Curry-Howard correspondence

Logic

propositions ¢
proofs p
'p is a proof of ¢’

simplification of proofs

r T T 1 ¢

Type system

types T
expressions M
‘M is an expression of type T’

reduction of expressions

Curry-Howard correspondence

App Kcahiong

Logic Type system
propositions ¢ > types T
proofs p > expressions M
'p is a proof of ¢’ > ‘M is an expression of type T’
simplification of proofs > reduction of expressions

Ct\'m\rou' L\v\uw \z\)xc S ‘U\So\ﬁe, ?\V\”\L\/y%\'s

Curry-Howard correspondence
App N ehiong
Logic/—<—>\> Type system

propositions ¢ > types T
proofs p > expressions M
'p is a proof of ¢’ > ‘M is an expression of type T’

simplification of proofs > reduction of expressions

Linear Temporal Lopic —os RMJ\‘W\A ackive
PV\) 7”“V\/\W\\"\/\7

Mo dad boa&/{cs ~s powvhiadl valmaki on & mne R
(OAL GUNLrovn N

Type-inference versus proof search

Type-inference: given I' and M, is there a type T such that
I'M: 17

(For PLC/2IPC this is decidable.)

Proof-search: given I' and ¢, is there a proof term M such that
I'-M: ¢?

(For PLC/2IPC this is undecidable.)

Curry-Howard correspondence

SreliaHons

Logic > Type system
propositions ¢ > types T
proofs p > expressions M
'p is a proof of ¢’ > ‘M is an expression of type T’
simplification of proofs > reduction of expressions

]NM{ Agsi chawnhs dbp o \
P e A

(:%Wl/) (0. Caletus ¢ Covishucions)

Curry-Howard correspondence

Logic > Type system
propositions ¢ > types T
proofs p > expressions M
'p is a proof of ¢’ > ‘M is an expression of type T
simplification of proofs <> reduction of expressions

<%\0ic6¥fymp&ﬁxmﬂ
E.g.

2IPC

(Y olso Mﬂ@bﬁ;EWMQ ,ng

P

Curry-Howard correspondence

(A\’ @\/\@/f - om(en

M Honi shc CO\) Cgﬁmg
R e “F

\j) — = Ponaru (o

Pure Type Systems — typing rules

if (S1, Sz) < A

(axiom)

Ok s1:8y
I'EA:s .
' |
(start) T x AFx:A if x & dom(T')
I'-kM:A TFB:s .
(weaken) T x:BFM:A if x &€ dom(T")
(conv) I'EFM:A TFB:s if A=y B

I'-M:B
I'HA:sq I,x:AFB:s,
I'FTIx: A(B) : s3
ILx:AFM:B TFIIx:A(B):s
T'HFAx:A(M):1Ix: A (B)
F-M:Ilx:A(B) THN:A
I'MN : B[N/x]

(A, B, M, N range over pseudoterms, s, s1,S2,S3 over sort symbols)

(pl‘Od) if (S].I S2, 53) ER

(abs)

(app)

Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc é{Prop, Set} (Prop = a sort of propositions, Set = a sort of types)
Ac é{ (Prop, Set)} (Prop is one of the types)
Rc ={(Prop, Prop, Prop), (Set, Prop, Prop),
(Prop, Set, Set), (Set, Set, Set) }

Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac ={(Prop, Set) }

Rc 2{(Prop, Prop,Prop)’, (Set, Prop, Prop),
(Prop, Set, Set), (Set, Set, Set) }

1. Prop has implications, ¢ —» ¢ = Ilx : ¢ () (where ¢, ¢ : Prop and
x & fo(q)).

Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac 2{(Prop,Set)}

Rc 2{(Prop,Prop, Prop)’, (Set, Prop, Prop)?,
(Prop, Set, Set), (Set, Set, Set) }

1. Prop has implications, ¢ —» ¢ = Ilx : ¢ () (where ¢, ¢ : Prop and
x & fo(q)).

2. Prop has universal quantifications over elements of a type, Ilx: A (¢(x))

(where A :Set and x: A F ¢(x) : Prop).
N.B. A might be Prop (A2 C AC).

Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac ={(Prop, Set) }

Rc 2{(Prop,Prop, Prop)’, (Set, Prop, Prop)?,
(Prop, Set,Set) , (Set, Set,Set)*}

1. Prop has implications, ¢ —» ¢ = Ilx : ¢ () (where ¢, ¢ : Prop and
x & fo(q)).

2. Prop has universal quantifications over elements of a type, Ilx: A (¢(x))

(where A :Set and x: A F ¢(x) : Prop).
N.B. A might be Prop (A2 C AC).

4. Set has dependent function types, IIx : A (B(x)) (where A : Set and
x: Al B(x):Set).

Calculus of Constructions

is the Pure Type System AC, where C = (S¢, Ac, Rc) is the
PTS specification with

Sc ={Prop, Set}

Ac ={(Prop, Set) }

Rc 2{(Prop,Prop, Prop)’, (Set, Prop, Prop)?,
(Prop, Set, Set)?, (Set, Set, Set)*}

1. Prop has implications, ¢ - ¢ =IIx : ¢ () (where ¢, 3 : Prop and
x & fo(q)).
2. Prop has universal quantifications over elements of a type, Ilx: A (¢(x))

(where A :Set and x: A F ¢(x) : Prop).
N.B. A might be Prop (A2 C AC).

3. Set has types of function dependent on proofs of a proposition,
ITx : p (A(x)) (where p : Prop and x: p = A(x) : Set).

4. Set has dependent function types, IIx : A (B(x)) (where A : Set and
x: Al B(x):Set).

Some general properties of AC

» It extends both A2 (PLC) and Aw (F,).

Some general properties of AC

» It extends both A2 (PLC) and Aw (F,).

» AC is strongly normalizing.

» Type-checking and typeability are decidable.

Logical operations definable inﬂl&C >\ -

> Truth T 2Vp (p—p)

> Falsity 1. = Vp (p)

> Conjunction ¢ N =Vp ((¢ ~ ¢~ p)—p)
(where p & fo(¢,)

> Disjunction ¢V p =Vp ((¢p - p) = (P — p) — p) (where
p&fo(,¢))

> Negation —¢p = ¢p — L

> Bi-implication ¢ <> = (p—)N (P~)

A
?‘%O\Z‘\Tx;p(q) L4 A (o)
VPW): —r\?i?mp((p)

Some general properties of AC

It extends both A2 (PLC) and Aw (F,).

AC is strongly normalizing.

Type-checking and typeability are decidable.

AC is logically consistent (relative to the usual foundations of
classical mathematics), that is, there is no pseudo-term ¢t
satisfying ¢ =t : Ilp : Prop (p).

Indeed there is no proof of LEM (Ilp : Prop (mp V p)).

Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given ' = A : Set in AC, we can define
Eqqa 2 Ax,y: A(IIP: A - Prop (Px <+ Py))

satisfying I' - Eq4 : A — A — Prop and giving a well-behaved (but
not extensional) equality predicate for elements of type A.

Leibniz equality in AC

Gottfried Wilhelm Leibniz (1646-1716),

identity of indiscernibles:

duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given ' = A : Set in AC, we can define

Eqqa 2 Ax,y: A(IIP: A - Prop (Px <+ Py))

satisfying I' - Eq4 : A — A — Prop and giving g well-behaved (but
not extensional) equality predicate for ele s of type A.

A _
P = (P=>9)N(gq~ D)

Extensionality

Functional extensionality:

FunExtg L If,g: A—-B(
(IIx : A (Eqg (fx) (§x))) ~Eqa_p fg)

Extensionality

Functional extensionality:

FunExtg L If,g: A—-B(
(IIx : A (Eqg (fx) (§x))) ~Eqa_p fg)

f T A,B:Set in AC, then T —Ex A B : Prop is derivable, but
for some A, B there does not exist a pseudo-term t for which
't :@4’3 is derivable.

<~

Extensionality

Functional extensionality:

FunExtg L If,g: A—-B(

(Ilx : A (Eqg (fx) (§%))) ~Eqa-p f8)

i{:"k/\
f T A,B:Set in AC, then T I—J\ErzztA,B : Prop is derivable, but

for some A,B there does not exist a pseudo-term ¢ for which
't Efj?ctA,B is derivable.

Propositional extensionality:

PropExt £ IIp,q : Prop ((p < 6]) - EqProp p 6])

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.

Extensionality

TYPR W‘“—W\ﬁ €Se v
Propositional extensionality: (HOM&O’Pg TyP{j;\‘QA\U)

PropExt = Ip,q : Prop ((p <> q) — EQprop P q)

O = PropExt : Prop is derivable in AC, but there does not exist a
pseudo-term t for which ¢ = t : PropExt is derivable.

