Monads in ML

A monad in ML is given by type T(a) with a free type variable &
together with expressions

unit : o« — 7(a)

lift : (« > 7(B)) - 7(a) - T(B)

(writing T(B) for the result of replacing & by B in T) satisfying
some equational properties [omitted].

PLC versus the Pure Type System A2

PTS signature:

22 (8, Ay, Ry) where { A,

2 {x,0}
2 {(+,0))

{(*,%,%),(,*,%)}

Translation of PLC types and terms to A2 pseudo-terms:

] =
[t - 7] =Tx: [7] ([7'])
[Va (7)] = T = = ([7])
lx] = x
[Ax: T (M)] = Ax: [7] ([M])
[MM'] = [M] [M']
[Aa (M)] = Aa : = ([M])
[M 7] = [M] [7]

System F, as a Pure Type System: Aw

PTS specification w = (S, Aw, Rw):

S = {*,0}
A= {(x,0)}
R 2 {(%,%, %), (0, % %), (0,0,0)}

[/ \ .
f— V1 A)
; ~f Y aTe |~
nodenn o 1
(ety IVori
. l_ ___.~"

System F, as a Pure Type System: Aw

PTS specification w = (S, Aw, Rw):

S = {*,0}
A= {(x0)}
R 2 {(*,*,%), (0% %), (0,00)}

As in A2, sort * is a universe of types; but in Aw, the rule (prod) for
(,0,) means that ¢ - ¢ : [J holds for all the ‘simple types’ over the
ground type * — the ts generated by the grammar t =% | t > ¢

I=A:O o ArB8 [

(pred) - (OO
I T A (8) T jém D)

System F, as a Pure Type System: Aw

PTS specification w = (S, Aw, Rw):

S = {*,0}
A2 {(%,0)}
R 2 {(*,*,%), (0% %), (0,00)}
As in A2, sort * is a universe of types; but in Aw, the rule (prod) for

(,0,) means that ¢ - ¢ : [J holds for all the ‘simple types’ over the
ground type * — the ts generated by the grammar t =% | t > ¢

——
I~ A oo Ak X

(prod) - (D
e Tl A (8) T4 TK(N)

(A8 2 Txiq(8) wh x¢fv(8))

System F, as a Pure Type System: Aw

PTS specification w = (S, Aw, Rw):

S = {*,0}
A= {(x,0)}
R 2 {(*,*,%), (0% %), (0,00)}

As in A2, sort * is a universe of types; but in Aw, the rule (prod) for
(,0,) means that ¢ - ¢ : [J holds for all the ‘simple types’ over the
ground type * — the ts generated by the grammar t =% | t > ¢

Hence rule (prod) for (L, %, %) now gives many more legal pseudo-terms
of type * in Aw compared with A2 (PLC), such as

\ O (IIT : % - (I : x (. -~ Ta))) : *
(7L or (T ix = a (Ml i (6= TH) = Ta=TH))
|, -

1 |) 1 \
| = " 4 - 0 | { ., - ~ .
ity O AN 0 M i . s l { SN TaN .-— 117 | ~ AR Y N oan i (|
- ‘, Jl It Y | "u__..r'f' I | Y k) ', I) ot g]]] |]\ ' - - r T ".‘.-'-,. e l‘ [} J, I ! A 1 |/ \ S e A
. it | Ly 7N 1 AP . TN /A) | AN !

Examples of Aw type constructions

» Monad transformer for state (using a type & = S : * for
states):

M2 AT : % - % (Aa: % (S—T(PaS)))
O M: (k- %) —%—

Examples of Aw type constructions

» Product types (cf. the PLC representation of product types):
PEA,B:x(Ily:*((a~B~7)~17))

OFHP:x— x— %

» Monad transformer for state~{using a type ¢ = S : * for

states):

MEAT : % - x (A : % (S— T(
O M: (k- %) —%—

Examples of Aw type constructions

» Product types (cf. the PLC re
P=Aw, B (Thy:x ((a = B—7) = 7))

OFHP:x— x— %

o L
O 2 Wy (oo 7 y) =Y)

e Y q fW(T,c’)
(v o\%v\il{mw ench Chana €
Hypo T e

Examples of Aw type constructions

» Product types (cf. the PLC representation of product types):

PE2Aw,B:x(y:*((a—>B-7)—>7))
OFP:ix—x—x%

» Mon k
stateE}O((T) — V@((\%d(t_,)[g)>4> ﬁ)
drae R & v (<)
~>

» Existential types (cf. the PLC representation of existential
types):
A2 AT : %% (IB:* ((a: % (Ta— B)) —» B))
Ok 3J: (k- %)

Type-checking for F,, [A0)

[)
|
Fact (Girard): System qus strongly normalizing in the sense that
for any legal pseudo-term t, there is no infinite chain of

beta-reductions t — 1 —> tp —> - .

Type-checking for F,, < Y W>

)

Fact (Girard): System F,is strongly normalizing in the sense that
for any legal pseudo-term t, there is no infinite chain of

beta-reductions t — 1 —> tp —> - .

As as corollary we have that the type-checking and typeability

problems for F,, are decidable.

f AW

Propos\'h'w\s AS _lgpes
('sect. 6 of noles)

Curry-Howard correspondence

Logic Type system

propositions ¢ types T

proofs p expressions M

'p is a proof of ¢’ ‘M is an expression of type T

r T T 1T 7

simplification of proofs reduction of expressions

Constructive interpretation of logic

Implication: a proof of @ — @ is a construction that
transforms proofs of ¢ into proofs of .

Negation: a proof of —¢ is a construction that from any
(hypothetical) proof of ¢ produces a contradiction (= proof of
falsity L) |

Disjunction: a proof of @ VV ¢ is an object that manifestly is
either a proof of ¢, or a proof of .

For all: a proof of Vx (¢(x)) is a construction that
transforms the objects a over which x ranges into proofs of
¢(a).

There exists: a proof of dx (¢(x)) is given by a pair
consisting of an object a and a proof of ¢(a).

Constructive interpretation of logic

» Implication: a proof of ¢ — ¢ is a construction that
transforms proofs of ¢ into proofs of . |

» Negation: a proof of =@ is a construction that from any
(hypothetical) proof of ¢ produces a contradiction (= proof of
falsity L)

» Disjunction: a proof of @ V ¢ is an object that manifestly is
either a proof of ¢, or a proof of .

» For all: a proof of Vx (¢(x)) is a construction that
transforms the objects a over which x ranges into proofs of
¢(a).

» There exists: a proof of Ix (¢(x)) is given by a pair
consisting of an object a and a proof of ¢(a).

The Law of Excluded Middle (LEM) |Vp (p V —p) | is a classical
tautology (has truth-value true), but is rejected by constructivists.

Example of a non-constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Example of a non-constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

Example of a non-constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

If it is, we can take a = b = /2, since 4/2 is irrational by a
well-known theorem attributed to Euclid.

Example of a non-constructive proot

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. Either \/2‘/2 is rational, or it is not (LEM!).

If it is, we can take a = b = /2, since 4/2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a = 4/2 and b = \/2‘/2, since then
b = (\2VH)V2 =\ 2VEVE= /22 =2

QED

Example of a constructive proof

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. /2 is irrational by a well-known constructive proof
attributed to Euclid.

21og, 3 is irrational, by an easy constructive proof (exercise).

Example of a constructive proof

Theorem. There exist two irrational numbers a and b such that
b% is rational.

Proof. /2 is irrational by a well-known constructive proof
attributed to Euclid.

21og, 3 is irrational, by an easy constructive proof (exercise).

So we can take a = 21log, 3 and b = /2, for which we have that
b = (1/2)2198:3 = (,/2%)108:3 = 2108:3 = 3 is rational.

QED

Curry-Howard correspondence

e

Logic

propositions ¢
proofs p
‘p is a proof of ¢’

simplification of proofs

2IPC

<>

r T T 1T 7

7

VL C

Type system

types T
expressions M
‘M is an expression of type T’

reduction of expressions

PLC

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: | ¢ =p | ¢ — ¢ | Vp (¢) | where p ranges
over an infinite set of propositional variables.

2IPC sequents: | ® = ¢ | where @ is a finite multiset (= unordered
list) of 2IPC propositions and ¢ is a 2IPC proposition.

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: | ¢ =p | ¢ — ¢ | Vp (¢) | where p ranges
over an infinite set of propositional variables.

2IPC sequents: | ® = ¢ | where @ is a finite multiset (= unordered
list) of 2IPC propositions and ¢ is a 2IPC proposition.

® I~ ¢ is provable if it is in the set of sequents inductively
generated by:

(I1d) @+ ¢ ifpc @

D, ¢’ S ¢ ® - ¢
(=1) D¢ (-E) |
(VI) o ¢ if p & fo(P) (VE) ®FVp(9)

@ = Vp(p) @ - ¢plo'/p]

Logical operations definable in 2IPC

> Truth T =Vp (p -~ p)
> Falsity 1 = Vp (p)

Logical operations definable in 2IPC

» Truth T 2Vp(p—p)
> Falsity 1 = Vp (p)

> Conjunction g Np =Np ((p—->9p—>p)-p)
(where p & fo(¢, ¢))

Logical operations definable in 2IPC

> Truth T = Vp (p - p)

> Falsity 1 = Vp (p)

» Conjunction p AP =¥p ((¢p = - p) - p)
(where p & fo(¢,¥))

» Disjunction @V P =Vp ((¢ —» p) = (¢ — p) - p) (where
p&fo(e,9))

Logical operations definable in 2IPC

Truth T =Vp (p—p)

Falsity L =¥p (p)

Conjunction ¢ A = Vp ((¢ ~ ¢~ p) = p)

(where p & fo(¢,)

Disjunction ¢ V ¢ =¥p ((¢ —» p) - (P — p) = p) (where
p&fo(ov))

Negation —¢p = ¢ — L

Bi-implication ¢ <= ¢ = (p-9P) N (Y-)

Logical operations definable in 2IPC

Truth T 2Vp (p = p)

Falsity 1. = ¥p (p)

Conjunction g A =Vp ((¢p - > p) - p)

(where p & fo(p, 9))

Disjunction ¢ V ¢ =¥p ((¢ —» p) - (P — p) = p) (where
p & fo(e,9))

Negation —¢p = ¢p — L

Bi-implication ¢ <+ ¢ 2 (p—-P)NA (Y-)

Existential quantification 3 p (qb) = Vq (Vp ((P — 6]) — 6])
(where g & fo(¢,p))

A 2]PC proot

Writing p A g as an abbreviation for Vr ((p — g —r) — r), the
sequent

{}FVp (Vg ((pANgq)-p))
is provable in 2IPC:

A 2]PC proot

Writing p A g as an abbreviation for Vr ((p — g —r) — r), the
sequent

{}=Vp(Vg((pAg)-p))

is provable in 2IPC:
((:f)) {pANq,pa}ttp (1d)
on) PALPrEacp gy AN EVE((pog o)~ 1)
(LE) {pNqtFp-q-p {pANq}t - (p-q-9) -4

itPAgrbp
) (oA » O
(i) EValprng)~p) TN PO,

{}EVp (Vg ((pNa)-p))

Curry-Howard correspondence

A D —

+ L nV |

Logic <> Type system

Curry-Howard correspondence

. A

-

:'. _.." 'I- ; __,-: C ‘ |) _:i_.)

Logic Type system

7

propositions ¢ A types T

Curry-Howard correspondence

A J 1 e
) T) 1]
. | v O L
- - |

Logic Type system

propositions ¢ types T

proofs p expressions M

r ¥ T 7

‘p is a proof of ¢’ ‘M is an expression of type T’

Mapping 2IPC proofs to PLC expressions

(Id) ®,¢ - ¢

D,
(-1) ¢|_¢ ¢/
$—¢

O+
Ol

(=E) —5+ ¢’

Ol

D ® = Vp(p)

@ = Vp(¢)

E) ot ple/1]

(id)x:®P,x:pFx:9

X:®,x:p - M: ¢’

(fn)

(app)

(gen)

(spec)

X:®HAx:p (M) :¢p— ¢’
X:®FM;:¢p— ¢’

X:PHM,: ¢

X:®+ M M, : ¢’

xX:®P-M: ¢

X:®PHFAp (M) :Vp (9)

X:®PHM:Vp(p)

X:®+-Me':pl¢p'Ip]

The proof of the 2IPC sequent

{}FVp(Vg((pNa)-p))

given before is transformed by the mapping of 2IPC proofs to PLC
expressions to

{}FAp,q(Az:pAq(zp(Ax:p,y:q(x))))
:Vp (VMg ((pNq)-p))

with typing derivation:

(id)

tpAg,x:p,Yy:qtHx:
{z:pANqx:py:q}ttx:p (id)

W) i pAgriphrAyig(9)ia—p tz:ipAgtbz:Vr((p=g-r1)—1)

(fn) (spec)

(app)

{z:pAqtEAx:ipy:q(x):p-q-p {z:pAqtrzp:(poq-p)-p
(fn) {z:pAqtbzp(Ax:p,y:q(x)):p
{}FAz:pAg(zp(Ax:p,y:q(x))): (pAq)—p
{}FAq(Az:pAg(zp(Ax:p,y:q(x)))) :Vg((pAq)—p)
{YFAp,g(Az:pAgq(zp(Ax:p,y:q(x)))) :Vp,q((pAq) - p)

(gen)
(gen)

Curry-Howard correspondence

Logic

propositions ¢
proofs p

‘p is a proof of ¢’

Type system

types T
expressions M

‘M is an expression of type T’

simplification of proofs

K B

reduction of expressions

Proof simplification <+ Expression reduction

, q)’¢|_1p N f:‘b,x:d.)l—M:IIJ :
((*Eiq,,_qbﬂ,, o+ ¢ i@ Ax:p(M):pop :®FN:¢

® -y X:®F (Ax:¢p(M))N: ¢

Proof simplification <+ Expression reduction

, q)’¢|_ll) N f:q),x:d.)l—Mtll) :
(—>E)q)|_¢_>¢ @+ ¢ ¥ PHAx:p(M):p—>yp x:®FN:¢
(—E) OF x:®F (Ax:¢p (M))N: g

l beta-reduce expression

f:d),x:cfl—MztlJ §:<I>I—'N:¢
X:®F M[N/x|: ¢

(subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Proof simplification <+ Expression reduction

, q)’¢|_ll) N f:q),x:d.)l—Mtll) :
(—>E)q)|_¢_>¢ @+ ¢ ¥ PHAx:p(M):p—>yp x:®FN:¢
(—E) OF x:®F (Ax:¢p (M))N: g

l beta-reduce expression

d>,¢.|—1p <I>|.—qb — f:d),x:cfl—MztlJ §:<I>I—'N:¢

(cut) OF ¢ ¥:®F M[N/x]:

(subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Proof simplification <+ Expression reduction

, <I>,<p.|—1[) : — %:CD,x:q.bl—M:t[) :
((:E§<I>I—<p—>1[; O) X:®PHAx:p(M):¢p— 1 X:®PFN:¢
® -y X:®F (Ax:¢p(M))N: ¢
simplify proofl l beta-reduce expression

d>,¢.|—1p <I>|.—qb — f:d),x:cfl—MztlJ §:<I>I—'N:¢

(cut) OF ¢ ¥:®F M[N/x]:

(subst)

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

