Pure Type Systems (PTS) — syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

P .
'ﬂ;il.l -;~J~;:r.':- e

by e
|L"|.'|-I‘:';- -i = e

r = x variable

s sort

IIx : ¢ (t) dependent function type
Ax:t(t) function abstraction

tt function application

where x ranges over a countably infinite set Var of variables and s ranges over

a disjoint set Sort of sort symbols — constants that denote various universes (=

types whose elements denote types of various sorts) [kind is a commonly used

synonym for sort]. Ax:t(t') and Ilx : ¢ (') both bind free occurrences of x
in the pseudo-term #’.

t[t'/x]

denotes result of capture-avoiding substitution of ¢’ for all

free occurrences of x in t.

t—t|=Ix:t(t) where x & fo(t').

Pure Type Systems — specifications

The typing rules for a particular PTS are parameterised by a
specification S = (S, A, R) where:
» § C Sort
Elements s € & denote the different universes of types in this PTS.

» A C Sort X Sort
Elements (s1,s2) € A are called axioms. They determine the
typing relation between universes in this PTS.

» R C Sort X Sort X Sort
Elements (s1,52,83) € R are called rules. They determine which
kinds of dependent function can be formed and in which universes
they live.

Pure Type Systems — specifications

The typing rules for a particular PTS are parameterised by a
specification S = (S, A, R) where:
» § C Sort
Elements s € & denote the different universes of types in this PTS.

» A C Sort X Sort
Elements (s1,s2) € A are called axioms. They determine the
typing relation between universes in this PTS.

» R C Sort X Sort X Sort
Elements (s1,52,83) € R are called rules. They determine which
kinds of dependent function can be formed and in which universes
they live.

The PTS with specification S will be denoted | AS |.

Pure Type Systems — typing judgements

take the form

r—t:t

where t, t' are pseudo-terms and T is a context, a form of typing
environment given by the grammar

Fu=¢o|Tx:t

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs,
with the empty list denoted ¢, the head of the list on the right and
list-cons denoted by _, _. Unlike previous type systems in this course, the
order in which typing declarations x : t occur in a context is important.)
A typing judgement is derivable if it is in the set inductively
generated by the rules on the next slide, which are parameterised

by a given specification S = (S, A, R).

Pure Type Systems — typing rules

if (51, Sz) c A

axiom
() O s1:8s

.’"I
\
—tt, - o e)
A% £ AN e "
\ ¥ [A [/ Y e
M AN A0 ™,
]) AN ~/))
/
TN /

Pure Type Systems — typing rules

if (51, Sz) c A

axiom
() O s1:8s

I'HA:s
I'x:AFx: A

(start) if x & dom(T')

Properties of Pure Type Systems in general

» Correctness of types. If ' = M : A, then either A € S, or
I'-A:sforsomes € S.

pstndo derms faak NPy 0
H?m e, T R n@H ﬁf« i
darveble fypng Jrdgemnk,

YN N Sers, oV NAavEL (A Sb/E

\\Q/\/WPW\? s ol sorked”

Pure Type Systems — typing rules

(axiom) oF 515, if (s1,s2) € A
I'-A:s :
(start) T xiAFx:A if x & dom(T')
(weaken) r-mM:A TI'FB:s if x &€ dom(T)

I''x:BHFM:A

Pure Type Systems — typing rules

(axiom) pE— if (s1,82) € A

(start) xr:';ﬁ‘xs: —— if x & dom(T)

(weaken) [I—FZ,\/le ‘1;1 - Z{/Il_f 5 if x ¢ dom(T)
(conn) T F Mr: IflM :FB|_ B:s ., o .

_ =L - N VO N v WAYA
[™ ANV TN] “\ J W Y

Pure Type Systems — beta-conversion

» beta-reduction of pseudo-terms: |+ — t’ | means t’ can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct. There is only one form of redex-reduct pair:

(/\x 4 A (tl)) th — t1[t2/?€]

» As usual, —* denotes the reflexive-transitive closure of —.

> beta-conversion of pseudo-terms: =g is the
reflexive-symmetric-transitive closure of — (i.e. the smallest
equivalence relation containing —).

Pure Type Systems — typing rules

it (Sll 52) & A

axiom
() Ok s1:s

I'HA:s
r,x:A|—x:A

(start) fx & dom(l")
'EFM:A THEB:s .
f
I'x:B I—M P A if x & dom(T')

[FM:A_TkB:s,
CHM: B

(weaken)

(conv)

|
\) A B
>0 A N) R@) S\
' L VANV | S DRV
""L_Al -"/\" |"A| . |
/ foN) |
UV NL [
|
|
II
1
\ /

Pure Type Systems — typing rules

if (Sl, Sz) c A

axiom
() O s1:8s

I'HA:s

(start) I'x:Akx: A

if x & dom(T)

I-M:A TrFB:s .
I x:BFM:A it x & dom(T)

I-kM:A THFB:s
I'M:B

I'HA:s7 I,x:AFB:sy
I'FTIIx: A(B):s;3

(weaken)

(conv)

ifA=l;B

(prod) if (s1,82,83) ER

Pure Type Systems — typing rules

if (51, Sz) c A

axiom
() O s1:8s

I'HA:s
I'x:Akx: A

I-M:A TrFB:s .
I x:BFM:A it x & dom(T)

I'EFM:A TFB:s

(start) if x & dom(T')

(weaken)

(conv) T M-:B if A=g B
r|—A‘Sl 1“x°AI—B°sz
d if (s1,S2,53) € R
(prod) T Ix: A(B) 55 | (1 2:53)
o) vl L %"rff‘:.
[,x:AFM:B THTx:A(B):s =~ % ” |
[F Ax: A (M) : Tlv: A (B) ' Come dness -

Pure Type Systems — typing rules

if (51, Sz) c A

axiom
() O s1:8s

I'HA:s

(start) I'x:AFx: A

if x & dom(T)

I-M:A TrFB:s .
I x:BFM:A it x & dom(T)

I-kM:A THFB:s
I'M:B

I'HA:s7 I,x:AFB:sy
I'HTIx: A(B):s;

(weaken)

(conv)

ifA=l;B

(prod) if (51, S»o, 53) ER

ILx:AFM:B TkFIIx:A(B):s
I'HFAx:A(M) :IIx: A (B)

(abs)

rHM:MIx:A(B) THN:A
[MN : B[N/x]

(app)

Example PTS typing derivations

(axiom) (axiom)
- O x:0 O k[
(?leolgg O [(weaken) O,x k)
P O % — %[
(axiom) :
(start) O *x: [:
O, X x Fx:x Ok % - %[

(abs) O Ax:x(x):*— %

Here we assume that the PTS specification S = (S, 4, R) has x € S,
des, (x,00) e AAdand (J,0,0) € R.
(Recall that * — % = ITx : * (*).)

Agemda,

(no provts)

—~ examples G(— P7Ss

Properties of Pure Type Systems in general

Correctness of types. If ' M : A, then either A € S, or
I'FA:sforsomes € S.

Church-Rosser Property (aka confluence). t =g t' iff
Ju(t —=*u ANt/ =*u)

Subject Reduction. f T M : A and M — M/, then
Ir-M':A.

Uniqueness of Types. A PTS specification S = (S, .4, R)
is said to be functional if both A and

Rs = {(s2,53) | (s,82,53) € R} foreach s € S, are
single-valued binary relations.

In this case AS satisfies: if TF M : A and T M : B, then
A =g B.

Type-checking for a PTS, AS

Recall the type-checking and typeability problems for a type
system. 4\ =

coven LER, ducide vl o it
et astds

pven T &bt | Quads vy o
AT T S Somne £ LA O 4 L

Pure Type Systems — typing rules

i (s1,52) € A s e

axiom
() O s1:8s

I'HA:s
I'x:AFx: A

T-M:A TH+FB:s

I''x:BHFM:A

Tr-M:A T+FB:s .

fA= \

rrm:B AP !

T-A:s; L,x:AFB:s,
(prod)

I'HTIx: A(B):s;

(start)

Vi (AR AR VY e
/ -
/ |)
. ---ll—-.“- . - l .'* -
if x € dom(T) | T 0 - 00k
{ VoS | AT — | A i WA BTN
[LW | P sV o s UV ~
| [|-
| / L
{ '.,’f [
| \

AN
(et
L=

(weaken)

(conv)

if (51, So, 53) - R

ILx:AFM:B TkFIIx:A(B):s

(abs) T Ax:A(M):Ilx: A (B)

rHM:MIx:A(B) THN:A
[MN : B[N/x]

(A, B, M, N range over pseudoterms, s, s1,S2,S3 over sort symbols)

(app)

|III ' . r'ﬂ Nt N s
if x é: dom(T) T\ il
{ A |

e
T | 3

/ |
/' h \I 'f N
- b
J

Type-checking for a PTS, AS

Definition. A pseudo-term t is legal for a PTS specification
S=(S,A R) ifeithert € SorT'F t:t' isderivable in AS for

some I and ?’.

Recall the type-checking and typeability problems for a type
system.

Fact(van Bentham Jutting): these problems for AS are decidable
if S is finite and AS is normalizing, meaning that for every legal
pseudo-term there is some finite chain of beta-reductions leading

to a beta-normal form.

Type-checking for a PTS, AS

Definition. A pseudo-term t is legal for a PTS specification
S=(S,A R) ifeithert € SorT'F t:t' isderivable in AS for

some I and ?’.

Recall the type-checking and typeability problems for a type
system.

Fact(van Bentham Jutting): these problems for AS are decidable
if S is finite and AS is normalizing, meaning that for every legal
pseudo-term there is some finite chain of beta-reductions leading
to a beta-normal form.

Fact (Meyer): the problems are undecidable for the PTS A% with
specification 8 = {*}, A= {(*,%)} and R = {(*,*,%) }.

- e,me,m..l NVM‘I'CS PT.S
S(V\a pva{-s) GP s

S AL

PLC versus the Pure Type System A2

PTS signature:

(82 = {*,D}
22 (82, Az, R2) where ¢ A, = {(%,0)}
L R2 = {(*,%,%),(0%,%)}

Uaim : x acts ke a vm{ve/réaq@ FLC 4’\7%@5
ANV

PLC versus the Pure Type System A2

PTS signature:

(82 é {*,D}
22 (82, Az,Rz) where ¢ Az il {(*,D)}
L R2 = {(*,%,%),(0%,%)}

Uaim : x acts ke a v\v\{vwéavf} FLC WPXS
ANV

\77/&“%){5 | \PYMU)\&*7\”-?\3 l\/@,"% - A X

[- Tlots (A) « X Q% %)€R,

PLC versus the Pure Type System A2

PTS signature:

(82 é {*,D}
22 (82, Az,Rz) where ¢ Az il {(*,D)}
L R2 = {(*,%,%),(0%,%)}

Uaim - acts ke a wniverse @ 71 ¢ Fypes
ANRY

= fyp (ped) [FAX o ArBix e
[F Tix:A(8) @ % o .

PLC versus the Pure Type System A2

PTS signature:

2 2 (S, Ay, Ry) where ¢

2 {x,0}
> {(x0)}
2 {(*,%,%),(0,%,%)}

Uaim - % acts Lk & v\v\\'vw&vﬁ FLC ﬁjp/es

aupVi

= fypu (pod) [A e - AKB) % ‘

fkﬁrx:/j\(@):%
—

//\ - ('}f.’ﬂf,"tje_ WZ

n fod CO\V\}S' howe

\ fo
B¢ G’%/(g))fo

S S N Sple
ﬂQN\ (/)’\m\ Jf\ﬁp{, A——)E

PLC versus the Pure Type System A2

PTS signature:

(82 2 {*,D}
22 (8, Ay, Ry) where { Ay 2 {(%,0)}
L R2 = {(*,%,%),(0%,%)}

Translation of PLC types and terms to A2 pseudo-terms:
[o] =
[t -] =Hx: [7] ([T']) <f An 2 oC ncs%

[Va (T)] = Ha : * ([T']) mn T

[x] = x
[Ax: T (M)] = Ax: [7] ([M])
[MM'] = [M] [M]

[Aa (M)] = A : * ([M])
[M 7] = [M]]

Properties of the translation from PLC to A2

» If { } = M : T is derivable in PLC, then ¢ [T] : * and
o [M] : [t] are derivable in A2

» In A2, if o t: 0, then t = %; if O t: %, then t = [T] for
some closed PLC type T; and if o ¢ : t/ then t = [M] and
t’ = [t] for PLC expressions satisfying { } W M : T.

» Under the translation, the reduction behaviour of PLC terms
is preserved and reflected by beta-reduction in A2. (Note in
particular that PLC types are translated to pseudo-terms in
beta-normal form.)

