
Security I: Common software vulnerabilities:
SQL injection

Required submission: Enter all three recovered flags at the flag check-
ing portal.

Introduction

Before tackling the following stages, you will need to be familiar with Structured
Query Language (SQL), particularly SELECT statements. You will also need to
understand how SQL queries can be subverted when user-supplied input is not
robustly sanitised. All three stages require access to a simple web application
which exhibits a number of SQL-injection vulnerabilities. On completing indi-
vidual stages, you will retrieve a flag (a string of 8 alpha-numeric characters).
The flags must be submitted to the flag checking portal. If you submit a correct
flag, your achievement will be logged automatically.

Rules of engagement

These instructions request that you attack a web application, and it is important
that you only attack the designated targets. All target web pages will have the
title “Valid target”, so please check for this first. Please do NOT attack the
University’s Raven service.

1. Authentication bypass

Begin by accessing the Raven-protected page at: Stage 1. The page presents a
simple login form. You must bypass the login form using SQL injection, and
login as user “admin”. The SQL query which is being executed by the web
application when you click “Login” is presented at the bottom of the page to
assist you in developing a functioning exploit. No flags are available in this
stage, but you will need to be able to login to the application to gain access to
subsequent stages.

2. Modify search query

After logging in to the web application in Stage 1, you will have been redirected
to a simple search page. The search page allows you to find dinosaurs by name.
Some dinosaurs are classified, and their details are not normally included in

1

https://cambridge2cambridge.cl.cam.ac.uk/skunkworks/check.php
https://cambridge2cambridge.cl.cam.ac.uk/skunkworks/check.php
https://cambridge2cambridge.cl.cam.ac.uk/skunkworks/login.php
https://cambridge2cambridge.cl.cam.ac.uk/skunkworks/search.php

the search output. You will need to modify the executing SQL statement ap-
propriately in order to return additional classified results. Once this has been
accomplished, the first flag will be revealed (in blinking text).

3. Query adjacent tables

A flag has been stored outside of the table “dinosauria” on which the search
page bases its queries. The flag has been assigned to a user variable, “@flag”.
You will need to modify the executing SQL statement appropriately in order to
include “@flag” in the results. Once this has been accomplished, the second flag
will be revealed (in blinking text). This example query should help you with
the correct syntax:

SELECT @flag;

If you are able to retrieve the flag, then you should also be able to find out what
the admin user’s password is for the web application!

4. Blind SQL injection

A second page in the web application displays some dinosaur statistics. It queries
the same table “dinosauria”, but rather than listing all the rows returned, it
counts how many dinosaurs lived in a particular age and displays only a single
number. The page is vulnerable to blind SQL injection. A flag has been assigned
to a user variable again, “@flag”. You will need to modify the executing SQL
statement appropriately so that you can submit yes/no queries to the database
management system, and this should allow you to exfiltrate the flag. These
example queries illustrate how you might submit a yes/no query to the database
management system:

SELECT genus FROM dinosauria WHERE genus="Tyrannosaurus";
+---------------+
| genus |
+---------------+
| Tyrannosaurus |
+---------------+
1 row in set (0.00 sec)

One result was returned as expected.

SELECT genus FROM dinosauria WHERE genus="Tyrannosaurus" AND 1=0;
Empty set (0.00 sec)

No results were returned, because the RHS of the test was false.

SELECT genus FROM dinosauria WHERE genus="Tyrannosaurus" AND 1=1;
+---------------+

2

https://cambridge2cambridge.cl.cam.ac.uk/skunkworks/age.php

| genus |
+---------------+
| Tyrannosaurus |
+---------------+
1 row in set (0.00 sec)

One result was returned because the RHS of the test was true.

3

	Security I: Common software vulnerabilities: SQL injection
	Introduction
	Rules of engagement
	1. Authentication bypass
	2. Modify search query
	3. Query adjacent tables
	4. Blind SQL injection

