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Type-inference versus proof search

Type-inference: given I' and M, is there a type T such that
I'M: 17

(For PLC/2IPC this is decidable.)

Proof-search: given I' and ¢, is there a proof term M such that
I'-M: ¢?

(For PLC/2IPC this is undecidable.)
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Pure Type Systems — typing rules

if (S1, Sz) < A

(axiom)

Ok s1:8y
I'EA:s .
' |
(start) T x AFx:A if x & dom(T')
I'-kM:A TFB:s .
(weaken) T x:BFM:A if x &€ dom(T")
(conv) I'EFM:A TFB:s if A=y B

I'-M:B
I'HA:sq I,x:AFB:s,
I'FTIx: A(B) : s3
ILx:AFM:B TFIIx:A(B):s
T'HFAx:A(M):1Ix: A (B)
F-M:Ilx:A(B) THN:A
I'MN : B[N/x]

(A, B, M, N range over pseudoterms, s, s1,S2,S3 over sort symbols)

(pl‘Od) if (S].I S2, 53) ER

(abs)

(app)



Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc é{Prop, Set} (Prop = a sort of propositions, Set = a sort of types)
Ac é{ (Prop, Set)} (Prop is one of the types)
Rc ={(Prop, Prop, Prop), (Set, Prop, Prop),
(Prop, Set, Set), (Set, Set, Set) }
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Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac ={(Prop, Set) }

Rc 2{(Prop,Prop, Prop)’, (Set, Prop, Prop)?,
(Prop, Set, Set)?, (Set, Set, Set)*}

1. Prop has implications, ¢ - ¢ =IIx : ¢ () (where ¢, 3 : Prop and
x & fo(q)).
2. Prop has universal quantifications over elements of a type, Ilx: A (¢(x))

(where A :Set and x: A F ¢(x) : Prop).
N.B. A might be Prop (A2 C AC).

3. Set has types of function dependent on proofs of a proposition,
ITx : p (A(x)) (where p : Prop and x: p = A(x) : Set).

4. Set has dependent function types, IIx : A (B(x)) (where A : Set and
x: Al B(x):Set).
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» Type-checking and typeability are decidable.



Logical operations definable inﬂl&C >\ -

> Truth T 2Vp (p—p)

> Falsity 1. = Vp (p)

> Conjunction ¢ N =Vp ((¢ ~ ¢~ p)—p)
(where p & fo(¢, )

> Disjunction ¢V p =Vp ((¢p - p) = (P — p) — p) (where
p&fo(,¢))

> Negation —¢p = ¢p — L

> Bi-implication ¢ <> = (p—)N (P~ )

A
?‘%O\Z‘\Tx;p(q) L4 A (o)
VPW): —r\?i?mp((p)



Some general properties of AC

It extends both A2 (PLC) and Aw (F,).

AC is strongly normalizing.

Type-checking and typeability are decidable.

AC is logically consistent (relative to the usual foundations of
classical mathematics), that is, there is no pseudo-term ¢t
satisfying ¢ =t : Ilp : Prop (p).

Indeed there is no proof of LEM (Ilp : Prop (mp V p)).



Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).
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Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given ' = A : Set in AC, we can define

Eqqa 2 Ax,y: A(IIP: A - Prop (Px <+ Py))

satisfying I' - Eq4 : A — A — Prop and giving g well-behaved (but
not extensional) equality predicate for ele s of type A.

A _
P = (P=>9)N(gq~ D)
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Functional extensionality:

FunExtg L If,g: A—-B(
(IIx : A (Eqg (fx) (§x))) ~Eqa_p fg)

f T A,B:Set in AC, then T —Ex A B : Prop is derivable, but
for some A, B there does not exist a pseudo-term t for which
't :@4’3 is derivable.
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Extensionality

Functional extensionality:

FunExtg L If,g: A—-B(

(Ilx : A (Eqg (fx) (§%))) ~Eqa-p f8)

i{:"k/\
f T A,B:Set in AC, then T I—J\ErzztA,B : Prop is derivable, but

for some A,B there does not exist a pseudo-term ¢ for which
't Efj?ctA,B is derivable.

Propositional extensionality:

PropExt £ IIp,q : Prop ((p < 6]) - EqProp p 6])

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.



Extensionality

TYPR W‘“—W\ﬁ €Se v
Propositional extensionality: ( HOM&O’Pg TyP{j;\‘QA\U)

PropExt = Ip,q : Prop ((p <> q) — EQprop P q)

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.



