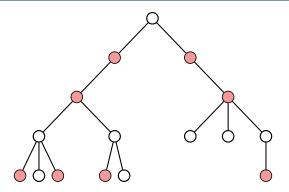
There exists an optimal vertex cover which does not include any leaves.



There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

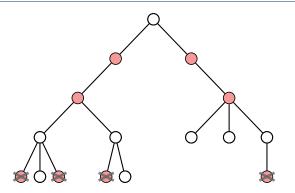
IV. Covering Problems



There exists an optimal vertex cover which does not include any leaves.

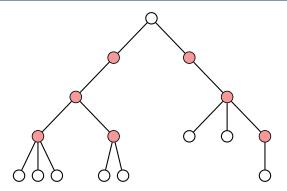
Exchange-Argument: Replace any leaf in the cover by its parent.

5 H 5 6 H 6 H 5 H 5



There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.



There exists an optimal vertex cover which does not include any leaves.

Exchange-Argument: Replace any leaf in the cover by its parent.

There exists an optimal vertex cover which does not include any leaves.

There exists an optimal vertex cover which does not include any leaves.

- 1: *C* = ∅
- 2: while ∃ leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)

- 1: *C* = ∅
- 2: **while** ∃ leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from *G*
- 5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

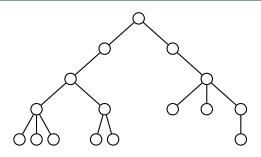
There exists an optimal vertex cover which does not include any leaves.

VERTEX-COVER-TREES(G)

- 1: *C* = ∅
- 2: **while** ∃ leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Clear: Running time is O(V), and the returned solution is a vertex cover.

Solution is also optimal. (Use inductively the existence of an optimal vertex cover without leaves)



VERTEX-COVER-TREES(G)

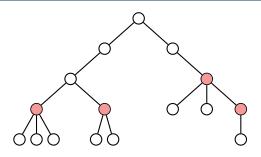
1: C = 0

2: **while** \exists leaves in G

3: Add all parents to C

4: Remove all leaves and their parents from G

5: return C



VERTEX-COVER-TREES(G)

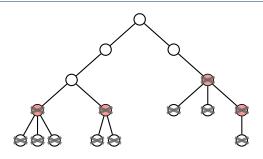
1: C = 0

2: **while** \exists leaves in G

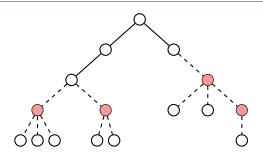
3: Add all parents to C

4: Remove all leaves and their parents from G

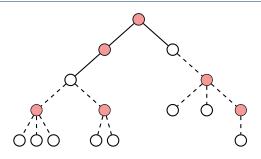
5: return C



- 1: C = 0
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

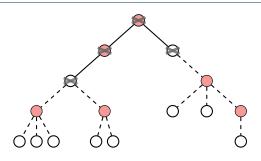


- 1: C = 0
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C



- 1: *C* = ∅
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

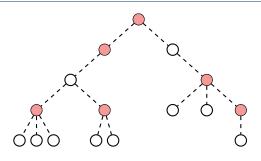
Execution on a Small Example



VERTEX-COVER-TREES(G)

- 1: *C* = ∅
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

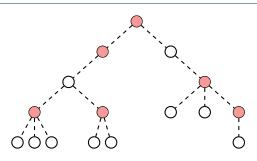
Execution on a Small Example



VERTEX-COVER-TREES(G)

- 1: C = 0
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from *G*
- 5: return C

Execution on a Small Example



VERTEX-COVER-TREES(G)

- 1: *C* = ∅
- 2: **while** \exists leaves in G
- 3: Add all parents to C
- 4: Remove all leaves and their parents from G
- 5: return C

Problem can be also solved on bipartite graphs, using Max-Flows and Min-Cuts.

Strategies to cope with NP-complete problems ——

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Strategies to cope with NP-complete problems ———

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Such algorithms are called exact algorithms.

Strategies to cope with NP-complete problems —

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Such algorithms are called exact algorithms.

Strategies to cope with NP-complete problems —

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Focus on instances where the minimum vertex cover is small, that is, less or equal than some given integer k.

Such algorithms are called exact algorithms.

Strategies to cope with NP-complete problems —

- If inputs (or solutions) are small, an algorithm with exponential running time may be satisfactory
- 2. Isolate important special cases which can be solved in polynomial-time.
- 3. Develop algorithms which find near-optimal solutions in polynomial-time.

Focus on instances where the minimum vertex cover is small, that is, less or equal than some given integer k.

Simple Brute-Force Search would take $\approx \binom{n}{k} = \Theta(n^k)$ time.

Substructure Lemma

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Substructure Lemma

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Reminiscent of Dynamic Programming.

Substructure Lemma

Consider a graph G=(V,E), edge $\{u,v\}\in E(G)$ and integer $k\geq 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k-1.

Proof:

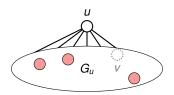
 \Leftarrow Assume G_u has a vertex cover C_u of size k-1.

Substructure Lemma

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

 \Leftarrow Assume G_u has a vertex cover C_u of size k-1.

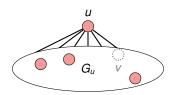


Substructure Lemma

Consider a graph G=(V,E), edge $\{u,v\}\in E(G)$ and integer $k\geq 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v) is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k-1.

Proof:

 \Leftarrow Assume G_u has a vertex cover C_u of size k-1. Adding u yields a vertex cover of G which is of size k



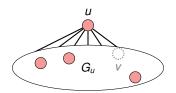
Substructure Lemma

Consider a graph G = (V, E), edge $\{u, v\} \in E(G)$ and integer $k \ge 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k - 1.

Proof:

- ← Assume G_u has a vertex cover C_u of size k − 1.

 Adding u yields a vertex cover of G which is of size k
- \Rightarrow Assume G has a vertex cover C of size k, which contains, say u.

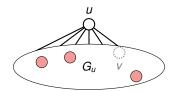


Substructure Lemma

Consider a graph G=(V,E), edge $\{u,v\}\in E(G)$ and integer $k\geq 1$. Let G_u be the graph obtained by deleting u and its incident edges (G_v is defined similarly). Then G has a vertex cover of size k if and only if G_u or G_v (or both) have a vertex cover of size k-1.

Proof:

- \Leftarrow Assume G_u has a vertex cover C_u of size k-1. Adding u yields a vertex cover of G which is of size k
- \Rightarrow Assume G has a vertex cover C of size k, which contains, say u. Removing u from C yields a vertex cover of G_u which is of size k-1. \square



```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Correctness follows by the Substructure Lemma and induction.

IV. Covering Problems

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

Depth k, branching factor 2

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

■ Depth k, branching factor $2 \Rightarrow$ total number of calls is $O(2^k)$

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

- Depth k, branching factor 2 \Rightarrow total number of calls is $O(2^k)$
- O(E) work per recursive call

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

- Depth k, branching factor 2 \Rightarrow total number of calls is $O(2^k)$
- O(E) work per recursive call
- Total runtime: $O(2^k \cdot E)$.

```
VERTEX-COVER-SEARCH(G, k)

1: If E = \emptyset return \emptyset

2: If k = 0 and E \neq \emptyset return \bot

3: Pick an arbitrary edge (u, v) \in E

4: S_1 = \text{VERTEX-COVER-SEARCH}(G_u, k - 1)

5: S_2 = \text{VERTEX-COVER-SEARCH}(G_v, k - 1)

6: if S_1 \neq \bot return S_1 \cup \{u\}

7: if S_2 \neq \bot return S_2 \cup \{v\}

8: return \bot
```

Running time:

- Depth k, branching factor 2 \Rightarrow total number of calls is $O(2^k)$
- O(E) work per recursive call
- Total runtime: $O(2^k \cdot E)$.

exponential in k, but much better than $\Theta(n^k)$ (i.e., still polynomial for $k = O(\log n)$)

Outline

Introduction

Vertex Cover

The Set-Covering Problem

- Given: set X of size n and family of subsets \mathcal{F}
- ullet Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

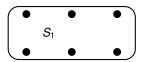
s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.

- Given: set X of size n and family of subsets F
- ullet Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.

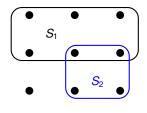
- Given: set *X* of size *n* and family of subsets *F*
- lacktriangle Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.



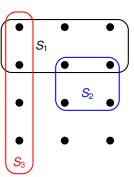
- Given: set X of size n and family of subsets F
- lacktriangle Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.



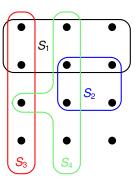
- Given: set *X* of size *n* and family of subsets *F*
- ullet Goal: Find a minimum-size subset $\mathcal{C}\subseteq\mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.



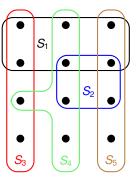
- Given: set *X* of size *n* and family of subsets *F*
- ullet Goal: Find a minimum-size subset $\mathcal{C}\subseteq\mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.



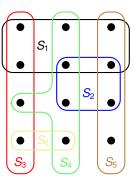
- Given: set *X* of size *n* and family of subsets *F*
- ullet Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.



- Given: set *X* of size *n* and family of subsets *F*
- ullet Goal: Find a minimum-size subset $\mathcal{C}\subseteq\mathcal{F}$

s.t.
$$X = \bigcup_{S \in C} S$$
.

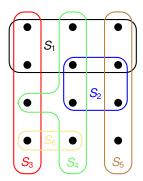


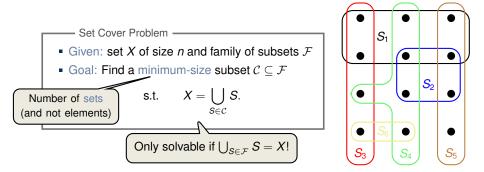
Set Cover Problem -

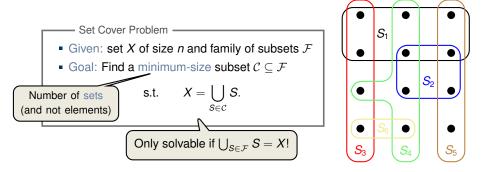
- Given: set *X* of size *n* and family of subsets *F*
- ullet Goal: Find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$

s.t.
$$X = \bigcup_{S \in \mathcal{C}} S$$
.

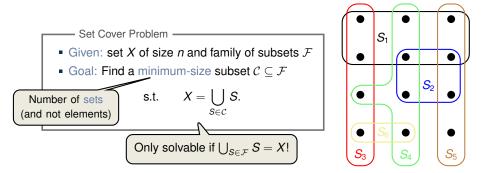
Only solvable if $\bigcup_{S \in \mathcal{F}} S = X!$







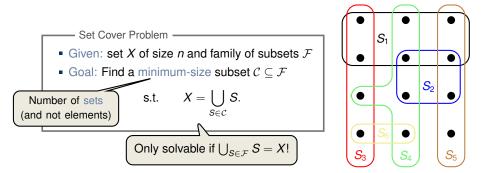
Remarks:



Remarks:

generalisation of the vertex-cover problem and hence also NP-hard.

The Set-Covering Problem



Remarks:

- generalisation of the vertex-cover problem and hence also NP-hard.
- models resource allocation problems


```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```

```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

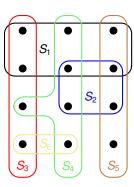
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

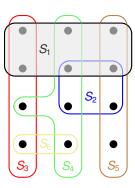
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

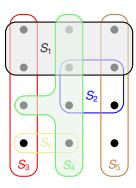
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

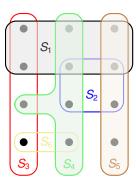
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

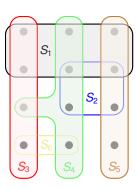
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



Strategy: Pick the set *S* that covers the largest number of uncovered elements.

```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

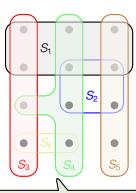
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



Greedy chooses S_1 , S_4 , S_5 and S_3 (or S_6), which is a cover of size 4.

Strategy: Pick the set *S* that covers the largest number of uncovered elements.

```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

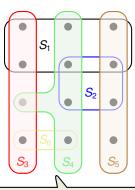
3 while U \neq \emptyset

4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```



Greedy chooses S_1 , S_4 , S_5 and S_3 (or S_6), which is a cover of size 4.

Optimal cover is $\mathcal{C} = \{S_3, S_4, S_5\}$

Strategy: Pick the set *S* that covers the largest number of uncovered elements.

```
GREEDY-SET-COVER (X, \mathcal{F})

1 U = X

2 \mathcal{C} = \emptyset

3 while U \neq \emptyset

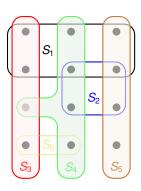
4 select an S \in \mathcal{F} that maximizes |S \cap U|

5 U = U - S

6 \mathcal{C} = \mathcal{C} \cup \{S\}

7 return \mathcal{C}
```

Can be easily implemented to run in time polynomial in |X| and $|\mathcal{F}|$



Strategy: Pick the set *S* that covers the largest number of uncovered elements.

```
GREEDY-SET-COVER (X, \mathcal{F})

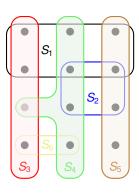
1 U = X

2 \mathcal{C} = \emptyset

3 while U \neq \emptyset
```

- select an $S \in \mathcal{F}$ that maximizes $|S \cap U|$
- U = U S
- $\mathcal{C} = \mathcal{C} \cup \{S\}$
- 7 return \mathcal{C}

Can be easily implemented to run in time polynomial in |X| and $|\mathcal{F}|$



How good is the approximation ratio?

Theorem 35.4 -

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\})$$

Theorem 35.4

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\})$$

$$H(k) := \sum_{i=1}^k \frac{1}{i} \le \ln(k) + 1$$

Theorem 35.4

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(\textit{n}) = \textit{H}(\max\{|\textit{S}|\colon |\textit{S}|\in\mathcal{F}\}) \leq \ln(\textit{n}) + 1.$$

$$H(k) := \sum_{i=1}^k \frac{1}{i} \le \ln(k) + 1$$

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S|: |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

$$H(k) := \sum_{i=1}^k \frac{1}{i} \le \ln(k) + 1$$

Idea: Distribute cost of 1 for each added set over newly covered elements.

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S|\colon |S|\in\mathcal{F}\}) \le \ln(n) + 1.$$

$$H(k) := \sum_{i=1}^k \frac{1}{i} \le \ln(k) + 1$$

Idea: Distribute cost of 1 for each added set over newly covered elements.

Definition of cost -

If an element x is covered for the first time by set S_i in iteration i, then

$$c_{x}:=\frac{1}{|S_{i}\setminus(S_{1}\cup S_{2}\cup\cdots\cup S_{i-1})|}.$$

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(\textit{n}) = \textit{H}(\max\{|\textit{S}|\colon |\textit{S}|\in\mathcal{F}\}) \leq \ln(\textit{n}) + 1.$$

$$H(k) := \sum_{i=1}^k \frac{1}{i} \le \ln(k) + 1$$

Idea: Distribute cost of 1 for each added set over newly covered elements.

Definition of cost -

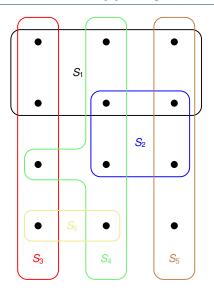
If an element x is covered for the first time by set S_i in iteration i, then

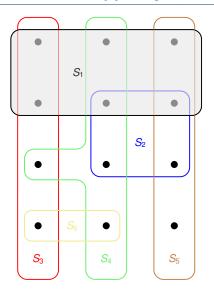
$$c_{\mathsf{x}} := \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}.$$

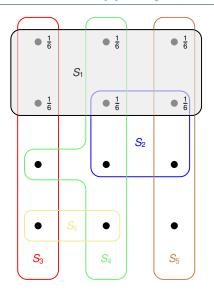
Notice that in the mathematical analysis, S_i is the set chosen in iteration i - not to be confused with the sets S_1, S_2, \ldots, S_6 in the example.

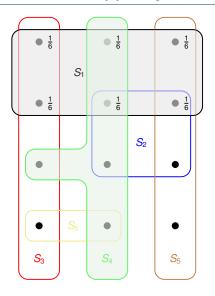
• •

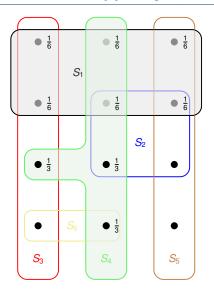
• •

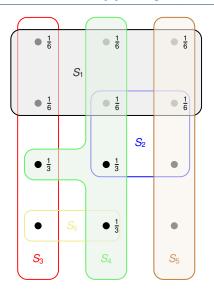


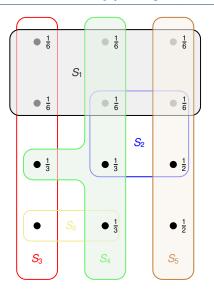


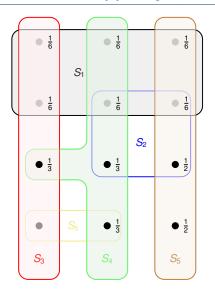


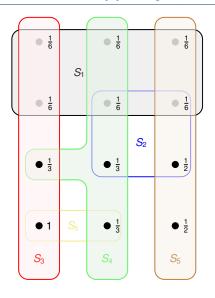


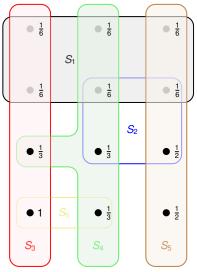




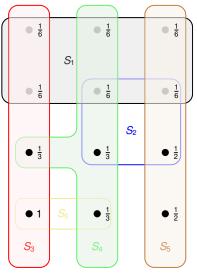








$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1 = ??$$



$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} + 1 = 4$$

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Definition of cost —

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

• Each step of the algorithm assigns one unit of cost, so

(1)

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

• Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{\mathbf{x} \in X} \mathbf{c}_{\mathbf{x}} \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Combining 1 and 2 gives

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Combining 1 and 2 gives

$$|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x$$

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Combining 1 and 2 gives

$$|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x$$

Key Inequality: $\sum_{x \in S} c_x \le H(|S|)$.

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{\mathbf{x} \in X} c_{\mathbf{x}} \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Combining 1 and 2 gives

$$|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \leq \sum_{S \in \mathcal{C}^*} H(|S|)$$

Key Inequality: $\sum_{x \in S} c_x \le H(|S|)$.

Definition of cost -

If x is covered for the first time by a set S_i , then $c_x := \frac{1}{\left|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})\right|}$.

Proof.

Each step of the algorithm assigns one unit of cost, so

$$|\mathcal{C}| = \sum_{x \in X} c_x \tag{1}$$

• Each element $x \in X$ is in at least one set in the optimal cover C^* , so

$$\sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \ge \sum_{x \in X} c_x \tag{2}$$

Combining 1 and 2 gives

$$|\mathcal{C}| \leq \sum_{S \in \mathcal{C}^*} \sum_{x \in S} c_x \leq \sum_{S \in \mathcal{C}^*} H(|S|) \leq |\mathcal{C}^*| \cdot H(\max\{|S| \colon S \in \mathcal{F}\})$$

Key Inequality: $\sum_{x \in S} c_x \le H(|S|)$.

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x \in \mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

• For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

Remaining uncovered elements in S

• For any $S \in \mathcal{F}$ and $i = 1, 2, \dots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \dots \cup S_i)|$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

Sets chosen by the algorithm

• For any $S \in \mathcal{F}$ and $i = 1, 2, \dots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \dots \cup S_i)|$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, \ldots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$ $\Rightarrow |X| = u_0 \ge u_1 \ge \cdots \ge u_{|\mathcal{C}|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, \ldots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$ $\Rightarrow |X| = u_0 \ge u_1 \ge \cdots \ge u_{|\mathcal{C}|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

$$\Rightarrow$$

$$\sum_{x\in\mathcal{S}}c_x$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

- For any $S \in \mathcal{F}$ and $i = 1, 2, \ldots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$ $\Rightarrow |X| = u_0 \ge u_1 \ge \cdots \ge u_{|\mathcal{C}|} = 0$ and $u_{i-1} u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \dots \cup S_{i-1})|}$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

- For any $S \in \mathcal{F}$ and $i = 1, 2, \ldots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$ $\Rightarrow |X| = u_0 \ge u_1 \ge \cdots \ge u_{|\mathcal{C}|} = 0$ and $u_{i-1} u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

- For any $S \in \mathcal{F}$ and $i = 1, 2, \ldots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$ $\Rightarrow |X| = u_0 \ge u_1 \ge \cdots \ge u_{|\mathcal{C}|} = 0$ and $u_{i-1} u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x\in\mathcal{S}} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x\in\mathcal{S}}c_x=\sum_{i=1}^k(u_{i-1}-u_i)\cdot\frac{1}{|S_i\setminus(S_1\cup S_2\cup\cdots\cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

• For any
$$S \in \mathcal{F}$$
 and $i = 1, 2, \dots, |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \dots \cup S_i)|$

 \Rightarrow $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \leq \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}}$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in S} c_x \leq H(|S|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \leq \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_{i+1}}^{u_{i-1}} \frac{1}{u_{i-1}}$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

• For any
$$S \in \mathcal{F}$$
 and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

 \Rightarrow $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

$$\Rightarrow$$

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$
$$\le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j}$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

• For any
$$S \in \mathcal{F}$$
 and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

 \Rightarrow $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

• Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| > |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

$$\le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j}$$

$$= \sum_{i=1}^k (H(u_{i-1}) - H(u_i))$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| > |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

$$\le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j}$$

$$= \sum_{i=1}^k (H(u_{i-1}) - H(u_i)) = H(u_0) - H(u_k)$$

Proof of the Key Inequality $\sum_{x \in S} c_x \le H(|S|)$

$$\sum_{x\in\mathcal{S}} c_x \leq H(|\mathcal{S}|)$$

■ For any $S \in \mathcal{F}$ and $i = 1, 2, ..., |\mathcal{C}| = k$ let $u_i := |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_i)|$

$$\Rightarrow$$
 $|X| = u_0 \ge u_1 \ge \cdots \ge u_{|C|} = 0$ and $u_{i-1} - u_i$ counts the items in S covered first time by S_i .

 \Rightarrow

$$\sum_{x \in S} c_x = \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})|}$$

Further, by definition of the GREEDY-SET-COVER:

$$|S_i \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S \setminus (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1}.$$

$$\sum_{x \in S} c_x \le \sum_{i=1}^k (u_{i-1} - u_i) \cdot \frac{1}{u_{i-1}} = \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}}$$

$$\le \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j}$$

$$= \sum_{i=1}^k (H(u_{i-1}) - H(u_i)) = H(u_0) - H(u_k) = H(|S|). \quad \Box$$

Theorem 35.4 -

Greedy-Set-Cover is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

- Is the bound on the approximation ratio in Theorem 35.4 tight?
- Is there a better algorithm?

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

- Is the bound on the approximation ratio in Theorem 35.4 tight?
- Is there a better algorithm?

Lower Bound

Unless P=NP, there is no $c \cdot \ln(n)$ polynomial-time approximation algorithm for some constant 0 < c < 1.

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S|: |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

Can be applied to the Vertex Cover Problem for Graphs with maximum degree 3 to obtain approximation ratio of $1 + \frac{1}{2} + \frac{1}{3} < 2$.

- Is the bound on the approximation ratio in Theorem 35.4 tight?
- Is there a better algorithm?

Lower Bound

Unless P=NP, there is no $c \cdot \ln(n)$ polynomial-time approximation algorithm for some constant 0 < c < 1.

The same approach also gives an approximation ratio of $O(\ln(n))$ if there exists a cost function $c: S \to \mathbb{Z}^+$

Theorem 35.4

GREEDY-SET-COVER is a polynomial-time $\rho(n)$ -algorithm, where

$$\rho(n) = H(\max\{|S| \colon |S| \in \mathcal{F}\}) \le \ln(n) + 1.$$

Can be applied to the Vertex Cover Problem for Graphs with maximum degree 3 to obtain approximation ratio of $1 + \frac{1}{2} + \frac{1}{3} < 2$.

- Is the bound on the approximation ratio in Theorem 35.4 tight?
- Is there a better algorithm?

Lower Bound

Unless P=NP, there is no $c \cdot \ln(n)$ polynomial-time approximation algorithm for some constant 0 < c < 1.

Instance –

• Given any integer $k \ge 3$

Instance -

- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)

— Instance -

- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)

$$k = 4, n = 30$$
:

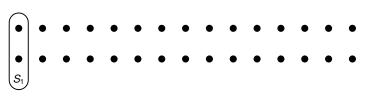
Instance -

- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements

$$k = 4, n = 30$$
:

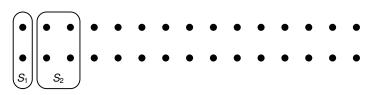
- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \dots, S_k are pairwise disjoint and each set contains $2, 4, \dots, 2^k$ elements

$$k = 4, n = 30$$
:



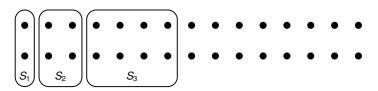
- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements

$$k = 4, n = 30$$
:



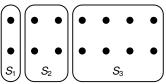
- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements

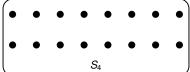
$$k = 4, n = 30$$
:



- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements

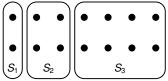
$$k = 4, n = 30$$
:

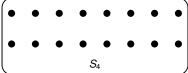




- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

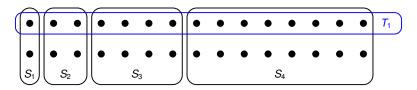
$$k = 4, n = 30$$
:





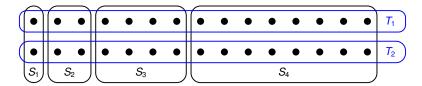
- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

$$k = 4, n = 30$$
:



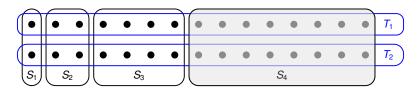
- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

$$k = 4, n = 30$$
:



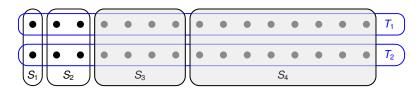
- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

$$k = 4, n = 30$$
:



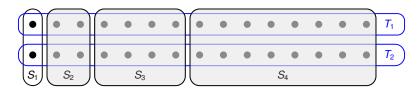
- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

$$k = 4, n = 30$$
:



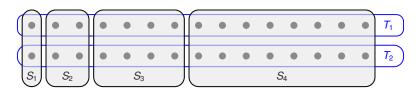
- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T_1 , T_2 are disjoint and each set contains half of the elements of each set S_1 , S_2 , ..., S_k

$$k = 4, n = 30$$
:



- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

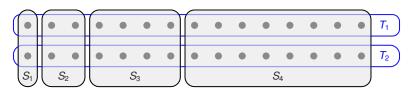
$$k = 4, n = 30$$
:



Instance

- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T_1 , T_2 are disjoint and each set contains half of the elements of each set S_1 , S_2 , ..., S_k

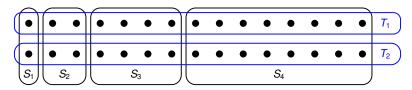
$$k = 4, n = 30$$
:



Instance

- Given any integer k ≥ 3
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T_1 , T_2 are disjoint and each set contains half of the elements of each set S_1 , S_2 , ..., S_k

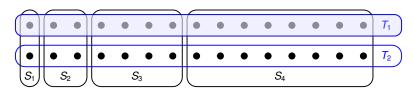
$$k = 4, n = 30$$
:



Instance

- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

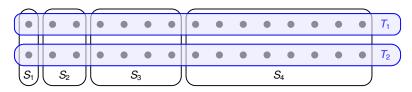
$$k = 4, n = 30$$
:



Instance

- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

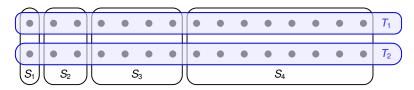
$$k = 4, n = 30$$
:



Instance

- Given any integer $k \ge 3$
- There are $n = 2^{k+1} 2$ elements overall (so $k \approx \log_2 n$)
- Sets S_1, S_2, \ldots, S_k are pairwise disjoint and each set contains $2, 4, \ldots, 2^k$ elements
- Sets T₁, T₂ are disjoint and each set contains half of the elements of each set S₁, S₂,..., S_k

$$k = 4, n = 30$$
:



Solution of Greedy consists of *k* sets.

Optimum consists of 2 sets.

V. Approximation Algorithms via Exact Algorithms

Thomas Sauerwald

Easter 2018

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

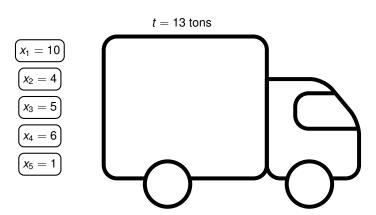
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

The Subset-Sum Problem

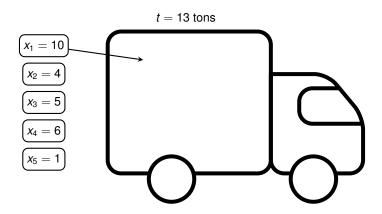
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

This problem is NP-hard

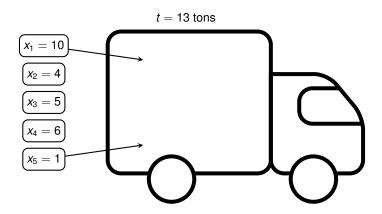
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.



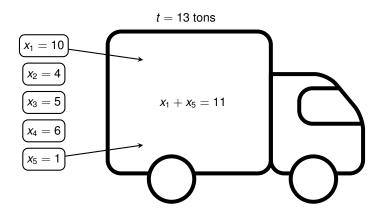
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.



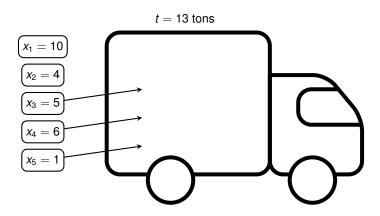
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.



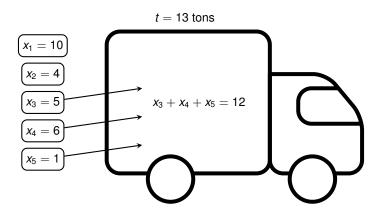
- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.



- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.



- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.




```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

```
EXACT-SUBSET-SUM (S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

```
EXACT-SUBSET-SUM(S,t) implementable in time O(|L_{i-1}|) (like Merge-Sort)

1 n = |S| Returns the merged list (in sorted order and without duplicates)

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i) S + x := \{s + x : s \in S\}

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

•
$$S = \{1, 4, 5\}, t = 10$$

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

- $S = \{1, 4, 5\}, t = 10$
- $L_0 = \langle 0 \rangle$

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

- $S = \{1, 4, 5\}, t = 10$ • $L_0 = \langle 0 \rangle$
- $L_1 = \langle 0, 1 \rangle$

Dynamic Progamming: Compute bottom-up all possible sums < t

```
EXACT-SUBSET-SUM(S, t)
1 n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
        L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
        remove from L_i every element that is greater than t
  return the largest element in L_n
```

- $S = \{1, 4, 5\}, t = 10$ • $L_0 = \langle 0 \rangle$ • $L_1 = (0, 1)$ • $L_2 = (0, 1, 4, 5)$

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

```
• S = \{1, 4, 5\}, t = 10

• L_0 = \langle 0 \rangle

• L_1 = \langle 0, 1 \rangle

• L_2 = \langle 0, 1, 4, 5 \rangle

• L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_n
```

```
• S = \{1, 4, 5\}, t = 10

• L_0 = \langle 0 \rangle

• L_1 = \langle 0, 1 \rangle

• L_2 = \langle 0, 1, 4, 5 \rangle

• L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L
```

Example:

- $S = \{1, 4, 5\}, t = 10$
- $L_0 = \langle 0 \rangle$
- $L_1 = \langle 0, 1 \rangle$
- $L_2 = \langle 0, 1, 4, 5 \rangle$
- $L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle$

• Correctness: L_n contains all sums of $\{x_1, x_2, \dots, x_n\}$

Dynamic Progamming: Compute bottom-up all possible sums < t

```
EXACT-SUBSET-SUM(S, t)
1 n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
       L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1})
       remove from L_i every element the can be shown by induction on n
  return the largest element in I
                         • Correctness: L_n contains all sums of \{x_1, x_2, \dots, x_n\}
```

```
• S = \{1, 4, 5\}, t = 10
• L_0 = \langle 0 \rangle
• L_1 = (0, 1)
• L_2 = (0, 1, 4, 5)
```

•
$$L_3 = \langle 0, 1, 4, \frac{5}{5}, 6, 9, 10 \rangle$$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)

5 remove from L_i every element that is greater than t

6 return the largest element in L_i

• Correctness: L_n contains all sums of \{x_1, x_2, \dots, x_n\}

• Runtime: O(2^1 + 2^2 + \dots + 2^n) = O(2^n)
```

• $S = \{1, 4, 5\}, t = 10$

• $L_0 = \langle 0 \rangle$ • $L_1 = \langle 0, 1 \rangle$ • $L_2 = \langle 0, 1, 4, 5 \rangle$ • $L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle$

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)
1 n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
         L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
         remove from L_i every element that is greater than t
   return the largest element in I
                           Correctness: L_n contains all sums of \{x_1, x_2, \dots, x_n\}
                           • Runtime: O(2^1 + 2^2 + \cdots + 2^n) = O(2^n)
Example:
 • S = \{1, 4, 5\} There are 2^i subsets of \{x_1, x_2, \dots, x_i\}.
 • L_0 = \langle 0 \rangle
 • L_1 = (0, 1)
 • L_2 = (0, 1, 4, 5)
 • L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```

An Exact (Exponential-Time) Algorithm

Dynamic Progamming: Compute bottom-up all possible sums $\leq t$

```
EXACT-SUBSET-SUM(S, t)
1 n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
         L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
         remove from L_i every element that is greater than t
   return the largest element in I
                           • Correctness: L_n contains all sums of \{x_1, x_2, \dots, x_n\}
                           • Runtime: O(2^1 + 2^2 + \cdots + 2^n) = O(2^n)
Example:
 • S = \{1, 4, 5\} There are 2^i subsets of \{x_1, x_2, \dots, x_i\}.
                                                                            Better runtime if t
 • L_0 = \langle 0 \rangle
                                                                          and/or |L_i| are small.
 • L_1 = (0, 1)
 • L_2 = (0, 1, 4, 5)
 • L_3 = \langle 0, 1, 4, 5, 6, 9, 10 \rangle
```

Idea: Don't need to maintain two values in *L* which are close to each other.

Idea: Don't need to maintain two values in L which are close to each other.

Trimming a List —

• Given a trimming parameter $0 < \delta < 1$

Idea: Don't need to maintain two values in *L* which are close to each other.

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

Idea: Don't need to maintain two values in *L* which are close to each other.

Trimming a List -

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \leq z \leq y.$$

• $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$

Idea: Don't need to maintain two values in *L* which are close to each other.

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \leq z \leq y.$$

•
$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$\delta = 0.1$$

Idea: Don't need to maintain two values in *L* which are close to each other.

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \leq z \leq y$$
.

- $L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$
- $\delta = 0.1$
- $L' = \langle 10, 12, 15, 20, 23, 29 \rangle$

Idea: Don't need to maintain two values in *L* which are close to each other.

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

Idea: Don't need to maintain two values in *L* which are close to each other.

Trimming a List -

- Given a trimming parameter $0 < \delta < 1$
- Trimming *L* yields minimal sublist *L'* so that for every $y \in L$: $\exists z \in L'$:

$$\frac{y}{1+\delta} \le z \le y.$$

TRIM works in time $\Theta(m)$, if L is given in sorted order.

```
TRIM(L, \delta)

1 let m be the length of L

2 L' = \langle y_1 \rangle

3 last = y_1

4 for i = 2 to m

5 if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted append y_i onto the end of L'

7 last = y_i

8 return L'
```

```
\begin{array}{ll} \operatorname{TRIM}(L,\delta) \\ 1 & \operatorname{let} m \text{ be the length of } L \\ 2 & L' = \langle y_1 \rangle \\ 3 & \mathit{last} = y_1 \\ 4 & \mathbf{for} \ i = 2 \ \mathbf{to} \ m \\ 5 & \mathbf{if} \ y_i > \mathit{last} \cdot (1+\delta) \qquad \text{$\#$} \ y_i \geq \mathit{last} \ \mathrm{because} \ L \ \mathrm{is \ sorted} \\ 6 & \mathrm{append} \ y_i \ \mathrm{onto} \ \mathrm{the \ end \ of} \ L' \\ 7 & \mathit{last} = y_i \\ 8 & \mathbf{return} \ L' \end{array}
```

$$\delta = 0.1$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$L' = \langle \rangle$$

```
\begin{array}{ll} \operatorname{TRIM}(L,\delta) \\ 1 & \operatorname{let} m \text{ be the length of } L \\ 2 & L' = \langle y_1 \rangle \\ 3 & \mathit{last} = y_1 \\ 4 & \mathbf{for} \ i = 2 \ \mathbf{to} \ m \\ 5 & \mathbf{if} \ y_i > \mathit{last} \cdot (1+\delta) \qquad \text{$\#$} \ y_i \geq \mathit{last} \ \mathrm{because} \ L \ \mathrm{is \ sorted} \\ 6 & \mathrm{append} \ y_i \ \mathrm{onto} \ \mathrm{the \ end \ of} \ L' \\ 7 & \mathit{last} = y_i \\ 8 & \mathbf{return} \ L' \end{array}
```

$$\delta = 0.1$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$L' = \langle 10 \rangle$$

```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \geq last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
```

$$L' = \langle 10 \rangle$$


```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
         if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
              append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10 \rangle
```

```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
              append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10 \rangle
```

```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
              append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12 \rangle
```

```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
              append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12 \rangle
```

```
TRIM(L, \delta)
    let m be the length of L
  L' = \langle y_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
  for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
  for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
  L' = \langle v_1 \rangle
3 last = y_1
  for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
2 L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20 \rangle
```

```
TRIM(L, \delta)
    let m be the length of L
2 \quad L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
    return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
               L' = \langle 10, 12, 15, 20, 23 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
2 L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
              L' = \langle 10, 12, 15, 20, 23 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
2 L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
              L' = \langle 10, 12, 15, 20, 23 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
2 L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
              L' = \langle 10, 12, 15, 20, 23 \rangle
```

```
TRIM(L, \delta)
   let m be the length of L
2 L' = \langle v_1 \rangle
3 last = v_1
4 for i = 2 to m
        if y_i > last \cdot (1 + \delta)  // y_i \ge last because L is sorted
             append y_i onto the end of L'
7
             last = y_i
   return L'
               \delta = 0.1
               L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle
              L' = \langle 10, 12, 15, 20, 23, 29 \rangle
```

$$\delta = 0.1$$

$$L = \langle 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 \rangle$$

$$L' = \langle 10, 12, 15, 20, 23, 29 \rangle$$

The FPTAS

```
APPROX-SUBSET-SUM(S, t, \epsilon)

1 n = |S|

2 L_0 = \langle 0 \rangle

3 for i = 1 to n

4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5 L_i = \text{TRIM}(L_i, \epsilon/2n)

6 remove from L_i every element that is greater than t

1 let z^* be the largest value in L_n

8 return z^*
```

The FPTAS

return 7*

```
APPROX-SUBSET-SUM(S,t,\epsilon) EXACT-SUBSET-SUM(S,t)

1 n = |S|

2 L_0 = \{0\}

3 for i = 1 to n = 1 to
```

```
\begin{array}{lll} \operatorname{APPROX-SUBSET-SUM}(S,t,\epsilon) & & \\ 1 & n = |S| & & \\ 2 & L_0 = \langle 0 \rangle & & \\ 3 & \text{for } i = 1 \text{ to } n & & \\ 4 & L_i = \operatorname{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i) & \\ 5 & L_i = \operatorname{TRIM}(L_i,\epsilon/2n) & & \\ \end{array}
```

- remove from L_i every element that is greater than t
- 7 let z^* be the largest value in L_n
- 8 return z*

Repeated application of TRIM to make sure L_i 's remain short.

```
\begin{aligned} & \text{EXACT-SUBSET-SUM}(S,t) \\ & 1 \quad n = |S| \\ & 2 \quad L_0 = \langle 0 \rangle \\ & 3 \quad \text{for } i = 1 \text{ to } n \\ & 4 \quad L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i) \\ & 5 \quad \text{remove from } L_i \text{ every element that is greater than } t \\ & 6 \quad \text{return the largest element in } L_n \end{aligned}
```

return z.*

```
APPROX-SUBSET-SUM(S,t,\epsilon) EXACT-SUBSET-SUM(S,t)

1 n = |S|
2 L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
5 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
```

Repeated application of TRIM to make sure L_i 's remain short.

We must bound the inaccuracy introduced by repeated trimming

return z*

```
APPROX-SUBSET-SUM(S,t,\epsilon) EXACT-SUBSET-SUM(S,t)

1 n = |S|
2 L_0 = \langle 0 \rangle
2 L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
5 remove from L_i every element that is greater than t
6 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
```

Repeated application of TRIM to make sure L_i 's remain short.

- We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

return z*

```
APPROX-SUBSET-SUM(S,t,\epsilon) EXACT-SUBSET-SUM(S,t)

1 n = |S|
2 L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
5 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
```

Repeated application of TRIM to make sure L_i 's remain short.

- We must bound the inaccuracy introduced by repeated trimming
- We must show that the algorithm is polynomial time

Solution is a careful choice of δ !

```
\begin{array}{lll} \operatorname{APPROX-SUBSET-SUM}(S,t,\epsilon) \\ 1 & n = |S| \\ 2 & L_0 = \langle 0 \rangle \\ 3 & \text{for } i = 1 \text{ to } n \\ 4 & L_i = \operatorname{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i) \\ 5 & L_i = \operatorname{TRIM}(L_i,\epsilon/2n) \\ 6 & \operatorname{return} t^* \\ 8 & \operatorname{return} t^* \end{array}
```

```
APPROX-SUBSET-SUM(S,t,\epsilon)

1 n=|S|

2 L_0=\langle 0\rangle

3 for i=1 to n

4 L_i=\text{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i)

5 L_i=\text{TRIM}(L_i,\epsilon/2n)

6 remove from L_i every element that is greater than t

1 let z^* be the largest value in L_n

8 return z^*

• Input: S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4
```

```
APPROX-SUBSET-SUM(S,t,\epsilon)

1 n=|S|

2 L_0=\langle 0 \rangle

3 for i=1 to n

4 L_i=\text{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i)

5 L_i=\text{TRIM}(L_i,\epsilon/2n)

6 remove from L_i every element that is greater than t

7 let z^* be the largest value in L_n

8 return z^*

Input: S=\langle 104,102,201,101\rangle, t=308, \epsilon=0.4

\Rightarrow Trimming parameter: \delta=\epsilon/(2\cdot n)=\epsilon/8=0.05
```

```
APPROX-SUBSET-SUM(S,t,\epsilon)

1 n=|S|

2 L_0=\langle 0\rangle

3 for i=1 to n

4 L_i=\text{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i)

5 L_i=\text{TRIM}(L_i,\epsilon/2n)

6 remove from L_i every element that is greater than t

7 let z^* be the largest value in L_n

8 return z^*

■ Input: S=\langle 104,102,201,101\rangle, t=308,\epsilon=0.4

\Rightarrow Trimming parameter: \delta=\epsilon/(2\cdot n)=\epsilon/8=0.05

■ line 2: L_0=\langle 0\rangle
```

```
APPROX-SUBSET-SUM(S,t,\epsilon)

1 n=|S|

2 L_0=\langle 0 \rangle

3 for i=1 to n

4 L_i=\text{MERGE-LISTS}(L_{i-1},L_{i-1}+x_i)

5 L_i=\text{TRIM}(L_i,\epsilon/2n)

6 remove from L_i every element that is greater than t

7 let z^* be the largest value in L_n

8 return z^*

■ Input: S=\langle 104,102,201,101 \rangle, t=308,\epsilon=0.4

\Rightarrow Trimming parameter: \delta=\epsilon/(2\cdot n)=\epsilon/8=0.05

■ line 2:L_0=\langle 0 \rangle

■ line 4:L_1=\langle 0,104 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)

1  n = |S|

2  L_0 = \langle 0 \rangle

3  for i = 1 to n

4  L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)

5  L_i = \text{TRIM}(L_i, \epsilon/2n)

6  remove from L_i every element that is greater than t

7  let z^* be the largest value in L_n

8  return z^*

■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4

⇒ Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05

■ line 2: L_0 = \langle 0 \rangle

■ line 4: L_1 = \langle 0, 104 \rangle

■ line 5: L_1 = \langle 0, 104 \rangle
```

```
\begin{array}{lll} {\sf APPROX-SUBSET-SUM}(S,t,\epsilon) \\ 1 & n = |S| \\ 2 & L_0 = \langle 0 \rangle \\ 3 & {\sf for } i = 1 \ {\sf to } n \\ 4 & L_i = {\sf MERGE-LISTS}(L_{i-1},L_{i-1}+x_i) \\ 5 & L_i = {\sf TRIM}(L_i,\epsilon/2n) \\ 6 & {\sf remove from } L_i \ {\sf every element that is greater than } t \\ 7 & {\sf let } z^* \ {\sf be the largest value in } L_n \\ 8 & {\sf return } z^* \\ \hline \bullet & {\sf Input: } S = \langle 104, 102, 201, 101 \rangle, \ t = 308, \ \epsilon = 0.4 \\ \Rightarrow {\sf Trimming parameter: } \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05 \\ \hline \bullet & {\sf line } 2: L_0 = \langle 0 \rangle \\ \hline \bullet & {\sf line } 4: L_1 = \langle 0, 104 \rangle \\ \hline \bullet & {\sf line } 6: L_1 = \langle 0, 104 \rangle \\ \hline \bullet & {\sf line } 6: L_1 = \langle 0, 104 \rangle \\ \hline \end{array}
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
   for i = 1 to n
    L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
    L_i = \text{Trim}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  • line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
    L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
   L_i = \text{TRIM}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  • line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
   L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
   L_i = \text{TRIM}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  • line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  • line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
  L_i = \text{Trim}(L_i, \epsilon/2n)
6 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  • line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
   L_i = \text{TRIM}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = \langle 0, 104 \rangle
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
   L_i = \text{TRIM}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = \langle 0, 104 \rangle
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
  • line 6: L_3 = \langle 0, 102, 201, 303 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
6 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
  • line 6: L_3 = \langle 0, 102, 201, 303 \rangle
  ■ line 4: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
6 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
  • line 6: L_3 = \langle 0.102, 201, 303 \rangle
  ■ line 4: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle
  • line 5: L_1 = \langle 0.101, 201, 302, 404 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
3 for i = 1 to n
4 L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
5 L_i = \text{TRIM}(L_i, \epsilon/2n)
6 remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
  • line 6: L_3 = \langle 0.102, 201, 303 \rangle
  ■ line 4: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle
  • line 5: L_1 = \langle 0.101, 201, 302, 404 \rangle
  ■ line 6: L_1 = \langle 0.101.201.302 \rangle
```

```
APPROX-SUBSET-SUM(S, t, \epsilon)
1 \quad n = |S|
L_0 = \langle 0 \rangle
   for i = 1 to n
      L_i = \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i)
   L_i = \text{Trim}(L_i, \epsilon/2n)
       remove from L_i every element that is greater than t
7 let z^* be the largest value in L_n
8 return z*
  ■ Input: S = \langle 104, 102, 201, 101 \rangle, t = 308, \epsilon = 0.4
\Rightarrow Trimming parameter: \delta = \epsilon/(2 \cdot n) = \epsilon/8 = 0.05
  ■ line 2: L_0 = \langle 0 \rangle
  ■ line 4: L_1 = \langle 0, 104 \rangle
  • line 5: L_1 = (0, 104)
  ■ line 6: L_1 = \langle 0, 104 \rangle
  • line 4: L_2 = \langle 0, 102, 104, 206 \rangle
  • line 5: L_2 = \langle 0, 102, 206 \rangle
  • line 6: L_2 = \langle 0, 102, 206 \rangle
  • line 4: L_3 = \langle 0, 102, 201, 206, 303, 407 \rangle
  • line 5: L_3 = \langle 0, 102, 201, 303, 407 \rangle
  • line 6: L_3 = \langle 0.102, 201, 303 \rangle
  ■ line 4: L_4 = \langle 0, 101, 102, 201, 203, 302, 303, 404 \rangle
  • line 5: L_4 = \langle 0, 101, 201, 302, 404 \rangle
                                                              Returned solution z^* = 302, which is 2%
  • line 6: L_4 = \langle 0, 101, 201, 302 \rangle
                                                             within the optimum 307 = 104 + 102 + 101
```

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

■ Returned solution z* is a valid solution √

Theorem 35.8 —

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let *y** denote an optimal solution

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of $x_1, ..., x_i$, there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y$$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y$$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y \quad \stackrel{y=y^*,i=n}{\Rightarrow}$$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y \quad \overset{y=y^*,i=n}{\Rightarrow} \quad \frac{y^*}{(1+\epsilon/(2n))^n} \le z \le y^*$$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \qquad \stackrel{y=y^*,i=n}{\Rightarrow} \qquad \frac{y^*}{(1+\epsilon/(2n))^n} \le z \le y^*$$

$$\frac{y^*}{z} \le \left(1 + \frac{\epsilon}{2n}\right)^n,$$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*}}{\Rightarrow}^{i=n} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
the shown by induction on i.
$$\frac{y^{*}}{z} \le \left(1+\frac{\epsilon}{2n}\right)^{n},$$

Can be shown by induction on i

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L'_i$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^{i}} \le z \le y \quad \stackrel{y=y^{*},i=n}{\Rightarrow} \quad \frac{y^{*}}{(1+\epsilon/(2n))^{n}} \le z \le y^{*}$$
be shown by induction on i
$$\frac{y^{*}}{z} \le \left(1+\frac{\epsilon}{2n}\right)^{n},$$

Can be shown by induction on i

$$\frac{y^*}{z} \leq e^{\epsilon/2}$$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z* is a valid solution √
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y \quad \overset{y=y^*_{j},i=n}{\Rightarrow} \quad \frac{y^*}{(1+\epsilon/(2n))^n} \le z \le y^*$$
Can be shown by induction on i

$$\frac{y^*}{z} \le \left(1+\frac{\epsilon}{2n}\right)^n,$$

$$\frac{y^*}{z} \le e^{\epsilon/2}$$
 Taylor approximation of e

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^* is a valid solution $\sqrt{}$
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y \quad \stackrel{y=y^*,i=n}{\Rightarrow} \quad \frac{y^*}{(1+\epsilon/(2n))^n} \le z \le y^*$$
Can be shown by induction on i

$$\frac{y^*}{z} \le \left(1+\frac{\epsilon}{2n}\right)^n,$$

and now using the fact that $\left(1 + \frac{\epsilon/2}{n}\right)^n \stackrel{n \to \infty}{\longrightarrow} e^{\epsilon/2}$ yields

 $\frac{y^*}{z} \le e^{\epsilon/2}$ Taylor approximation of e $\le 1 + \epsilon/2 + (\epsilon/2)^2$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Approximation Ratio):

- Returned solution z^* is a valid solution $\sqrt{}$
- Let y* denote an optimal solution
- For every possible sum $y \le t$ of x_1, \ldots, x_i , there exists an element $z \in L_i'$ s.t.:

$$\frac{y}{(1+\epsilon/(2n))^i} \le z \le y \overset{y=y^*_{\Rightarrow}, i=n}{\Rightarrow} \frac{y^*}{(1+\epsilon/(2n))^n} \le z \le y^*$$
Can be shown by induction on i

$$\frac{y^*}{z} \le \left(1+\frac{\epsilon}{2n}\right)^n,$$

$$\frac{y^*}{z} \le e^{\epsilon/2}$$
 Taylor approximation of e

$$\le 1 + \epsilon/2 + (\epsilon/2)^2 \le 1 + \epsilon$$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

Analysis of APPROX-SUBSET-SUM

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

• Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values.

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 =$$

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)}t+2=\frac{\ln t}{\ln(1+\epsilon/(2n))}+2$$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

For
$$x > -1$$
, $\ln(1+x) \ge \frac{x}{1+x}$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

$$\leq \frac{2n(1+\epsilon/(2n)) \ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \geq \frac{x}{1+x}$

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

$$\leq \frac{2n(1+\epsilon/(2n)) \ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \geq \frac{x}{1+x}$ $< \frac{3n \ln t}{\epsilon} + 2$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

$$\leq \frac{2n(1+\epsilon/(2n)) \ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \geq \frac{x}{1+x}$ $< \frac{3n \ln t}{\epsilon} + 2$.

• This bound on $|L_i|$ is polynomial in the size of the input and in $1/\epsilon$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

Proof (Running Time):

- Strategy: Derive a bound on $|L_i|$ (running time is linear in $|L_i|$)
- After trimming, two successive elements z and z' satisfy $z'/z \ge 1 + \epsilon/(2n)$
- \Rightarrow Possible Values after trimming are 0, 1, and up to $\lfloor \log_{1+\epsilon/(2n)} t \rfloor$ additional values. Hence,

$$\log_{1+\epsilon/(2n)} t + 2 = \frac{\ln t}{\ln(1+\epsilon/(2n))} + 2$$

$$\leq \frac{2n(1+\epsilon/(2n)) \ln t}{\epsilon} + 2$$
For $x > -1$, $\ln(1+x) \ge \frac{x}{1+x}$ $< \frac{3n \ln t}{\epsilon} + 2$.

• This bound on $|L_i|$ is polynomial in the size of the input and in $1/\epsilon$.

Need log(t) bits to represent t and n bits to represent S

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8 —

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Subset-Sum Problem -

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem —————

• Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t

The Subset-Sum Problem -

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

— Theorem 35.8 ——

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

- The Knapsack Problem -----

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8 -

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem ——

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which
 - 1. maximizes $\sum_{i \in S'} v_i$
 - 2. satisfies $\sum_{i \in S'} w_i \le t$

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem -

A more general problem than Subset-Sum

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which
 - 1. maximizes $\sum_{i \in S'} v_i$
 - 2. satisfies $\sum_{i \in S'} w_i \le t$

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

A more general problem than Subset-Sum

The Knapsack Problem -

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which
 - 1. maximizes $\sum_{i \in S'} v_i$
 - 2. satisfies $\sum_{i \in S'} w_i \leq t$

Theorem

There is a FPTAS for the Knapsack problem.

The Subset-Sum Problem

- Given: Set of positive integers $S = \{x_1, x_2, \dots, x_n\}$ and positive integer t
- Goal: Find a subset $S' \subseteq S$ which maximizes $\sum_{i: x_i \in S'} x_i \le t$.

Theorem 35.8

APPROX-SUBSET-SUM is a FPTAS for the subset-sum problem.

The Knapsack Problem -

A more general problem than Subset-Sum

- Given: Items i = 1, 2, ..., n with weights w_i and values v_i , and integer t
- Goal: Find a subset $S' \subseteq S$ which
 - 1. maximizes $\sum_{i \in S'} v_i$
 - 2. satisfies $\sum_{i \in S'} w_i \le t$

Algorithm very similar to APPROX-SUBSET-SUM

Theorem

There is a FPTAS for the Knapsack problem.

Outline

The Subset-Sum Problem

Parallel Machine Scheduling

Machine Scheduling Problem -

• Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m

Machine Scheduling Problem -

- Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .

Machine Scheduling Problem

- Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le i \le n} C_i$, where C_k is the completion time of job J_k .

•
$$J_1$$
: $p_1 = 2$

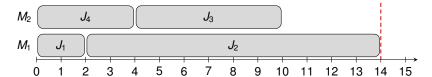
•
$$J_2$$
: $p_2 = 12$

$$J_3$$
: $p_3 = 6$

•
$$J_3$$
: $p_3 = 6$
• J_4 : $p_4 = 4$

Machine Scheduling Problem

- Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .



Machine Scheduling Problem

- Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .

Machine Scheduling Problem

- Given: n jobs J_1, J_2, \ldots, J_n with processing times p_1, p_2, \ldots, p_n , and m identical machines M_1, M_2, \ldots, M_m
- Goal: Schedule the jobs on the machines minimizing the makespan $C_{\max} = \max_{1 \le j \le n} C_j$, where C_k is the completion time of job J_k .

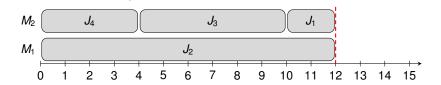
•
$$J_1$$
: $p_1 = 2$

•
$$J_2$$
: $p_2 = 12$

•
$$J_3$$
: $p_3 = 6$

•
$$J_4$$
: $p_4 = 4$

For the analysis, it will be convenient to denote by C_i the completion time of a machine i.



Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

LIST SCHEDULING $(J_1, J_2, \ldots, J_n, m)$

- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Equivalent to the following Online Algorithm [CLRS]:

Whenever a machine is idle, schedule any job that has not yet been scheduled.

- LIST SCHEDULING $(J_1, J_2, \ldots, J_n, m)$
- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

Lemma

Parallel Machine Scheduling is NP-complete even if there are only two machines.

Proof Idea: Polynomial time reduction from NUMBER-PARTITIONING.

Equivalent to the following Online Algorithm [CLRS]:

Whenever a machine is idle, schedule any job that has not yet been scheduled.

LIST SCHEDULING
$$(J_1, J_2, \ldots, J_n, m)$$

- 1: while there exists an unassigned job
- 2: Schedule job on the machine with the least load

How good is this most basic Greedy Approach?

Ex 35-5 a.&b.

 a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \geq \max_{1 \leq k \leq n} p_k.$$

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \geq \max_{1 \leq k \leq n} p_k.$$

 The optimal makespan is at least as large as the average machine load, that is,

$$C_{\max}^* \geq \frac{1}{m} \sum_{k=1}^n p_k.$$

Ex 35-5 a.&b.

 a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \geq \max_{1 \leq k \leq n} p_k$$
.

 The optimal makespan is at least as large as the average machine load, that is,

$$C_{\max}^* \geq \frac{1}{m} \sum_{k=1}^n p_k.$$

Proof:

Ex 35-5 a.&b.

 a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \geq \max_{1 \leq k \leq n} p_k.$$

 The optimal makespan is at least as large as the average machine load, that is,

$$C_{\max}^* \geq \frac{1}{m} \sum_{k=1}^n p_k.$$

Proof:

b. The total processing times of all *n* jobs equals $\sum_{k=1}^{n} p_k$

Ex 35-5 a.&b.

a. The optimal makespan is at least as large as the greatest processing time, that is,

$$C_{\max}^* \geq \max_{1 \leq k \leq n} p_k$$
.

 The optimal makespan is at least as large as the average machine load, that is,

$$C_{\max}^* \geq \frac{1}{m} \sum_{k=1}^n p_k.$$

Proof:

- b. The total processing times of all *n* jobs equals $\sum_{k=1}^{n} p_k$
- \Rightarrow One machine must have a load of at least $\frac{1}{m} \cdot \sum_{k=1}^{n} p_k$

Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

• Let J_i be the last job scheduled on machine M_j with $C_{\max} = C_j$

Ex 35-5 d. (Graham 1966) -

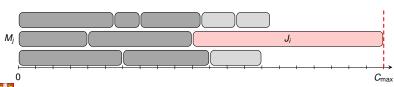
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

• Let J_i be the last job scheduled on machine M_j with $C_{\max} = C_j$



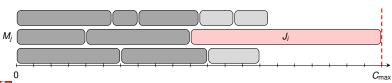
Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$



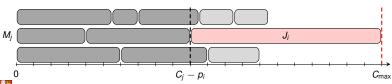
Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$



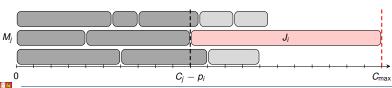
Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_j , $C_j p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:



Ex 35-5 d. (Graham 1966) -

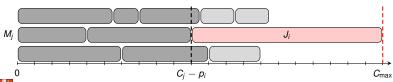
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_i , $C_i p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^m C_k$$



Ex 35-5 d. (Graham 1966) -

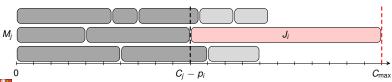
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_i , $C_i p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k$$



Ex 35-5 d. (Graham 1966) -

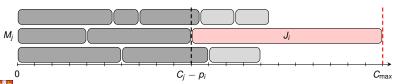
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{max} = C_i$
- When J_i was scheduled to machine M_i , $C_i p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k \quad \Rightarrow \quad C_j \le \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \le k \le n} p_k$$



Ex 35-5 d. (Graham 1966) -

For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

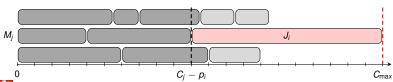
Hence list scheduling is a poly-time 2-approximation algorithm.

Proof:

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_i , $C_i p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

Using Ex 35-5 a. & b.

$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k \quad \Rightarrow \quad C_j \le \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \le k \le n} p_k$$



Ex 35-5 d. (Graham 1966) -

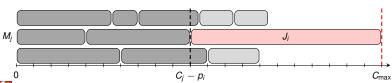
For the schedule returned by the greedy algorithm it holds that

$$C_{\max} \leq \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \leq k \leq n} p_k.$$

Hence list scheduling is a poly-time 2-approximation algorithm.

- Let J_i be the last job scheduled on machine M_i with $C_{\text{max}} = C_i$
- When J_i was scheduled to machine M_i , $C_i p_i \le C_k$ for all $1 \le k \le m$
- Averaging over k yields:

Averaging over
$$k$$
 yields: Using Ex 35-5 a. & b.
$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^m C_k = \frac{1}{m} \sum_{k=1}^n p_k \quad \Rightarrow \qquad C_j \le \frac{1}{m} \sum_{k=1}^n p_k + \max_{1 \le k \le n} p_k \le 2 \cdot C_{\max}^*$$



Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

```
LEAST PROCESSING TIME(J_1, J_2, \ldots, J_n, m)
1: Sort jobs decreasingly in their processing times
2: for i = 1 to m
3: C_i = 0
4: S_i = \emptyset
5: end for
6: for j = 1 to n
7: i = \operatorname{argmin}_{1 \le k \le m} C_k
8: S_i = S_i \cup \{j\}, C_i = C_i + p_j
9: end for
10: return S_1, \ldots, S_m
```

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

```
Least Processing Time(J_1, J_2, \dots, J_n, m)
```

- 1: Sort jobs decreasingly in their processing times
- 2: **for** i = 1 to m
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** j = 1 to n
- 7: $i = \operatorname{argmin}_{1 < k < m} C_k$
- 8: $S_i = S_i \cup \{j\}, \overline{C_i} = C_i + p_j$
- 9: end for
- 10: return S_1, \ldots, S_m

Runtime:

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

```
LEAST PROCESSING TIME(J_1, J_2, \dots, J_n, m)
```

- 1: Sort jobs decreasingly in their processing times
- 2: **for** i = 1 to m
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** j = 1 to n
- 7: $i = \operatorname{argmin}_{1 < k < m} C_k$
- 8: $S_i = S_i \cup \{j\}, \overline{C_i} = C_i + p_j$
- 9: end for
- 10: return S_1, \ldots, S_m

Runtime:

• $O(n \log n)$ for sorting

The problem of the List-Scheduling Approach were the large jobs

Analysis can be shown to be almost tight. Is there a better algorithm?

```
LEAST PROCESSING TIME (J_1, J_2, \dots, J_n, m)
```

- 1: Sort jobs decreasingly in their processing times
- 2: **for** i = 1 to m
- 3: $C_i = 0$
- 4: $S_i = \emptyset$
- 5: end for
- 6: **for** j = 1 to n
- 7: $i = \operatorname{argmin}_{1 < k < m} C_k$
- 8: $S_i = S_i \cup \{j\}, \overline{C_i} = C_i + p_j$
- 9: end for
- 10: return S_1, \ldots, S_m

Runtime:

- $O(n \log n)$ for sorting
- $O(n \log m)$ for extracting (and re-inserting) the minimum (use priority queue).

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

This can be shown to be tight (see next slide).

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof (of approximation ratio 3/2).

• Observation 1: If there are at most *m* jobs, then the solution is optimal.

Graham 1966 –

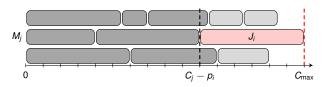
The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max}^* \geq 2 \cdot p_{m+1}$.

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max}^* \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling

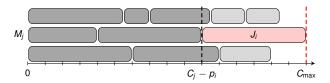


Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max}^* \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$C_{\max} = C_i = (C_i - p_i) + p_i$$



Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof (of approximation ratio 3/2).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than m jobs, then $C_{\max}^* \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$C_{\mathsf{max}} = C_j = (C_j - p_i) + p_i \leq C^*_{\mathsf{max}} + \frac{1}{2}C^*_{\mathsf{max}}$$

This is for the case $i \ge m + 1$ (otherwise, an even stronger inequality holds)

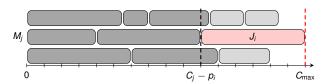


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- Observation 1: If there are at most *m* jobs, then the solution is optimal.
- Observation 2: If there are more than *m* jobs, then $C_{\text{max}}^* \geq 2 \cdot p_{m+1}$.
- As in the analysis for list scheduling, we have

$$C_{\mathsf{max}} = C_j = (C_j - p_i) + p_i \leq C^*_{\mathsf{max}} + rac{1}{2}C^*_{\mathsf{max}} = rac{3}{2}C_{\mathsf{max}}.$$



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

m machines

Graham 1966 —

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

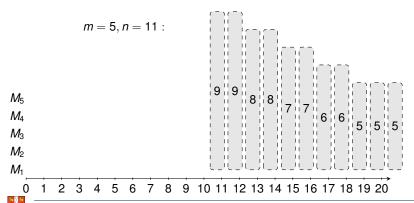
$$m = 5, n = 11$$
:

M₅ M₄ M₃ M₂ M₁

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

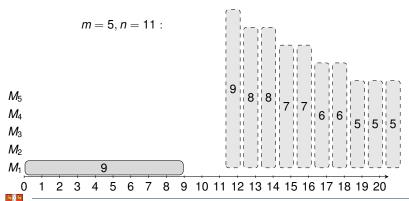
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

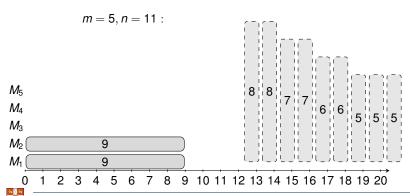
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

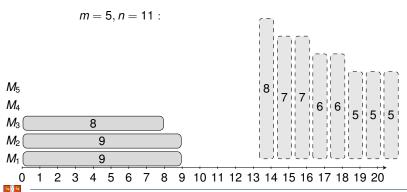
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

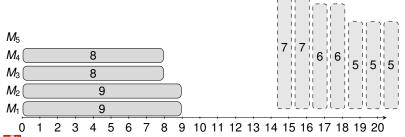


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

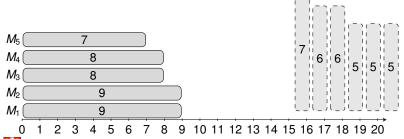


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

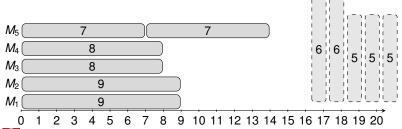


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

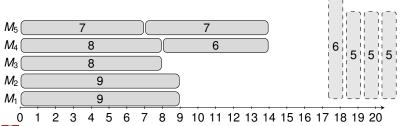


Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

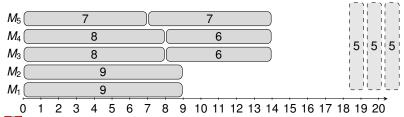


Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

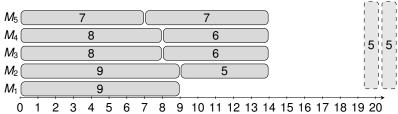


- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

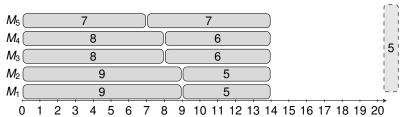


Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:



Graham 1966 –

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

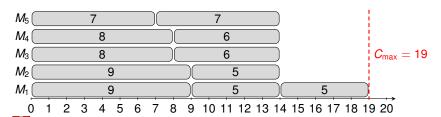
M_5			7	7				7												
M_4 (8									6										
M_3				8					6											
M_2	9									5										
M_1				,	9				5							. 5)).	
Ó) 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

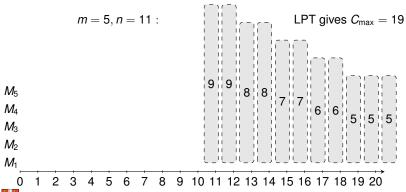
$$m = 5, n = 11$$
:



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

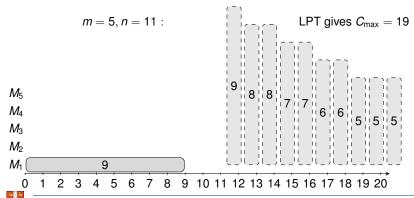
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

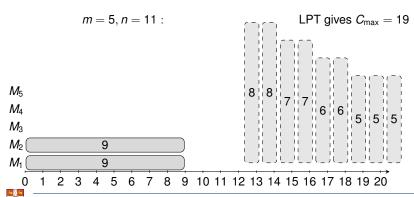
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

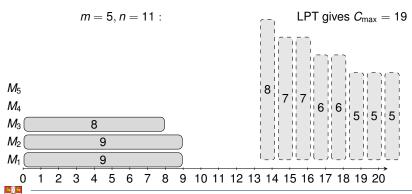
- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Proof of an instance which shows tightness:

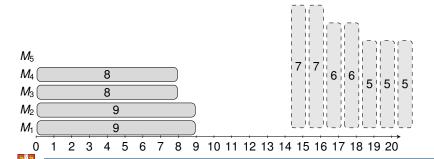
m = 5, n = 11:

V. Approximation via Exact Algorithms

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

LPT gives $C_{\text{max}} = 19$

18

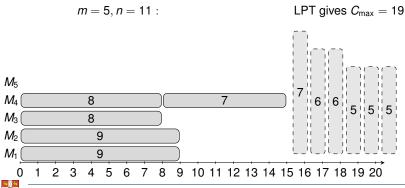


Parallel Machine Scheduling

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m



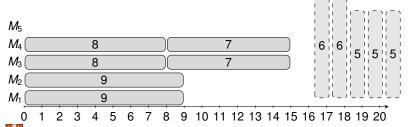
Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



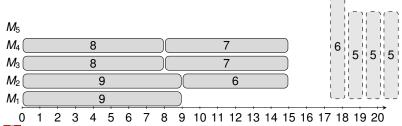
- Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



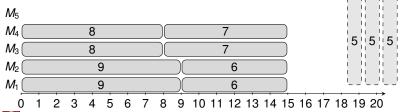
Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



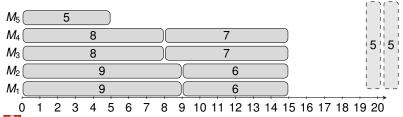
Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



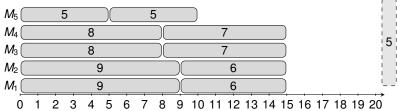
Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



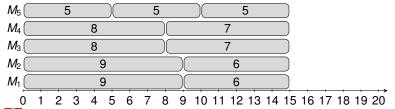
Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



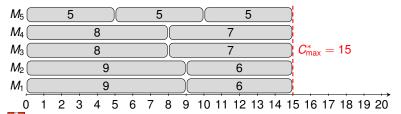
Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$



Graham 1966 -

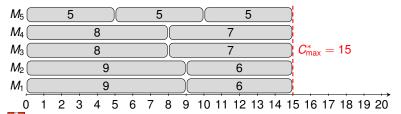
The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$

Optimum is $C_{\text{max}}^* = 15$



Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

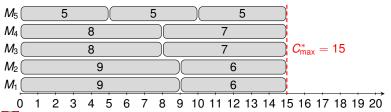
$$\frac{19}{15} = \frac{20}{15} - \frac{1}{15}$$

- m machines
- n = 2m + 1 jobs of length $2m 1, 2m 2, \dots, m$ and one job of length m

$$m = 5, n = 11$$
:

LPT gives
$$C_{\text{max}} = 19$$

Optimum is $C_{\text{max}}^* = 15$



Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

Subroutine $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\text{max}} \leq (1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$

2: Or: **Return** there is no solution with makespan < T

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\text{max}} \leq (1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\max} \le (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\text{max}} \leq (1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma -

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^n p_k$.

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\text{max}} \leq (1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma -

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^n p_k$.

Proof (using Key Lemma):

 $PTAS(J_1, J_2, \ldots, J_n, m)$

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, ..., J_n, m, T)$

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^n p_k$.

Proof (using Key Lemma):

Since $0 \le C^*_{\max} \le P$ and C^*_{\max} is integral, binary search terminates after $O(\log P)$ steps.

 $PTAS(J_1, J_2, \dots, J_n, m)$

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, \dots, J_n, m, T)$

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Key Lemma

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^n p_k$.

Proof (using Key Lemma):

Since $0 \le C^*_{\max} \le P$ and C^*_{\max} is integral, binary search terminates after $O(\log P)$ steps.

 $\mathsf{PTAS}(J_1,J_2,\ldots,J_n,m)$

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, \dots, J_n, m, T)$

Basic Idea: For $(1 + \epsilon)$ -approximation, don't have to work with exact p_k 's.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\max} \le (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$

2: Or: **Return** there is no solution with makespan < T

Key Lemma

We will prove this on the next slides.

Subroutine can be implemented in time $n^{O(1/\epsilon^2)}$.

Theorem (Hochbaum, Shmoys'87) -

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^n p_k$.

polynomial in the size of the input

Proof (using Key Lemma): PTAS($J_1, J_2, ..., J_n, m$) Since $0 \le C^*_{\max} \le P$ and C^*_{\max} is integral, binary search terminates after $O(\log P)$ steps.

- 1: Do binary search to find smallest T s.t. $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$.
- 2: **Return** solution computed by SUBROUTINE $(J_1, J_2, \dots, J_n, m, T)$

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

1: Either: **Return** a solution with $C_{\max} \le (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$

2: Or: **Return** there is no solution with makespan < T

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

Proof:

```
SUBROUTINE(J_1, J_2, \ldots, J_n, m, T)
```

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i \colon p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

Proof:

Let M_j be the machine with largest load

```
SUBROUTINE(J_1, J_2, \ldots, J_n, m, T)
```

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i \colon p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.

```
SUBROUTINE(J_1, J_2, \ldots, J_n, m, T)
```

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i \colon p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

Proof:

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^n p_k$$

the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

Proof:

- Let M_j be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^n p_k \qquad \Rightarrow$$

the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

Proof:

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{\text{small}}$ be the last job added to M_i .

$$C_j - p_i \leq \frac{1}{m} \sum_{k=1}^n p_k \qquad \Rightarrow \qquad C_j \leq p_i + \frac{1}{m} \sum_{k=1}^n p_k$$

the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_j - p_i \le \frac{1}{m} \sum_{k=1}^n p_k \qquad \Rightarrow \qquad C_j \le p_i + \frac{1}{m} \sum_{k=1}^n p_k$$
the "well-known" formula

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow \qquad C_{j} \leq p_{i} + \frac{1}{m} \sum_{k=1}^{n} p_{k}$$

$$\leq \epsilon \cdot T + C_{\max}^{*}$$

$$\leq (1 + \epsilon) \cdot \max\{T, C_{\max}^{*}\} \quad \Box$$

SUBROUTINE $(J_1, J_2, \ldots, J_n, m, T)$

- 1: Either: **Return** a solution with $C_{\max} \leq (1 + \epsilon) \cdot \max\{T, C_{\max}^*\}$
- 2: Or: **Return** there is no solution with makespan < T

Observation

Divide jobs into two groups: $J_{\text{small}} = \{J_i : p_i \leq \epsilon \cdot T\}$ and $J_{\text{large}} = J \setminus J_{\text{small}}$. Given a solution for J_{large} only with makespan $(1 + \epsilon) \cdot T$, then greedily placing J_{small} yields a solution with makespan $(1 + \epsilon) \cdot \max\{T, C_{\text{max}}^*\}$.

- Let M_i be the machine with largest load
- If there are no jobs from J_{small} , then makespan is at most $(1 + \epsilon) \cdot T$.
- Otherwise, let $i \in J_{small}$ be the last job added to M_j .

$$C_{j} - p_{i} \leq \frac{1}{m} \sum_{k=1}^{n} p_{k} \qquad \Rightarrow \qquad C_{j} \leq p_{i} + \frac{1}{m} \sum_{k=1}^{n} p_{k}$$

$$\leq \epsilon \cdot T + C_{\max}^{*}$$

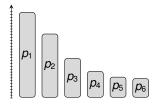
$$\leq (1 + \epsilon) \cdot \max\{T, C_{\max}^{*}\} \quad \Box$$

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

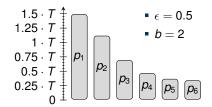
• Let b be the smallest integer with $1/b \le \epsilon$.

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

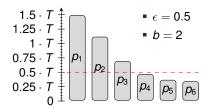
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



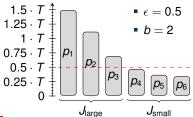
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

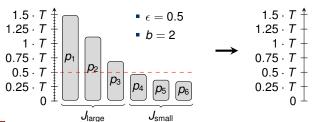


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.



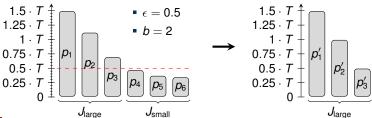
Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

• Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$



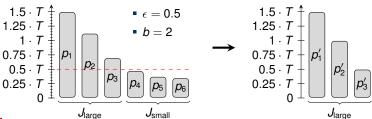
V. Approximation via Exact Algorithms

Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

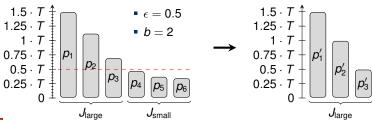


Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

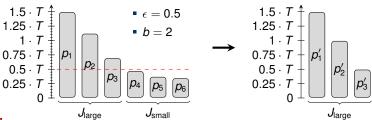
■ Let b be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{\rho_j b^2}{T} \rceil \cdot \frac{T}{b^2}$ \Rightarrow Every $p_i' = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \ldots, b^2$ Can assume there are no jobs with $\rho_j \ge T!$



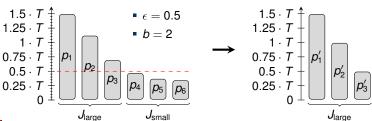
- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_i b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let C be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.



- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b, s_{b+1}, \dots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{\tau}{b^2} \leq \mathcal T$. Assignments to one machine with makespan $\leq \mathcal T$.

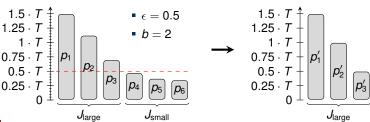


- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\mathcal T}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:



- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan < T:

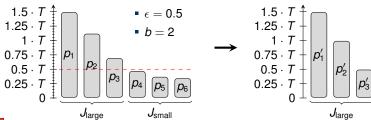
$$f(0,0,\ldots,0)=0$$



- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let C be all $(s_b, s_{b+1}, \ldots, s_{b^2})$ with $\sum_{i=j}^{b^2} s_j \cdot j \cdot \frac{T}{b^2} \leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

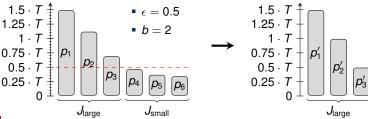


- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, \dots, n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

 Assign some jobs to one machine, and then

 Assign some jobs to one machine, and then

$$f(0,0,\ldots,0) = 0$$
 use as few machines as possible for the rest.
$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b-s_b,n_{b+1}-s_{b+1},\ldots,n_{b^2}-s_{b^2}).$$



Use Dynamic Programming to schedule J_{large} with makespan $(1 + \epsilon) \cdot T$.

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan < T:

$$\begin{split} f(0,0,\ldots,0) &= 0 \\ f(n_b,n_{b+1},\ldots,n_{b^2}) &= 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}). \end{split}$$

• Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan < T:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, ..., n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan < T:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \dots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \ge \frac{T}{b})$ and the makespan is $\le T$,

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan < T:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \dots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \ge \frac{T}{b})$ and the makespan is $\le T$,

$$C_{\max} \leq T + b \cdot \max_{i \in J_{\text{large}}} (p_i - p'_i)$$

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b + 1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{T}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$f(0,0,\ldots,0) = 0$$

$$f(n_b,n_{b+1},\ldots,n_{b^2}) = 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}).$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \dots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \geq \frac{T}{b})$ and the makespan is $\leq T$,

$$C_{\max} \leq T + b \cdot \max_{i \in J_{\text{large}}} (p_i - p'_i)$$

$$\leq T + b \cdot \frac{T}{b^2}$$

- Let *b* be the smallest integer with $1/b \le \epsilon$. Define processing times $p_i' = \lceil \frac{p_j b^2}{T} \rceil \cdot \frac{T}{b^2}$
- \Rightarrow Every $p'_i = \alpha \cdot \frac{T}{b^2}$ for $\alpha = b, b+1, \dots, b^2$
 - Let $\mathcal C$ be all $(s_b,s_{b+1},\ldots,s_{b^2})$ with $\sum_{i=j}^{b^2}s_j\cdot j\cdot \frac{\tau}{b^2}\leq T$.
 - Let $f(n_b, n_{b+1}, ..., n_{b^2})$ be the minimum number of machines required to schedule all jobs with makespan $\leq T$:

$$\begin{split} f(0,0,\ldots,0) &= 0 \\ f(n_b,n_{b+1},\ldots,n_{b^2}) &= 1 + \min_{(s_b,s_{b+1},\ldots,s_{b^2}) \in \mathcal{C}} f(n_b - s_b,n_{b+1} - s_{b+1},\ldots,n_{b^2} - s_{b^2}). \end{split}$$

- Number of table entries is at most n^{b^2} , hence filling all entries takes $n^{O(b^2)}$
- If $f(n_b, n_{b+1}, \dots, n_{b^2}) \le m$ (for the jobs with p'), then return yes, otherwise no.
- As every machine is assigned at most b jobs $(p'_i \geq \frac{T}{b})$ and the makespan is $\leq T$,

$$C_{\max} \le T + b \cdot \max_{i \in J_{\text{large}}} (p_i - p_i')$$

 $\le T + b \cdot \frac{T}{h^2} \le (1 + \epsilon) \cdot T.$

Graham 1966 ——

List scheduling has an approximation ratio of 2.

Graham 1966 ——

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Graham 1966 —

List scheduling has an approximation ratio of 2.

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Graham 1966 —

List scheduling has an approximation ratio of 2.

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)?

Graham 1966 —

List scheduling has an approximation ratio of 2.

Graham 1966 -

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)? **No!**

Graham 1966 -

List scheduling has an approximation ratio of 2.

Graham 1966

The LPT algorithm has an approximation ratio of 4/3 - 1/(3m).

Theorem (Hochbaum, Shmoys'87)

There exists a PTAS for Parallel Machine Scheduling which runs in time $O(n^{O(1/\epsilon^2)} \cdot \log P)$, where $P := \sum_{k=1}^{n} p_k$.

Can we find a FPTAS (for polynomially bounded processing times)?

Because for sufficiently small approximation ratio $1 + \epsilon$, the computed solution has to be optimal, and Parallel Machine Scheduling is strongly NP-hard.

VI. Approximation Algorithms: Travelling Salesman Problem

Thomas Sauerwald

Easter 2018

Outline

Introduction

General TSP

Metric TSP

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

—— Formal Definition —		

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Formal Definition

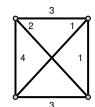
■ Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

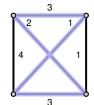
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

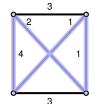
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.



$$3+2+1+3=9$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.



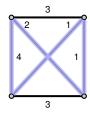
$$2+4+1+1=8$$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!



$$2+4+1+1=8$$

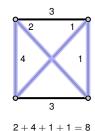
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

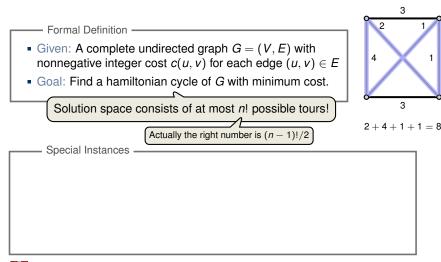
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.



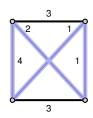
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

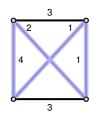
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

 Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

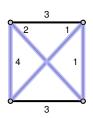
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

Solution space consists of at most n! possible tours!

Actually the right number is (n-1)!/2



$$2+4+1+1=8$$

Special Instances

Metric TSP: costs satisfy triangle inequality:

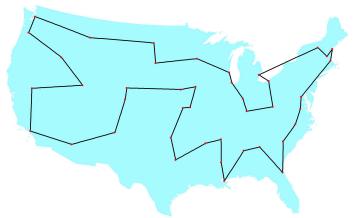
Even this version is NP hard (Ex. 35.2-2)

$$\forall u, v, w \in V$$
: $c(u, w) \leq c(u, v) + c(v, w)$.

 Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance

History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

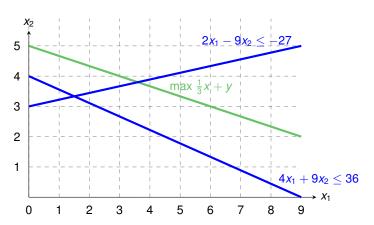


http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

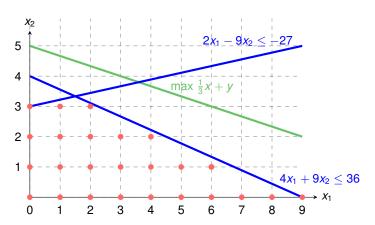
1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

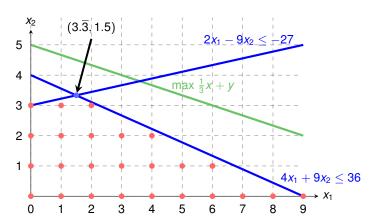
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



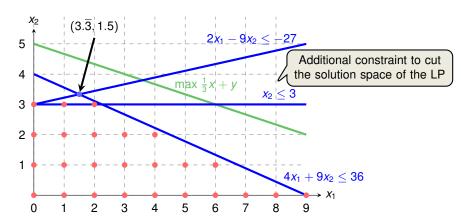
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



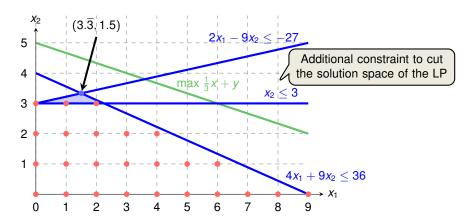
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



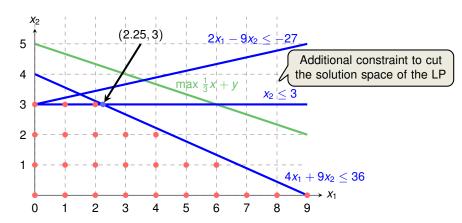
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



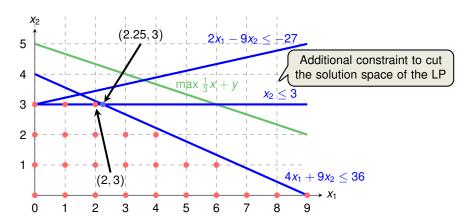
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



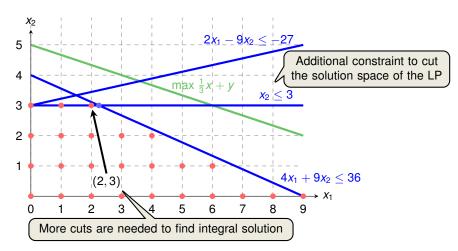
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



Outline

Introduction

General TSP

Metric TSP

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Theorem 35.3 -

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem

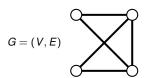
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

• Let G = (V, E) be an instance of the hamiltonian-cycle problem



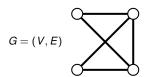
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$G = (V, E)$$

G'=(V,E')

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

$$G = (V, E)$$

G'=(V,E')

Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

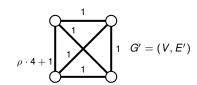
Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

$$G = (V, E)$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

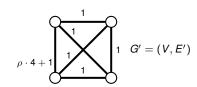
Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$$
 Large weight will render this edge useless!

$$G = (V, E)$$



Theorem 35.3

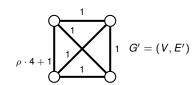
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

Can create representations of
$$G'$$
 and c in time polynomial in $|V|$ and $|E|!$ $c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho|V|+1 & \text{otherwise.} \end{cases}$

$$G = (V, E)$$



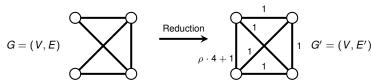
Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

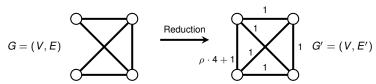
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

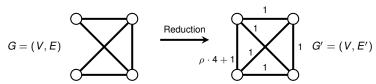
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

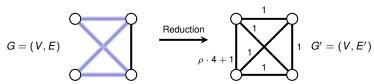
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

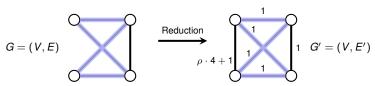
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$



Theorem 35.3

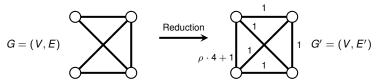
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

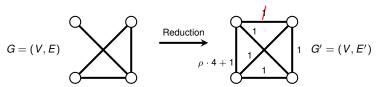
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

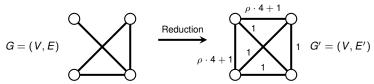
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

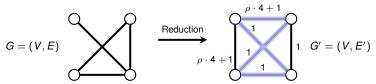
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

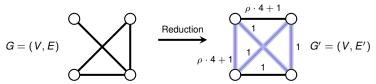
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

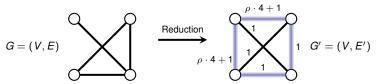
If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

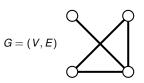
Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho|V|+1) + (|V|-1)$$





Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

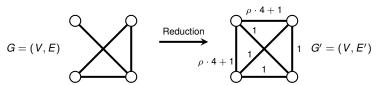
Proof:

- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

Idea: Reduction from the hamiltonian-cycle problem.

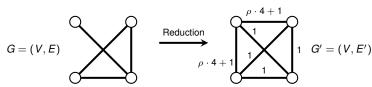
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

• Gap of $\rho + 1$ between tours which are using only edges in G and those which don't



Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

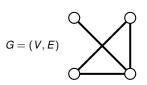
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

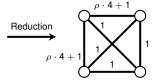
$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of $\rho + 1$ between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)





Theorem 35.3

If P \neq NP, then for any constant $\rho \geq$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Proof:

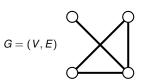
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

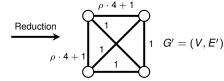
$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$$

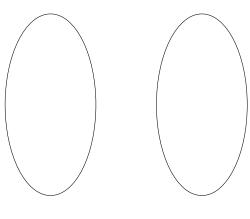
- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

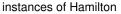
$$\Rightarrow c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of $\rho + 1$ between tours which are using only edges in G and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)

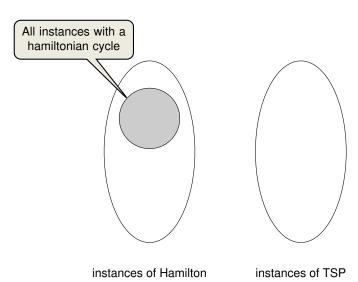


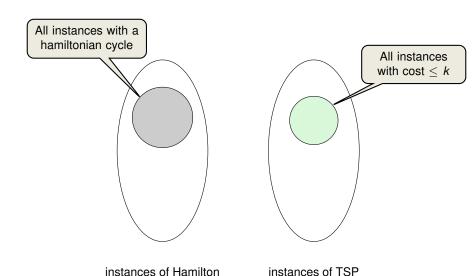


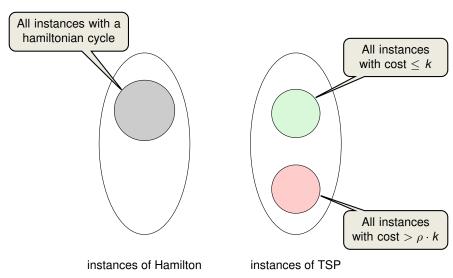


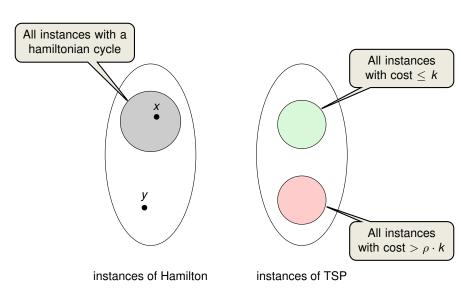


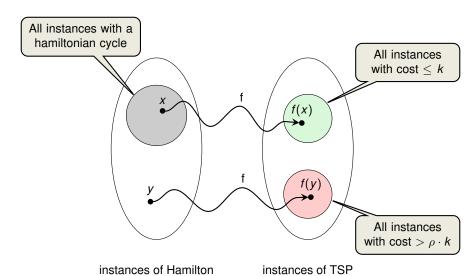
instances of TSP

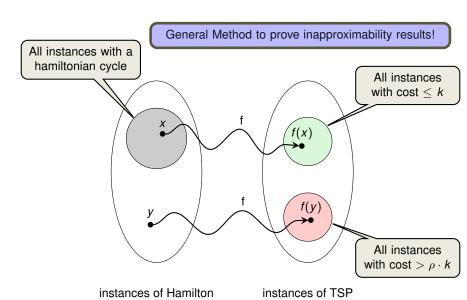












Outline

Introduction

General TSP

Metric TSP

Idea: First compute an MST, and then create a tour based on the tree.

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: **return** the hamiltonian cycle *H*

Idea: First compute an MST, and then create a tour based on the tree.

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{min}
- 6: **return** the hamiltonian cycle *H*

Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

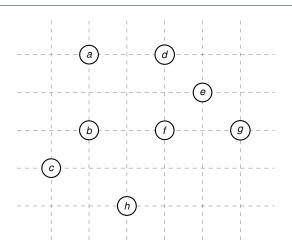
Idea: First compute an MST, and then create a tour based on the tree.

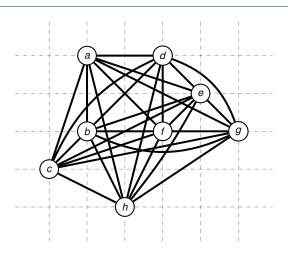
APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{min}
- 6: **return** the hamiltonian cycle *H*

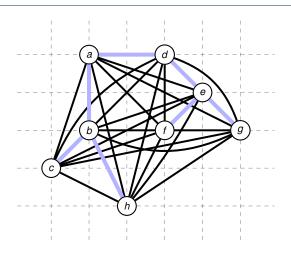
Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

Remember: In the Metric-TSP problem, G is a complete graph.

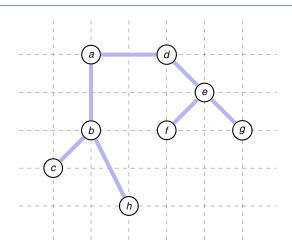




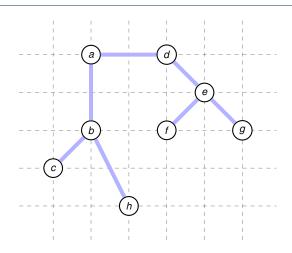
1. Compute MST T_{min}



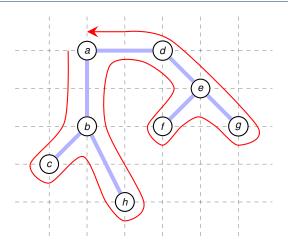
1. Compute MST T_{min}



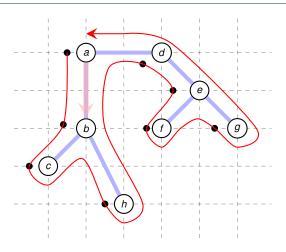
1. Compute MST T_{min} \checkmark



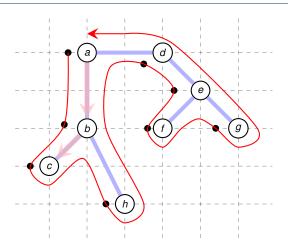
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min}



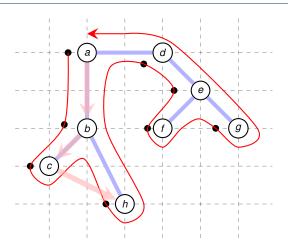
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark



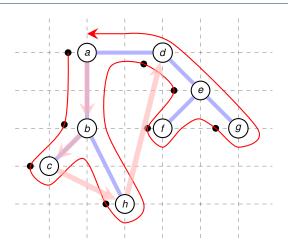
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



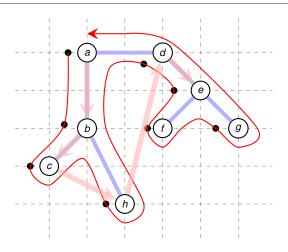
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



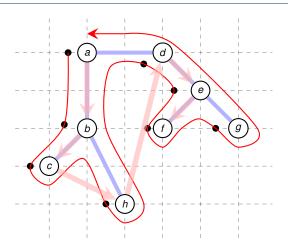
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



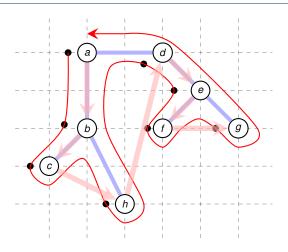
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



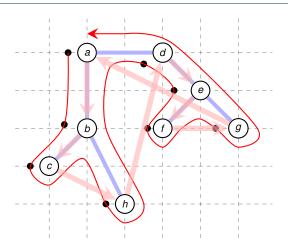
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk



- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk

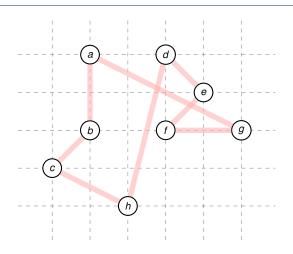


- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk

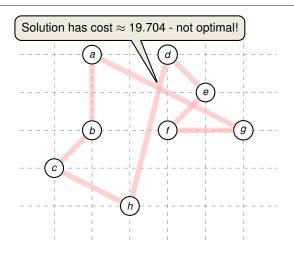


- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk

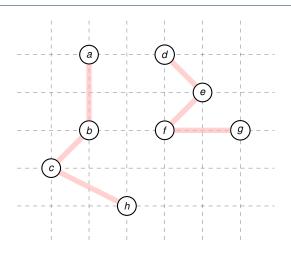
Run of APPROX-TSP-TOUR



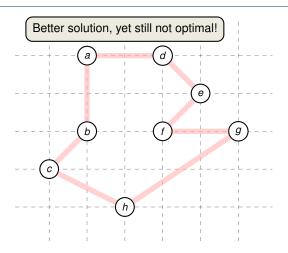
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



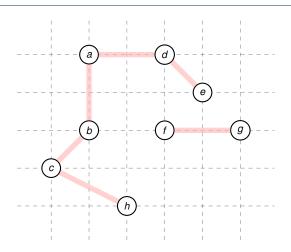
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk ✓



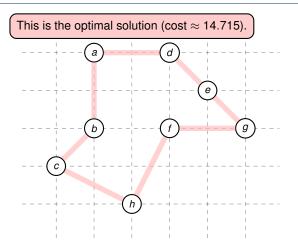
- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- 1. Compute MST T_{min} \checkmark
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk ✓

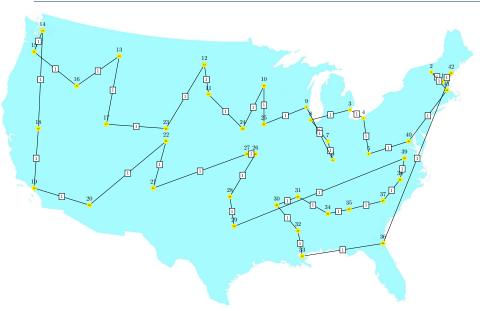


- Compute MST T_{min} √
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- Compute MST T_{min} √
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk ✓

Approximate Solution: Objective 921



Optimal Solution: Objective 699

Theorem 35.2

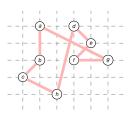
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2 -

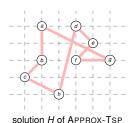
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

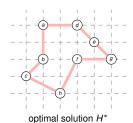


solution H of APPROX-TSP

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.



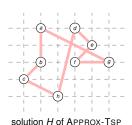


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove an arbitrary edge



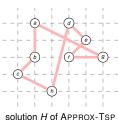
optimal solution H*

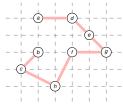
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

■ Consider the optimal tour *H** and remove an arbitrary edge



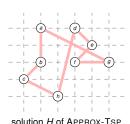


spanning tree T as a subset of H^*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and

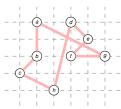


spanning tree T as a subset of H^*

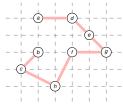
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$



solution H of APPROX-TSP



spanning tree T as a subset of H^*

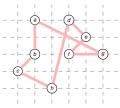
Theorem 35.2

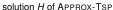
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

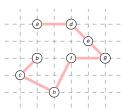
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$

exploiting that all edge costs are non-negative!





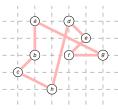


spanning tree T as a subset of H^*

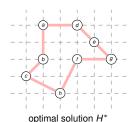
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour *H** and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



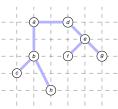
solution H of APPROX-TSP



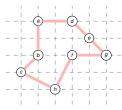
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)



minimum spanning tree T_{min}

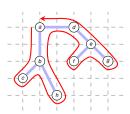


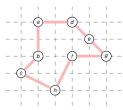
optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

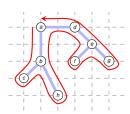
optimal solution H^*

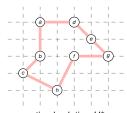
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

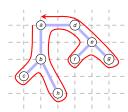
Theorem 35.2 -

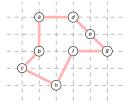
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min})$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H*

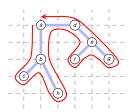
Theorem 35.2 -

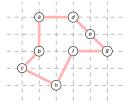
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H*

Theorem 35.2 -

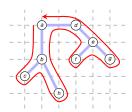
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

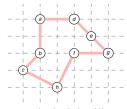
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H^*

Theorem 35.2 -

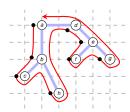
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

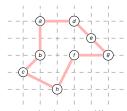
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

optimal solution H*

Theorem 35.2 -

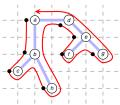
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

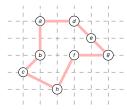
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H





Walk $W = (a, b, c, \not b, h, \not b, \not a, d, e, f, \not e, g, \not e, \not a, a)$

optimal solution H^*

Theorem 35.2 -

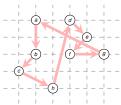
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

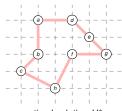
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

Deleting duplicate vertices from W yields a tour H



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

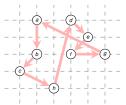
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

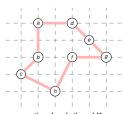
$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:



Tour H = (a, b, c, h, d, e, f, g, a)



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

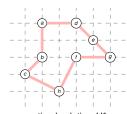
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

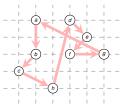
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

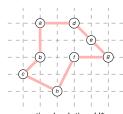
exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W) \leq 2c(H^*)$$



Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

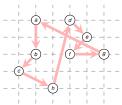
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \le 2c(T) \le 2c(H^*)$$

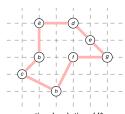
exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W) \leq 2c(H^*)$$



Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



optimal solution H*

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

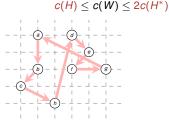
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \le c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{\min} (including repeated visits)
- ⇒ Full walk traverses every edge exactly twice, so

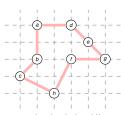
$$c(W) = 2c(T_{\mathsf{min}}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:



Tour
$$H = (a, b, c, h, d, e, f, g, a)$$



optimal solution H*

Theorem 35.2 -

APPROX-TSP-Tour is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES (G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: return the hamiltonian cycle H

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

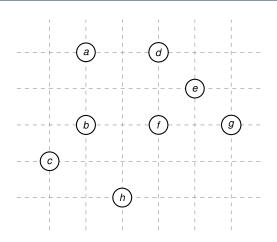
Can we get a better approximation ratio?

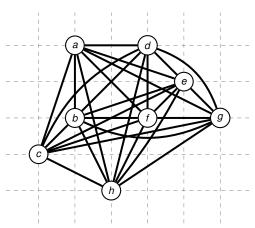
CHRISTOFIDES (G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{\min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: **return** the hamiltonian cycle H

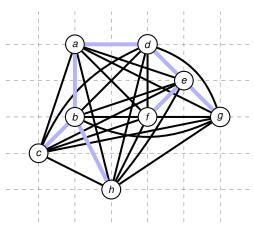
Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

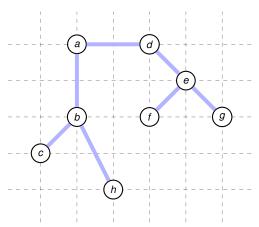




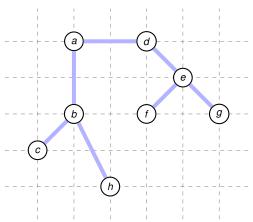
1. Compute MST T_{\min}



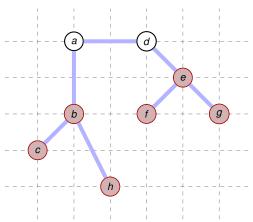
1. Compute MST T_{\min}



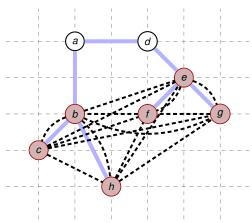
1. Compute MST T_{min} \checkmark



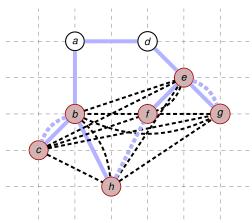
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



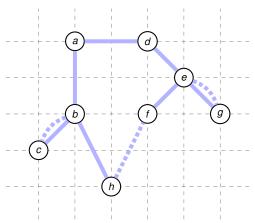
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}

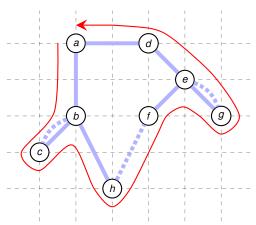


- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark



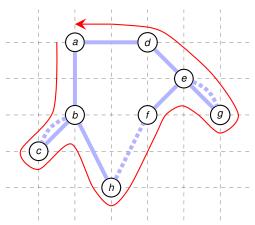
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min}$

All vertices in $T_{\min} \cup M_{\min}$ have even degree!

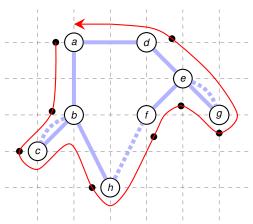


- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$

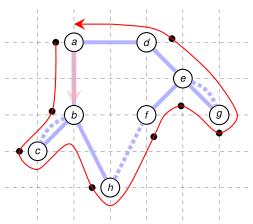
All vertices in $T_{\min} \cup M_{\min}$ have even degree!



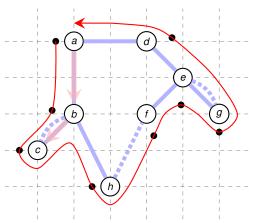
- Compute MST T_{min} √
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



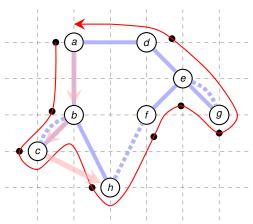
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



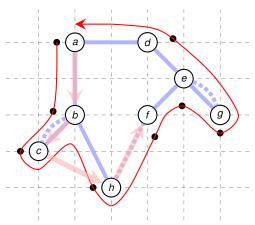
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



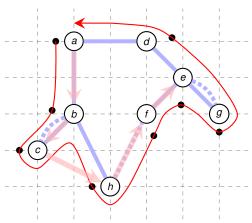
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



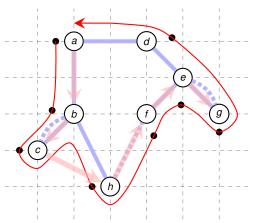
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



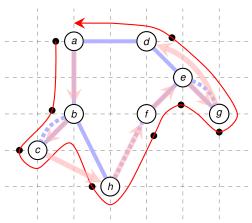
- Compute MST T_{min} √
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



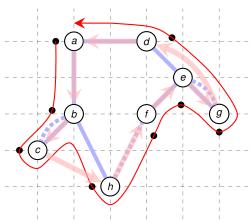
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



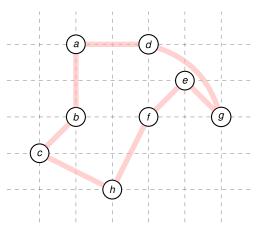
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



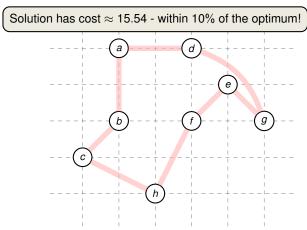
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching \textit{M}_{min} of the odd vertices in \textit{T}_{min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle \checkmark



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{\min} of the odd vertices in T_{\min} \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle ✓

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

As before, let H* denote the optimal tour

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

(1)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

• Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

- Let H*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality,

(2)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

- Let H_{odd}^* be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

- Let H*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

Combining 1 with 2 yields

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H* denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min}) \tag{1}$$

- Let H*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H_{odd}^*)$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \le \frac{1}{2}c(H_{odd}^*) \le \frac{1}{2}c(H^*).$$
 (2)

Combining 1 with 2 yields

$$c(W) \le c(H^*) + c(M_{\min}) \le c(H^*) + \frac{1}{2}c(H^*) = \frac{3}{2}c(H^*).$$

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Christofides'76) -

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Arora'96, Mitchell'96) -

There is a PTAS for the Euclidean TSP Problem.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Both received the Gödel Award 2010

Theorem (Arora'96, Mitchell'96)

There is a PTAS for the Euclidean TSP Problem.

"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

VII. Approximation Algorithms: Randomisation and Rounding

Thomas Sauerwald

Easter 2018

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

Performance Ratios for Randomised Approximation Algorithms

Approximation Ratio -

A randomised algorithm for a problem has approximation ratio $\rho(n)$, if for any input of size n, the expected cost C of the returned solution and optimal cost C^* satisfy:

$$\max\left(rac{C}{C^*},rac{C^*}{C}
ight) \leq
ho(n).$$

Call such an algorithm randomised $\rho(n)$ -approximation algorithm.

extends in the natural way to randomised algorithms

Approximation Schemes

An approximation scheme is an approximation algorithm, which given any input and $\epsilon>0$, is a $(1+\epsilon)$ -approximation algorithm.

- It is a polynomial-time approximation scheme (PTAS) if for any fixed $\epsilon > 0$, the runtime is polynomial in n. For example, $O(n^{2/\epsilon})$.
- It is a fully polynomial-time approximation scheme (FPTAS) if the runtime is polynomial in both $1/\epsilon$ and n. For example, $O((1/\epsilon)^2 \cdot n^3)$.

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

MAX-3-CNF Satisfiability

Assume that no literal (including its negation) appears more than once in the same clause.

MAX-3-CNF Satisfiability

- Given: 3-CNF formula, e.g.: $(x_1 \lor x_3 \lor \overline{x_4}) \land (x_2 \lor \overline{x_3} \lor \overline{x_5}) \land \cdots$
- Goal: Find an assignment of the variables that satisfies as many clauses as possible.

Relaxation of the satisfiability problem. Want to compute how "close" the formula to being satisfiable is.

Example:

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_3} \lor \overline{x_5}) \land (x_2 \lor \overline{x_4} \lor x_5) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$$

$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0 \text{ and } x_5 = 1 \text{ satisfies 3 (out of 4 clauses)}$$

Idea: What about assigning each variable independently at random?

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

Proof:

• For every clause i = 1, 2, ..., m, define a random variable:

$$Y_i = 1$$
{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i,

• Let $Y := \sum_{i=1}^{m} Y_i$ be the number of satisfied clauses. Then,

$$\mathbf{E}[Y] = \mathbf{E}\left[\sum_{i=1}^{m} Y_{i}\right] = \sum_{i=1}^{m} \mathbf{E}[Y_{i}] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \cdot m. \quad \Box$$
(Linearity of Expectations) (maximum number of satisfiable clauses is maximum number)

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

- Corollary -

For any instance of MAX-3-CNF, there exists an assignment which satisfies at least $\frac{7}{9}$ of all clauses.

There is $\omega \in \Omega$ such that $Y(\omega) \geq \mathbf{E}[Y]$

Probabilistic Method: powerful tool to show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Follows from the previous Corollary.

Expected Approximation Ratio

- Theorem 35.6

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a polynomial-time randomised 8/7-approximation algorithm.

One could prove that the probability to satisfy $(7/8) \cdot m$ clauses is at least 1/(8m)

$$\mathbf{E}[Y] = \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 1] + \frac{1}{2} \cdot \mathbf{E}[Y \mid x_1 = 0].$$

Y is defined as in the previous proof.

One of the two conditional expectations is at least $\mathbf{E}[Y]!$

GREEDY-3-CNF(ϕ , n, m)

- 1: **for** j = 1, 2, ..., n
- 2: Compute **E**[$Y \mid x_1 = v_1 \dots, x_{j-1} = v_{j-1}, x_j = 1$]
- 3: Compute **E** [$Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 0$]
- Let $x_i = v_i$ so that the conditional expectation is maximized
- 5: **return** the assignment v_1, v_2, \ldots, v_n

This algorithm is deterministic.

Theorem

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

Proof:

- Step 1: polynomial-time algorithm
 - In iteration j = 1, 2, ..., n, $Y = Y(\phi)$ averages over 2^{n-j+1} assignments
 - A smarter way is to use linearity of (conditional) expectations:

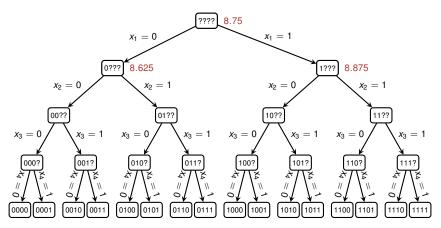
$$\mathbf{E} [Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1] = \sum_{i=1}^{m} \mathbf{E} [Y_i \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = 1]$$
(computable in $O(1)$)

- Step 2: satisfies at least 7/8 · m clauses
 - Due to the greedy choice in each iteration j = 1, 2, ..., n,

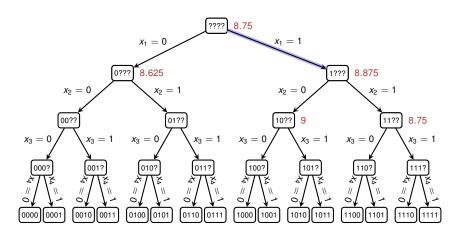
$$\begin{split} \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1}, x_j = v_j \ \right] \geq \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-1} = v_{j-1} \ \right] \\ \geq \mathbf{E} \left[\ Y \mid x_1 = v_1, \dots, x_{j-2} = v_{j-2} \ \right] \\ \vdots \end{split}$$

$$\geq \mathbf{E}[Y] = \frac{7}{9} \cdot m.$$

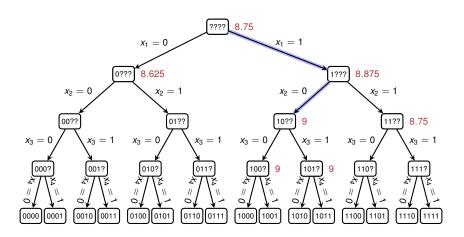
$$\begin{array}{l} \left(X_1 \vee X_2 \vee X_3 \right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4 \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3 \right) \wedge \left(X_1 \vee X_3 \vee X_4 \right) \wedge \left(X_2 \vee \overline{X_3} \vee \overline{X_4} \right) \end{array}$$



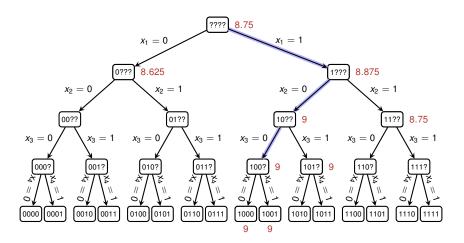
 $1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee x_3) \wedge 1 \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4})$



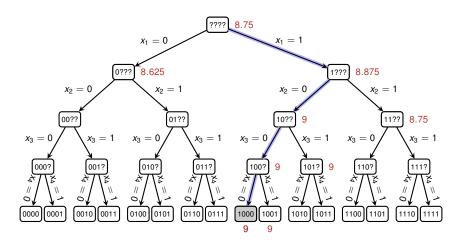
$$1 \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee x_4) \wedge 1 \wedge 1 \wedge (x_3) \wedge 1 \wedge 1 \wedge (\overline{x_3} \vee \overline{x_4})$$



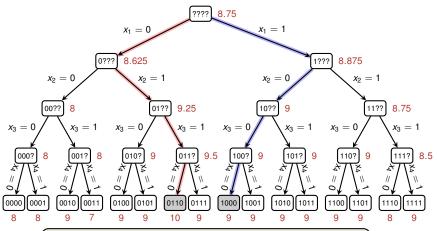
$1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$



$1 \land 1 \land 1 \land 1 \land 1 \land 1 \land 0 \land 1 \land 1 \land 1$



$$\begin{array}{l} \left(X_1 \vee X_2 \vee X_3 \right) \wedge \left(X_1 \vee \overline{X_2} \vee \overline{X_4} \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \left(\overline{X_1} \vee \overline{X_3} \vee X_4 \right) \wedge \left(X_1 \vee X_2 \vee \overline{X_4} \right) \wedge \\ \left(\overline{X_1} \vee \overline{X_2} \vee \overline{X_3} \right) \wedge \left(\overline{X_1} \vee X_2 \vee X_3 \right) \wedge \left(\overline{X_1} \vee \overline{X_2} \vee X_3 \right) \wedge \left(X_1 \vee X_3 \vee X_4 \right) \wedge \left(X_2 \vee \overline{X_3} \vee \overline{X_4} \right) \end{array}$$



Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.

MAX-3-CNF: Concluding Remarks

Theorem 35.6 -

Given an instance of MAX-3-CNF with n variables x_1, x_2, \ldots, x_n and m clauses, the randomised algorithm that sets each variable independently at random is a randomised 8/7-approximation algorithm.

- Theorem -

GREEDY-3-CNF(ϕ , n, m) is a polynomial-time 8/7-approximation.

- Theorem (Hastad'97) -

For any $\epsilon > 0$, there is no polynomial time $8/7 - \epsilon$ approximation algorithm of MAX3-SAT unless P=NP.

Essentially there is nothing smarter than just guessing!

Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

Given: Undirected, vertex-weighted graph G = (V, E)Goal: Find a minimum-weight subset $V' \subseteq V$ such that if $(u, v) \in E(G)$, then $u \in V'$ or $v \in V'$.

This is (still) an NP-hard problem.

Applications:

- Every edge forms a task, and every vertex represents a person/machine which can execute that task
- Weight of a vertex could be salary of a person
- Perform all tasks with the minimal amount of resources

The Greedy Approach from (Unweighted) Vertex Cover

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

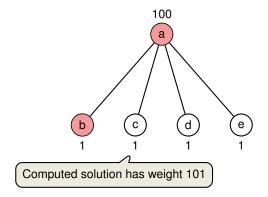
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```



The Greedy Approach from (Unweighted) Vertex Cover

```
APPROX-VERTEX-COVER (G)

1 C = \emptyset

2 E' = G.E

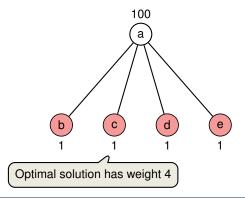
3 while E' \neq \emptyset

4 let (u, v) be an arbitrary edge of E'

5 C = C \cup \{u, v\}

6 remove from E' every edge incident on either u or v

7 return C
```



Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program =

minimize
$$\sum_{v \in V} w(v)x(v)$$
 subject to
$$x(u) + x(v) \geq 1 \qquad \text{for each } (u,v) \in E$$

$$x(v) \in \{0,1\} \qquad \text{for each } v \in V$$

optimum is a lower bound on the optimal weight of a minimum weight-cover.

Linear Program

minimize
$$\sum_{v \in V} w(v) x(v)$$

subject to
$$x(u) + x(v) \ge 1$$
 for each $(u, v) \in E$ $x(v) \in [0, 1]$ for each $v \in V$

Rounding Rule: if $x(v) \ge 1/2$ then round up, otherwise round down.

The Algorithm

```
APPROX-MIN-WEIGHT-VC(G, w)

1 C = \emptyset

2 compute \bar{x}, an optimal solution to the linear program

3 for each v \in V

4 if \bar{x}(v) \ge 1/2

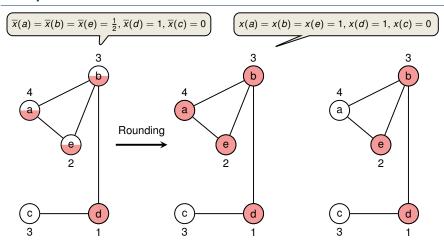
5 C = C \cup \{v\}
```

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation algorithm for the minimum-weight vertex-cover problem.

is polynomial-time because we can solve the linear program in polynomial time

Example of Approx-Min-Weight-VC



fractional solution of LP with weight = 5.5

rounded solution of LP with weight = 10

 $\begin{array}{l} \text{optimal solution} \\ \text{with weight} = 6 \end{array}$

Approximation Ratio

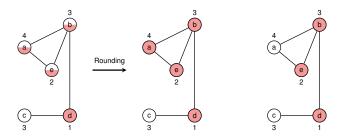
Proof (Approximation Ratio is 2):

- Let C* be an optimal solution to the minimum-weight vertex cover problem
- Let z* be the value of an optimal solution to the linear program, so

$$z^* \leq w(C^*)$$

- Step 1: The computed set C covers all vertices:
 - Consider any edge $(u, v) \in E$ which imposes the constraint $x(u) + x(v) \ge 1$ \Rightarrow at least one of $\overline{x}(u)$ and $\overline{x}(v)$ is at least $1/2 \Rightarrow C$ covers edge (u, v)
- Step 2: The computed set C satisfies $w(C) \le 2z^*$:

$$w(C^*) \geq z^* = \sum_{v \in V} w(v)\overline{x}(v) \geq \sum_{v \in V: \overline{x}(v) \geq 1/2} w(v) \cdot \frac{1}{2} = \frac{1}{2}w(C). \quad \Box$$



Outline

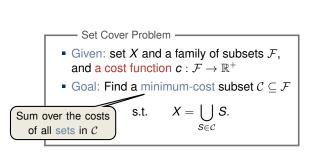
Randomised Approximation

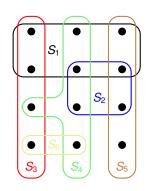
MAX-3-CNF

Weighted Vertex Cover

Weighted Set Cover

The Weighted Set-Covering Problem





 S_1 S_2 S_3 S_4 S_5 S_6 c: 2 3 3 5 1 2

Remarks:

- generalisation of the weighted vertex-cover problem
- models resource allocation problems

Setting up an Integer Program

0-1 Integer Program ————

minimize
$$\sum_{S\in\mathcal{F}}c(S)y(S)$$
 subject to
$$\sum_{S\in\mathcal{F}:\ x\in S}y(S)\ \geq\ 1\qquad \text{for each }x\in X$$

$$y(S)\ \in\ \{0,1\}\qquad \text{for each }S\in\mathcal{F}$$

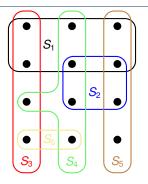
Linear Program ————

minimize
$$\sum_{S \in \mathcal{F}} c(S)y(S)$$

subject to
$$\sum_{S \in \mathcal{F}: x \in S} y(S) \geq 1$$
 for each $x \in X$

$$y(S) \in [0,1]$$
 for each $S \in \mathcal{F}$

Back to the Example



Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y's were below 1/2, we would not even return a valid cover!

Randomised Rounding

	S_1	S_2	S_3	S_4	S_5	S_6
C :	2	3	3	5	1	2
y(.):	1/2	1/2	1/2	1/2	1	1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Randomised Rounding ——

- Let C ⊆ F be a random set with each set S being included independently with probability y(S).
- More precisely, if y denotes the optimal solution of the LP, then we compute an integral solution \bar{y} by:

$$\bar{y}(S) = \begin{cases} 1 & \text{with probability } y(S) \\ 0 & \text{otherwise.} \end{cases}$$
 for all $S \in \mathcal{F}$.

• Therefore, $\mathbf{E}[\bar{y}(S)] = y(S)$.

Randomised Rounding

	S_1	S_2	S_3	S_4	S_5	S_6
c :	2	3	3	5	1	2
<i>y</i> (.):	1/2	1/2	1/2	1/2	1	1/2

Idea: Interpret the y-values as probabilities for picking the respective set.

Lemma

The expected cost satisfies

$$\mathbf{E}[c(\mathcal{C})] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$$

• The probability that an element $x \in X$ is covered satisfies

$$\Pr\left[x\in\bigcup_{S\in\mathcal{C}}S\right]\geq 1-\frac{1}{e}.$$

Proof of Lemma

Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Proof:

Step 1: The expected cost of the random set C

$$\mathbf{E}[c(\mathcal{C})] = \mathbf{E}\left[\sum_{S \in \mathcal{C}} c(S)\right] = \mathbf{E}\left[\sum_{S \in \mathcal{F}} \mathbf{1}_{S \in \mathcal{C}} \cdot c(S)\right]$$
$$= \sum_{S \in \mathcal{F}} \mathbf{Pr}[S \in \mathcal{C}] \cdot c(S) = \sum_{S \in \mathcal{F}} y(S) \cdot c(S).$$

Step 2: The probability for an element to be (not) covered

$$\Pr[x \notin \cup_{S \in \mathcal{C}} S] = \prod_{S \in \mathcal{F}: \ x \in S} \Pr[S \notin \mathcal{C}] = \prod_{S \in \mathcal{F}: \ x \in S} (1 - y(S))$$

$$\leq \prod_{S \in \mathcal{F}: \ x \in S} e^{-y(S)} \text{ y solves the LP!}$$

$$= e^{-\sum_{S \in \mathcal{F}: \ x \in S} y(S)} < e^{-1} \quad \square$$

The Final Step

- Lemma

Let $\mathcal{C} \subseteq \mathcal{F}$ be a random subset with each set S being included independently with probability y(S).

- The expected cost satisfies $\mathbf{E}[c(C)] = \sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
- The probability that x is covered satisfies $\Pr[x \in \bigcup_{S \in \mathcal{C}} S] \ge 1 \frac{1}{e}$.

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of $\Omega(\log n)$ random sets C.

WEIGHTED SET COVER-LP(X, \mathcal{F}, c)

- 1: compute y, an optimal solution to the linear program
- 2. C = 0
- 3: **repeat** 2 ln *n* times
- 4: **for** each $S \in \mathcal{F}$
- 5: let $C = C \cup \{S\}$ with probability y(S)
- 6: return C

clearly runs in polynomial-time!

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1-\frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

Proof:

- Step 1: The probability that C is a cover
 - By previous Lemma, an element $x \in X$ is covered in one of the $2 \ln n$ iterations with probability at least $1 \frac{1}{e}$, so that

$$\Pr\left[x \notin \bigcup_{S \in \mathcal{C}} S\right] \leq \left(\frac{1}{e}\right)^{2 \ln n} = \frac{1}{n^2}.$$

This implies for the event that all elements are covered:

$$\Pr[X = \cup_{S \in \mathcal{C}} S] = 1 - \Pr\left[\bigcup_{x \in X} \{x \notin \cup_{S \in \mathcal{C}} S\}\right]$$

$$\boxed{\Pr[A \cup B] \leq \Pr[A] + \Pr[B]} \geq 1 - \sum_{x \in X} \Pr[x \notin \bigcup_{S \in \mathcal{C}} S] \geq 1 - n \cdot \frac{1}{n^2} = 1 - \frac{1}{n}.$$

- Step 2: The expected approximation ratio
 - By previous lemma, the expected cost of one iteration is $\sum_{S \in \mathcal{F}} c(S) \cdot y(S)$.
 - Linearity \Rightarrow **E** $[c(C)] \le 2 \ln(n) \cdot \sum_{S \in F} c(S) \cdot y(S) \le 2 \ln(n) \cdot c(C^*)$

Analysis of Weighted Set Cover-LP

Theorem

- With probability at least $1 \frac{1}{n}$, the returned set C is a valid cover of X.
- The expected approximation ratio is $2 \ln(n)$.

By Markov's inequality,
$$\Pr\left[c(\mathcal{C}) \leq 4 \ln(n) \cdot c(\mathcal{C}^*)\right] \geq 1/2$$
.

Hence with probability at least $1 - \frac{1}{n} - \frac{1}{2} > \frac{1}{3}$, solution is within a factor of $4 \ln(n)$ of the optimum.

probability could be further increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Spectrum of Approximations

