
PLC type system

(var)
G ` x : t

if (x : t) 2 G

(fn)
G, x : t

1

` M : t
2

G ` lx : t
1

(M) : t
1

� t
2

if x /2 dom(G)

(app)
G ` M : t

1

� t
2

G ` M0
: t

1

G ` M M0
: t

2

(gen)
G ` M : t

G ` La (M) : 8a (t)
if a /2 ftv(G)

(spec)
G ` M : 8a (t

1

)

G ` M t
2

: t
1

[t
2

/a]







Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]



Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]



Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]



Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]



Beta-reduction of PLC expressions

M beta-reduces to M0 in one step, M! M0 means M0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

(La (M)) t! M[t/a]

M!⇤ M0 indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M0 are alpha-convertible).

M is in beta-normal form if it contains no redexes.

















Beta-reduction of PLC expressions

M beta-reduces to M0 in one step, M! M0 means M0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

(La (M)) t! M[t/a]

M!⇤ M0 indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M0 are alpha-convertible).

M is in beta-normal form if it contains no redexes.



Beta-reduction of PLC expressions

M beta-reduces to M0 in one step, M! M0 means M0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

(La (M)) t! M[t/a]

M!⇤ M0 indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M0 are alpha-convertible).

M is in beta-normal form if it contains no redexes.



Beta-reduction of PLC expressions

M beta-reduces to M0 in one step, M! M0 means M0 can be
obtained from M (up to alpha-conversion, of course) by replacing
a subexpression which is a redex by its corresponding reduct.
The redex-reduct pairs are of two forms:

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

(La (M)) t! M[t/a]

M!⇤ M0 indicates a chain of finitely† many beta-reductions.

(† possibly zero – which just means M and M0 are alpha-convertible).

M is in beta-normal form if it contains no redexes.



Properties of PLC beta-reduction on typeable
expressions

Suppose G ` M : t is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M! M0, then G ` M0 : t is also a
provable typing.

Church Rosser Property. If M!⇤ M
1

and M!⇤ M
2

, then
there is M0 with M

1

!⇤ M0 and M
2

!⇤ M0.

Strong Normalisation Property. There is no infinite chain
M! M

1

! M
2

! . . . of beta-reductions starting from M.

















Properties of PLC beta-reduction on typeable
expressions

Suppose G ` M : t is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M! M0, then G ` M0 : t is also a
provable typing.

Church Rosser Property. If M!⇤ M
1

and M!⇤ M
2

, then
there is M0 with M

1

!⇤ M0 and M
2

!⇤ M0.

Strong Normalisation Property. There is no infinite chain
M! M

1

! M
2

! . . . of beta-reductions starting from M.





Properties of PLC beta-reduction on typeable
expressions

Suppose G ` M : t is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M! M0, then G ` M0 : t is also a
provable typing.

Church Rosser Property. If M!⇤ M
1

and M!⇤ M
2

, then
there is M0 with M

1

!⇤ M0 and M
2

!⇤ M0.

Strong Normalisation Property. There is no infinite chain
M! M

1

! M
2

! . . . of beta-reductions starting from M.



Properties of PLC beta-reduction on typeable
expressions

Suppose G ` M : t is provable in the PLC type system. Then the
following properties hold:

Subject Reduction. If M! M0, then G ` M0 : t is also a
provable typing.

Church Rosser Property. If M!⇤ M
1

and M!⇤ M
2

, then
there is M0 with M

1

!⇤ M0 and M
2

!⇤ M0.

Strong Normalisation Property. There is no infinite chain
M! M

1

! M
2

! . . . of beta-reductions starting from M.









PLC beta-conversion, =b

By definition, M =b M0 holds if there is a finite chain

M� ·� · · · � ·�M0

where each � is either! or , i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =b M0 holds if and only if there is
some beta-normal form N with

M!⇤ N ⇤ M0



PLC beta-conversion, =b

By definition, M =b M0 holds if there is a finite chain

M� ·� · · · � ·�M0

where each � is either! or , i.e. a beta-reduction in one
direction or the other.

(A chain of length zero is allowed—in which
case M and M0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =b M0 holds if and only if there is
some beta-normal form N with

M!⇤ N ⇤ M0



PLC beta-conversion, =b

By definition, M =b M0 holds if there is a finite chain

M� ·� · · · � ·�M0

where each � is either! or , i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =b M0 holds if and only if there is
some beta-normal form N with

M!⇤ N ⇤ M0



PLC beta-conversion, =b

By definition, M =b M0 holds if there is a finite chain

M� ·� · · · � ·�M0

where each � is either! or , i.e. a beta-reduction in one
direction or the other. (A chain of length zero is allowed—in which
case M and M0 are equal, up to alpha-conversion, of course.)

Church Rosser + Strong Normalisation properties imply that, for
typeable PLC expressions, M =b M0 holds if and only if there is
some beta-normal form N with

M!⇤ N ⇤ M0





Polymorphic booleans

bool , 8a (a � (a � a))

True , La (lx
1

: a, x
2

: a (x
1

))

False , La (lx
1

: a, x
2

: a (x
2

))

if , La (lb : bool, x
1

: a, x
2

: a (b a x
1

x
2

))



Polymorphic booleans

bool , 8a (a � (a � a))

True , La (lx
1

: a, x
2

: a (x
1

))

False , La (lx
1

: a, x
2

: a (x
2

))

if , La (lb : bool, x
1

: a, x
2

: a (b a x
1

x
2

))



Polymorphic booleans

bool , 8a (a � (a � a))

True , La (lx
1

: a, x
2

: a (x
1

))

False , La (lx
1

: a, x
2

: a (x
2

))

if , La (lb : bool, x
1

: a, x
2

: a (b a x
1

x
2

))



Polymorphic booleans

bool , 8a (a � (a � a))

True , La (lx
1

: a, x
2

: a (x
1

))

False , La (lx
1

: a, x
2

: a (x
2

))

if , La (lb : bool, x
1

: a, x
2

: a (b a x
1

x
2

))



Polymorphic booleans

bool , 8a (a � (a � a))

True , La (lx
1

: a, x
2

: a (x
1

))

False , La (lx
1

: a, x
2

: a (x
2

))

if , La (lb : bool, x
1

: a, x
2

: a (b a x
1

x
2

))
















