
PLC type system

(var)
G ` x : t

if (x : t) 2 G

(fn)
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Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus
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Beta-reduction of PLC expressions

M beta-reduces to M0 in one step, M! M0 means M0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:
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1

[M
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/x]

(La (M)) t! M[t/a]

M!⇤ M0 indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M0 are alpha-convertible).

M is in beta-normal form if it contains no redexes.
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Properties of PLC beta-reduction on typeable
expressions

Suppose G ` M : t is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M! M0, then G ` M0 : t is also a
provable typing.

Church Rosser Property. If M!⇤ M
1

and M!⇤ M
2

, then
there is M0 with M

1

!⇤ M0 and M
2

!⇤ M0.

Strong Normalisation Property. There is no infinite chain
M! M

1

! M
2

! . . . of beta-reductions starting from M.
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PLC beta-conversion, =b

By definition, M =b M0 holds if there is a finite chain

M� ·� · · · � ·�M0

where each � is either! or , i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =b M0 holds if and only if there is
some beta-normal form N with

M!⇤ N ⇤ M0
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Polymorphic booleans
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