Semantics in Practice

Semantics of Practice

How do we write semantics?

1: pen-and-paper

How do we write semantics?

2: LaTeX

(opl) <elvs> — <e175,>

(e1 op e, s5) — (€] op e, s)

How do we write semantics?

2: LaTeX

(op1) (e1,5) — (e}, s")
(e1 op e, s) — (e; op e, s’)

\rL{opl} \mc
\autoinfer{}
{ \langle \tsvar{e}_{1},\tsvar{s}\rangle
\longrightarrow
\langle \tsvar{e}’'_{1},\tsvar{s}’\rangle }
{ \langle \tsvar{e}_{1} \;\;\tsvar{op}\;\;\tsvar{e}_{2},\tsvar{s}\rangle
\longrightarrow

\langle \tsvar{e}’'_{1} \;\;\tsvar{op}\;\;\tsvar{emyrb_{2myrb,\tsvar{smyrb’\rangle }

How do we write semantics?

2: LaTeX

(op1) (e1,5) — (e}, s")
(e1 op e, s) — (e; op e, s’)

\rL{opl} \mc
\autoinfer{}
{ \langle \tsvar{e}_{1},\tsvar{s}\rangle
\longrightarrow
\langle \tsvar{e}’'_{1},\tsvar{s}’\rangle }
{ \langle \tsvar{e}_{1} \;\;\tsvar{op}\;\;\tsvar{e}_{2},\tsvar{s}\rangle
\longrightarrow
\langle \tsvar{e}’'_{1} \;\;\tsvar{op}\;\;\tsvar{emyrb_{2myrb,\tsvar{smyrb’\rangle }

Doable in-the-small, but doesn’t scale: too hard to keep consistent

How do we want to write semantics?

’

<el,s> -> <el’,s’'>

<el op e2,s> -> <el’ op e2,s’'>

» human-readable
> easy to type and edit

> version-control friendly

Ott

[Owens, Sewell, Zappa Nardelli; 2006-]

You write:
> the concrete grammar for your abstract syntax

» inductive rules over that grammar

» parses that (enforcing variable conventions and judgement forms)
> generates typeset version

» supports Ott syntax embedded in LaTeX

» generates OCaml code for abstract syntax type

» generates theorem-prover definitions

Github: https://github.com/ott-lang/ott (research software...)

https://github.com/ott-lang/ott

Example: L1 in Ott

grammar
el Y Y g {{ com expre551cns 1}
| n
| b
| el op €2
| if el then e2 else e3
| : 1 11 assign
| 5= =5 ref,
| 11 skip
| i ;1 sequence
| while el do e2 i} :: while
| (e) at= :: paren {{ ichlo ([[e]]) }}

defn
<e,s>-><e',s'">:::: reduce ::
{{ com \langle[[e]],\,[[s]]\rangle reduces to \langle[[e']],\,[[s']]\rangle }} by

: op_plus

<el op e2,s> -> <el op e2',s'>

Example: L1 in Ott

e = expressions
| n
| b
| e op ez
| if e1 then es else e3
| l:=e
| U
| skip
| e1; e2
| while e do ey
(o) M

(e,s) — (e’,s) (e, s) reduces to (e’,s’)

ny+ny=n

op_plus
(m + nas) — (ms) "
n>ny=>b .
op_gte
(m > n2,s) — (b,s) Pgted
e1,s) — (e, s’
(ers) = (efus)

(e1 opez,s) — (e] opea,s’)

Example: OCamljigh: [Owens]
Scales from calculi to full-scale languages

OCamlgy in Ott

et of the Objeci

The OCamijg Operational Semantics (131 rues)

e system (179 rules, below)

0

T, Hea— B

How do we prove things about semantics?
1. Handwritten proof

How do we prove things about semantics?
1. Handwritten proof

2. LaTeX proof

e.g. http://www.cl.cam.ac.uk/~pes20/hashtypes-tr-cam.pdf

http://www.cl.cam.ac.uk/~pes20/hashtypes-tr-cam.pdf

How do we prove things about semantics?
1. Handwritten proof

2. LaTeX proof
e.g. http://www.cl.cam.ac.uk/~pes20/hashtypes-tr-cam.pdf
Problems:

> error-prone
» very hard to maintain in face of changes to definitions

http://www.cl.cam.ac.uk/~pes20/hashtypes-tr-cam.pdf

Solution: mechanised proof assistants

(aka theorem provers)
Software tools that:

> typecheck mathematical definitions
» do machine-checked primitive proof steps
> higher-level automation (decision procedures, tactics,...)
main tools:
» HOL4 (Mike Gordon et al.)
Isabelle (Larry Paulson, Tobias Nipkow, et al.)
Coq (INRIA)
ACL2 (UT Austin)

v

v

v

HOL4 and Isabelle based on classical higher-order logic, using LCF idea
of Robin Milner to ensure soundness relies on small core; Coq based on
dependent type theory; ACL2 on pure LISP)

Example: L1 in Isabelle (Victor Gomes)

Github: https://github.com/victorgomes/semantics

https://github.com/victorgomes/semantics/blob/master/Ll.thy

https://github.com/victorgomes/semantics
https://github.com/victorgomes/semantics/blob/master/L1.thy

Provers enable substantial verified software

» OCamljighs: mechanised HOL4 proof of type soundness

Provers enable substantial verified software

» CompCert: compiler for particular version of C
http://compcert.inria.fr/

e Programmed
e in Caml

Y roverrc PR
assembly

Programmed and
proved in Cog

Theorem If program has no undefined behaviour w.r.t. the
CompCert C semantics, and the compiler terminates successfully,
then any behaviour of the compiled program w.r.t. the CompCert
assembly semantics is a behaviour of the source program in the
CompCert C semantics. [Proof in Coq]

http://compcert.inria.fr/

Provers enable substantial verified software

CompCert: compiler for particular version of C
http://compcert.inria.fr/

CakeML.: verified compiler for ML-like language
https://cakeml.org/

selL4: verified hypervisor

https://sel4.systems/

Vellvm: verified LLVM optimisations
http://www.cis.upenn.edu/~stevez/vellvm/
IronClad, CertiKOS, VST, Everest, CompCertTSO, ...

http://compcert.inria.fr/
https://cakeml.org/
https://sel4.systems/
http://www.cis.upenn.edu/~stevez/vellvm/

Amazing!

Amazing!

but... divorced from normal software development process

Amazing!

but... divorced from normal software development process

In normal practice:
» the only way to assess whether s/w is good is to run it on tests
» we have to manually specify allowed outcomes for each test

» we typically have specification documents

> usually precise about syntax
» usually ambigous prose description of behaviour

» the de facto standards are unclear

Amazing!

but... divorced from normal software development process

Semantics gives us a way of being precise about behaviour
» can use for proof (hand or mechanised), as we've seen

» but so far can't use in testing; disconnected from normal
development

» and we don't have semantics for key abstractions

http://rems.1io
Cambridge Systems (OS/Arch/Security) + Semantics, Imperial, Edinburgh

Investigators — Systems: Crowcroft, Madhavapeddy, Moore, Watson

Investigators — Semantics: Gardner, Gordon, Pitts, Sewell, Stark,

Researchers: Campbell, Chisnall, Flur, Fox, French, Gomes, Gray, Joannou, Kell, Matthiesen, Mehnert, Memarian, Mersinjak,
Mulligan, Naylor, Nienhuis, Norton-Wright, Ntzik, Pichon-Pharabod, Pulte, Raad, da Rocha Pinto, Roe, Sezgin, Svendsen,
Wassell, Watt

Alumni: Batty, Dinsdale-Young, Kammar, Kerneis, Kumar, Lingard, Myreen, Sheets, Tuerk, Villard, Wright
Collaborations: Deacon, Maranget, Reid, Ridge, Sarkar, Williams, Zappa Nardelli, ...

http://rems.io

Apps

Hardware

Semantics to the rescue?

Options:
» rebuild clean-slate stack

[good research, but deployable? And... do we know how?]

Semantics to the rescue?

Options:
» rebuild clean-slate stack
[good research, but deployable? And... do we know how?]

» full verification

[mechanised proofs of functional correctness (all or nothing)]

Semantics to the rescue?

Options:
» rebuild clean-slate stack

[good research, but deployable? And... do we know how?]

» full verification
[mechanised proofs of functional correctness (all or nothing)]

» reason on idealised models

[useful for design, but disconnected from real systems]

Semantics to the rescue?

Options:
» rebuild clean-slate stack

[good research, but deployable? And... do we know how?]

» full verification

[mechanised proofs of functional correctness (all or nothing)]

» use 1980s languages instead of 1970s (or 1990s) languages

[useful, but only hits some problems]

» reason on idealised models

[useful for design, but disconnected from real systems]

Semantics to the rescue?

Options:
» rebuild clean-slate stack

[good research, but deployable? And... do we know how?]

» full verification

[mechanised proofs of functional correctness (all or nothing)]

» bug-finding analysis tools
[applicable to real systems, but incomplete and unsound]

» use 1980s languages instead of 1970s (or 1990s) languages

[useful, but only hits some problems]

» reason on idealised models

[useful for design, but disconnected from real systems]

Semantics to the rescue?

Options:

>

rebuild clean-slate stack

[good research, but deployable? And... do we know how?]

full verification

[mechanised proofs of functional correctness (all or nothing)]

full specification of key interfaces

[for formally based testing and design, + verification where possible]
bug-finding analysis tools

[applicable to real systems, but incomplete and unsound]

use 1980s languages instead of 1970s (or 1990s) languages

[useful, but only hits some problems]

reason on idealised models

[useful for design, but disconnected from real systems]

Apps

Hardware

Apps

OS API and Wire interfaces

Programming Language

Architecture

Hardware

Apps

OS API and Wire interfaces

Programming Language

Architecture

Hardware

Fah)
\

Y
\ \W

http://rems.io

TLS: ngsbTLS

TCP/IP: Huginn-TCP

POSIX filesystem test oracle: SibylFS
POSIX filesystem logic

AV 4

Sequential C (ISO/de facto): Cerberus
Concurrent C: C/C++11, OpenCL, new
C runtime type checking: libcrunch

ELF linking: linksem

Verified ML implementation: CakeML

Multiprocessor Concurrency
(ARM, POWER, x86, GPU)
Multiprocessor ISA, in Sail and L3
(ARM, POWER, CHERI, MIPS, RISC-V, x86)
CHERI

Semantic Tools Concurrency Reasoning

http://rems.io

Apps

OS API and Wire interfaces

Programming Language

Architecture

Hardware

Fah)
VI
Y

\ \W

http://rems.io
IETF
TLS: nquTLS FreeBSD

TCP/IP: Huginn 40 filesystem configs
POSIX filesyste G us

POSIX filesystem logic

Sequential C (1SS 4Ye) WG21/WG14
Concurrent C: C/C .

C runtime type checking: libcrunch
ELF linking: linksem
Verified ML implementation: CakeML

, Qualcomm, Apple NVIDIA L|nux

(ARM, POWER, x86, GPU)

Multiprocessor ISA, in S@ ARI\/I |BM
CTSRD/CHERI team [o

Semantic Tools Concurrency Reasoning

http://rems.io

Key Idea: Semantics Executable as Test Oracle
replace

prose descriptions of behaviour (typical in specification
docs)

by

semantic specifications that are executable as a test oracle

i.e., programs or executable mathematics that compute whether any
potential behaviour of the system is allowed or not

(need not be decidable in general, so long as it is often enough)

Key Idea: Semantics Executable as Test Oracle
replace

prose descriptions of behaviour (typical in specification
docs)

by
semantic specifications that are executable as a test oracle

i.e., programs or executable mathematics that compute whether any
potential behaviour of the system is allowed or not

(need not be decidable in general, so long as it is often enough)

This:
> greatly simplifies testing — don't need to curate allowed outcomes,
so can do random or systematic test generation
> gives a way to investigate de facto standards: experimental
semantics

How to express semantics executable as a test oracle?

many options:

» pure function that checks input/output relation of system
spec : (input x output) — bool
» pure function that checks trace of system
spec : (event list) — bool
(plus instrumentation to capture traces)
» function that computes possible transitions of system
spec : state — ((event X state) set)
(e.g. if you can compute the exhaustive tree, and compare that with
observed traces from instrumentation)
> relation that defines possible transitions of system

spec C state X event X state
together with some way to make that executable as the above

How to express semantics executable as a test oracle?
many options:

» pure function that checks input/output relation of system
spec : (input x output) — bool

» pure function that checks trace of system
spec : (event list) — bool
(plus instrumentation to capture traces)

» function that computes possible transitions of system
spec : state — ((event X state) set)
(e.g. if you can compute the exhaustive tree, and compare that with
observed traces from instrumentation)

» relation that defines possible transitions of system

spec C state X event X state
together with some way to make that executable as the above

written in any of many languages: pure functional program, theorem
prover, even C... Balancing clarity, execution, reasoning

Apps

0S

Architecture

Hardware

Multiprocessor Concurrency
(ARM, POWER, x86, GPU)
Multiprocessor ISA, in Sail and L3
(ARM, POWER, CHERI, MIPS, RISC-V, x86)
CHERI

Real-world Concurrency
A naive two-thread mutual-exclusion algorithm:

Initial state: x=0 and y=0

Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

Real-world Concurrency
A naive two-thread mutual-exclusion algorithm:

Initial state: x=0 and y=0
Thread 0 Thread 1
x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

In L1, consider:
(x=Lnrn=y)lly:=1n:=x)

in initial state: x =0and y =0

Is a final state with ry = 0 and r = 0 possible?

Real-world Concurrency
A naive two-thread mutual-exclusion algorithm:

Initial state: x=0 and y=0
Thread 0 Thread 1
x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

In L1, consider:
(x=Lnrn=y)lly:=1n:=x)

in initial state: x =0and y =0

Is a final state with ry = 0 and r = 0 possible?

‘ Thread 0 ‘ ‘ Thread 1 ‘
a: W|x]=1 c: Wly]=1
pOI Ipo
—a S~

rf b: R[y]=0 rf d: R[x]=0

Tect SR

Let's try...

~/rsem/tutorial/lectures-acs/runSB.sh

~/rsem/tutorial/lectures-acs/runSB.sh

x86-TSO Semantics

J8yng allIM
layng 8llIM

Shared Memory

x86-TSO Semantics

‘ Thread ‘ soe ‘ Thread ‘

5 5
T @
o es)
S S
g g

‘ Shared Memory ‘

An x86-TSO abstract machine state m is a record

m:{ M : addr— value,
B : tid — (addr x value) list;
L : tid option)
where
» m.M is the shared memory, mapping addresses to values
» m.B gives the store buffer for each thread, most recent at the head

» m.L is the global machine lock indicating when a thread has
exclusive access to memory

x86-TSO Abstract Machine: Behaviour

IRM: Read from memory
not_blocked(m, t)
m.M(x) = v
no_pending(m.B(t), x)

t:Rx=v
m —— m

Thread t can read v from memory at address x if t is not blocked, the
memory does contain v at x, and there are no writes to x in t's store

buffer.

x86-TSO Abstract Machine: Behaviour

IRB: Read from write buffer
not_blocked(m, t)
b1 bo. mB(t) =b —I—I—[(X7 V)] ++bo
no_pending(by, x)

t:Rx=v
m e m

|
Thread t can read v from its store buffer for address x if t is not blocked

and has v as the newest write to x in its buffer;

x86-TSO Abstract Machine: Behaviour

[
WB: Write to write buffer

m EWx=v, m® (B:=m.Ba& (t— ([(x,v)] ++m.B(t))))

Thread t can write v to its store buffer for address x at any time;

x86-TSO Abstract Machine: Behaviour

[
WM: Write from write buffer to memory

not_blocked(m, t)
m.B(t) = b++][(x, v)]
ET x=y

m —=% maeM=mMa (x—v)) & [(B:=m.Ba&(t— b))

[|
If t is not blocked, it can silently dequeue the oldest write from its store
buffer and place the value in memory at the given address, without
coordinating with any hardware thread

v

v

Validation of x86-TSO Semantics

experiments on various x86 processor implementations
discussion with vendor architects
discussion with systems-programmer clients

mechanised proof of properties

Epilogue

Lecture Feedback

Please do fill in the lecture feedback form — we need to know how the
course could be improved / what should stay the same.

What can you use semantics for?

. to understand a particular language — what you can depend on as a
programmer; what you must provide as a compiler writer

. as a tool for language design:

2.1 for clean design

2.2 for expressing design choices, understanding language features and
how they interact.

2.3 for proving properties of a language, eg type safety, decidability of
type inference.

. as a foundation for proving properties of particular programs

. as tools for making precise specifications, executable as test oracles

The End

