## Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of *pseudo-terms*:

```
will also use t := x variable s sort \Pi x : t(t) dependent function type to stand for pseudo-terms t t function application
```

where x ranges over a countably infinite set Var of variables and s ranges over a disjoint set Sort of sort symbols – constants that denote various universes (= types whose elements denote types of various sorts) [kind is a commonly used synonym for sort].  $\lambda x:t(t')$  and  $\Pi x:t(t')$  both bind free occurrences of x in the pseudo-term t'.

t[t'/x] denotes result of capture-avoiding substitution of t' for all free occurrences of x in t.

```
t \to t \triangleq \Pi x : t(t') where x \notin fv(t').
```

## Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a specification S = (S, A, R) where:

- ▶  $S \subseteq Sort$ Elements  $s \in S$  denote the different universes of types in this PTS.
- ▶  $\mathcal{A} \subseteq \mathbf{Sort} \times \mathbf{Sort}$ Elements  $(s_1, s_2) \in \mathcal{A}$  are called *axioms*. They determine the typing relation between universes in this PTS.
- ▶  $\mathcal{R} \subseteq \operatorname{Sort} \times \operatorname{Sort} \times \operatorname{Sort}$ Elements  $(s_1, s_2, s_3) \in \mathcal{R}$  are called rules. They determine which kinds of dependent function can be formed and in which universes they live.

## Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a specification S = (S, A, R) where:

- $ightharpoonup S \subseteq Sort$  Elements  $s \in S$  denote the different universes of types in this PTS.
- ▶  $\mathcal{A} \subseteq \mathbf{Sort} \times \mathbf{Sort}$ Elements  $(s_1, s_2) \in \mathcal{A}$  are called *axioms*. They determine the typing relation between universes in this PTS.
- ▶  $\mathcal{R} \subseteq \operatorname{Sort} \times \operatorname{Sort} \times \operatorname{Sort}$ Elements  $(s_1, s_2, s_3) \in \mathcal{R}$  are called rules. They determine which kinds of dependent function can be formed and in which universes they live.

The PTS with specification  $\bf S$  will be denoted  $\bf \lambda S$  .

### Pure Type Systems – typing judgements

take the form

$$\Gamma \vdash t : t'$$

where t, t' are pseudo-terms and  $\Gamma$  is a *context*, a form of typing environment given by the grammar

$$\Gamma ::= \diamond \mid \Gamma, x : t$$

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs, with the empty list denoted  $\diamondsuit$ , the head of the list on the right and list-cons denoted by \_\_, \_. Unlike previous type systems in this course, the order in which typing declarations x:t occur in a context is important.) A typing judgement is derivable if it is in the set inductively generated by the rules on the next slide, which are parameterised by a given specification S = (S, A, R).

(axiom) 
$$\overline{\ \ \, \diamond \vdash s_1 : s_2}$$
 if  $(s_1, s_2) \in \mathcal{A}$ 

for a given Specification S=(S, A, R)

(axiom) 
$$\overline{\ \ \, \diamond \vdash s_1 : s_2}$$
 if  $(s_1, s_2) \in \mathcal{A}$ 

(start) 
$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A}$$
 if  $x \notin dom(\Gamma)$ 

## Properties of Pure Type Systems in general

▶ Correctness of types. If  $\Gamma \vdash M : A$ , then either  $A \in \mathcal{S}$ , or  $\Gamma \vdash A : s$  for some  $s \in \mathcal{S}$ .

pseudo terms that appear as types, i.e. to the right of \_:\_ in a derivable typing indyement, are either sorts, or have a soft "everything is well-sorted"

(axiom) 
$$\overline{\ \ } \vdash s_1 : s_2 \ \ \text{if } (s_1, s_2) \in \mathcal{A}$$

$$(\text{start}) \overline{\ \ \Gamma \vdash A : s} \overline{\ \ } \Gamma, x : A \vdash x : A \ \ \text{if } x \notin dom(\Gamma)$$

(weaken) 
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma, x : B \vdash M : A} \text{ if } x \notin dom(\Gamma)$$

(axiom) 
$$\overline{\ \ \, \diamond \vdash s_1 : s_2}$$
 if  $(s_1, s_2) \in \mathcal{A}$ 

(start) 
$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A}$$
 if  $x \notin dom(\Gamma)$ 

(weaken) 
$$\frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma, x : B \vdash M : A}$$
 if  $x \notin dom(\Gamma)$ 

$$(conv) \frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : s}{\Gamma \vdash M : B} \text{ if } A =_{\beta} B$$

B- wonversion

#### Pure Type Systems – beta-conversion

▶ beta-reduction of pseudo-terms:  $t \to t'$  means t' can be obtained from t (up to alpha-conversion, of course) by replacing a subexpression which is a redex by its corresponding reduct. There is only one form of redex-reduct pair:

$$(\lambda x:t(t_1)) t_2 \to t_1[t_2/x]$$

- $\blacktriangleright$  As usual,  $\rightarrow^*$  denotes the reflexive-transitive closure of  $\rightarrow$ .
- ▶ beta-conversion of pseudo-terms:  $=_{\beta}$  is the reflexive-symmetric-transitive closure of  $\rightarrow$  (i.e. the smallest equivalence relation containing  $\rightarrow$ ).

$$(axiom) \xrightarrow{\begin{subarray}{c} \Gamma \vdash A : s \\ \Gamma, x : A \vdash x : A \end{subarray}} \mbox{if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{\begin{subarray}{c} \Gamma \vdash M : A & \Gamma \vdash B : s \\ \Gamma, x : B \vdash M : A \end{subarray}} \mbox{if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow{\begin{subarray}{c} \Gamma \vdash M : A & \Gamma \vdash B : s \\ \Gamma \vdash M : B \end{subarray}} \mbox{if } A =_{\beta} B$$

$$(axiom) \xrightarrow{\begin{subarray}{c} \Gamma \vdash A : s \\ \hline \Gamma, x : A \vdash x : A \end{subarray}} \mbox{if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{\begin{subarray}{c} \Gamma \vdash M : A \\ \hline \Gamma, x : B \vdash M : A \end{subarray}} \mbox{if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow{\begin{subarray}{c} \Gamma \vdash M : A \\ \hline \Gamma \vdash M : B \end{subarray}} \mbox{if } A =_{\beta} B$$

$$(prod) \xrightarrow{\begin{subarray}{c} \Gamma \vdash A : s_1 \\ \hline \Gamma \vdash \Pi x : A (B) : s_2 \end{subarray}} \mbox{if } (s_1, s_2, s_3) \in \mathcal{R}$$

$$(axiom) \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

$$(axiom) \xrightarrow{ \varsigma \vdash s_1 : s_2} \text{ if } (s_1, s_2) \in \mathcal{A}$$

$$(start) \xrightarrow{ \Gamma \vdash A : s} \xrightarrow{ \Gamma, x : A \vdash x : A} \text{ if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{ \Gamma \vdash M : A \quad \Gamma \vdash B : s} \text{ if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow{ \Gamma \vdash M : A \quad \Gamma \vdash B : s} \text{ if } A =_{\beta} B$$

$$(prod) \xrightarrow{ \Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2} \text{ if } (s_1, s_2, s_3) \in \mathcal{R}$$

$$(abs) \xrightarrow{ \Gamma, x : A \vdash M : B \quad \Gamma \vdash \Pi x : A (B) : s} \xrightarrow{ \Gamma \vdash \lambda x : A (M) : \Pi x : A (B)}$$

$$(app) \xrightarrow{ \Gamma \vdash M : \Pi x : A (B) \quad \Gamma \vdash N : A} \xrightarrow{ \Gamma \vdash M N : B[N/x]}$$

### Example PTS typing derivations

$$(axiom) \xrightarrow{\diamondsuit \vdash * : \Box} (weaken) \xrightarrow{\diamondsuit \vdash * : \Box} (axiom) \xrightarrow{\diamondsuit \vdash * : \Box} (prod) \xrightarrow{\diamondsuit \vdash * \to * : \Box}$$

Here we assume that the PTS specification S = (S, A, R) has  $* \in S$ ,  $\square \in S$ ,  $(*, \square) \in A$  and  $(\square, \square, \square) \in R$ . (Recall that  $* \rightarrow * \triangleq \Pi x : * (*)$ .)

## Agenda

- general properties of PTSs (no proofs)
- examples of PTSs

## Properties of Pure Type Systems in general

- ▶ Correctness of types. If  $\Gamma \vdash M : A$ , then either  $A \in \mathcal{S}$ , or  $\Gamma \vdash A : s$  for some  $s \in \mathcal{S}$ .
- ► Church-Rosser Property (aka confluence).  $t =_{\beta} t'$  iff  $\exists u \ (t \to^* u \land t' \to^* u)$
- ▶ Subject Reduction. If  $\Gamma \vdash M : A$  and  $M \to M'$ , then  $\Gamma \vdash M' : A$ .
- ▶ Uniqueness of Types. A PTS specification  $S = (S, A, \mathcal{R})$  is said to be *functional* if both A and  $\mathcal{R}_s \triangleq \{(s_2, s_3) \mid (s, s_2, s_3) \in \mathcal{R}\}$  for each  $s \in S$ , are single-valued binary relations. In this case  $\lambda S$  satisfies: if  $\Gamma \vdash M : A$  and  $\Gamma \vdash M : B$ , then  $A =_{\beta} B$ .

## Type-checking for a PTS, $\lambda S$

Recall the *type-checking* and *typeability* problems for a type system.

given 1, t, t', decide whether or not ['+t:t' holds

given Test, decide whether or not there is some t' with [ + t: t'

 $(A, B, M, N \text{ range over pseudoterms}, s, s_1, s_2, s_3 \text{ over sort symbols})$ 

$$(axiom) \xrightarrow{\Diamond \vdash s_{1} : s_{2}} \text{ if } (s_{1}, s_{2}) \in \mathcal{A}$$

$$(start) \xrightarrow{\Gamma \vdash A : s} \text{ if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{\Gamma \vdash M : A} \xrightarrow{\Gamma \vdash B : s} \text{ if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow{\Gamma \vdash M : A} \xrightarrow{\Gamma \vdash B : s} \text{ if } A =_{\beta} B$$

$$(prod) \xrightarrow{\Gamma \vdash A : s_{1}} \xrightarrow{\Gamma, x : A \vdash B : s_{2}} \text{ if } (s_{1}, s_{2}, s_{3}) \in \mathcal{R}$$

$$(abs) \xrightarrow{\Gamma, x : A \vdash M : B} \xrightarrow{\Gamma \vdash \Pi x : A (B) : s} \xrightarrow{\Gamma \vdash \lambda x : A (M) : \Pi x : A (B)}$$

$$(app) \xrightarrow{\Gamma \vdash M : \Pi x : A (B)} \xrightarrow{\Gamma \vdash N : A} \xrightarrow{\Gamma \vdash M N : B[N/x]}$$

## Type-checking for a PTS, $\lambda S$

**Definition.** A pseudo-term t is *legal* for a PTS specification S = (S, A, R) if either  $t \in S$  or  $\Gamma \vdash t : t'$  is derivable in  $\lambda S$  for some  $\Gamma$  and t'.

Recall the *type-checking* and *typeability* problems for a type system.

**Fact**(van Bentham Jutting): these problems for  $\lambda S$  are decidable if S is finite and  $\lambda S$  is normalizing, meaning that for every <u>legal</u> pseudo-term there is some finite chain of beta-reductions leading to a beta-normal form.

## Type-checking for a PTS, $\lambda S$

**Definition.** A pseudo-term t is *legal* for a PTS specification S = (S, A, R) if either  $t \in S$  or  $\Gamma \vdash t : t'$  is derivable in  $\lambda S$  for some  $\Gamma$  and t'.

Recall the *type-checking* and *typeability* problems for a type system.

**Fact**(van Bentham Jutting): these problems for  $\lambda S$  are decidable if S is finite and  $\lambda S$  is normalizing, meaning that for every <u>legal</u> pseudo-term there is some finite chain of beta-reductions leading to a beta-normal form.

**Fact** (Meyer): the problems are undecidable for the PTS  $\lambda *$  with specification  $S = \{*\}$ ,  $A = \{(*,*)\}$  and  $R = \{(*,*,*)\}$ .

# Agenda

- general properties of PTSs (no proofs)
- examples of PTSs

PTS signature:

$$\mathbf{2} riangleq (\mathcal{S}_2, \mathcal{A}_2, \mathcal{R}_2)$$
 where  $\left\{egin{array}{ccc} \mathcal{S}_2 & riangleq & \{*,\Box\} \ \mathcal{A}_2 & riangleq & \{(*,\Box)\} \ \mathcal{R}_2 & riangleq & \{(*,*,*),(\Box,*,*)\} \end{array}
ight.$ 

Claim: \* acts like a universe of PLC types in 22

PTS signature:

$$\mathbf{2} riangleq (\mathcal{S}_2, \mathcal{A}_2, \mathcal{R}_2)$$
 where  $\left\{egin{array}{ccc} \mathcal{S}_2 & riangleq & \{*,\Box\} \ \mathcal{A}_2 & riangleq & \{(*,\Box)\} \ \mathcal{R}_2 & riangleq & \{(*,*,*),(\Box,*,*)\} \end{array}
ight.$ 

PTS signature:

$$\mathbf{2} riangleq (\mathcal{S}_2, \mathcal{A}_2, \mathcal{R}_2)$$
 where  $\left\{egin{array}{ccc} \mathcal{S}_2 & riangleq & \{*,\Box\} \ \mathcal{A}_2 & riangleq & \{(*,\Box)\} \ \mathcal{R}_2 & riangleq & \{(*,*,*),(\Box,*,*)\} \end{array}
ight.$ 

Claim: \* acts like a universe of PLC types in 22

PTS signature:

$$2 riangleq (\mathcal{S}_2, \mathcal{A}_2, \mathcal{R}_2)$$
 where  $\left\{egin{array}{ccc} \mathcal{S}_2 & riangleq & \{*,\Box\} \ \mathcal{A}_2 & riangleq & \{(*,\Box)\} \ \mathcal{R}_2 & riangleq & \{(*,*,*),(\Box,*,*)\} \end{array}
ight.$ 

Claim: \* acts like a universe of PLC types in 22

PTS signature:

$$\mathbf{2} riangleq (\mathcal{S}_2, \mathcal{A}_2, \mathcal{R}_2)$$
 where  $\left\{egin{array}{ccc} \mathcal{S}_2 & riangleq & \{*,\Box\} \ \mathcal{A}_2 & riangleq & \{(*,\Box)\} \ \mathcal{R}_2 & riangleq & \{(*,*,*),(\Box,*,*)\} \end{array}
ight.$ 

Translation of PLC types and terms to  $\lambda 2$  pseudo-terms:

## Properties of the translation from PLC to $\lambda 2$

- ▶ If  $\{\} \vdash M : \tau \text{ is derivable in PLC, then } \Diamond \vdash \llbracket \tau \rrbracket : * \text{ and } \Diamond \vdash \llbracket M \rrbracket : \llbracket \tau \rrbracket \text{ are derivable in } \lambda 2$
- ▶ In  $\lambda 2$ , if  $\diamondsuit \vdash t : \Box$ , then t = \*; if  $\diamondsuit \vdash t : *$ , then  $t = \llbracket \tau \rrbracket$  for some closed PLC type  $\tau$ ; and if  $\diamondsuit \vdash t : t'$  then  $t = \llbracket M \rrbracket$  and  $t' = \llbracket \tau \rrbracket$  for PLC expressions satisfying  $\{\} \vdash M : \tau$ .
- ▶ Under the translation, the reduction behaviour of PLC terms is preserved and reflected by beta-reduction in  $\lambda 2$ . (Note in particular that PLC types are translated to pseudo-terms in beta-normal form.)