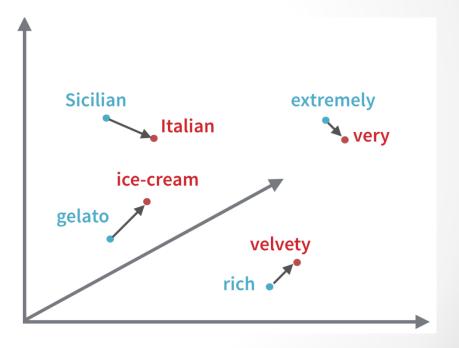
Linguistic Regularities in Sparse and Explicit Word Representations

> Omer Levy and Yoav Goldberg R222 Presentation by Kaitlin Cunningham 6 February 2017

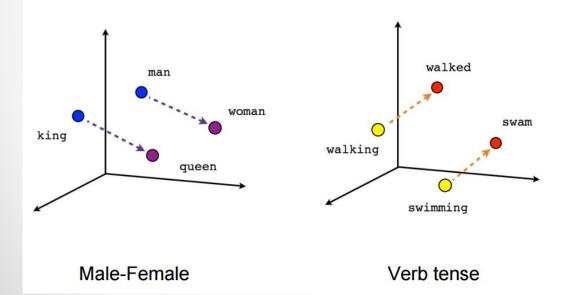
- Neural embeddings / word embeddings / distributed word representations:
 - $_{\odot}$ Words represented as dense, real-valued vectors in \mathbb{R}^{d}
 - Embed an entire vocabulary into a low-dimensional linear space
 - Dimensions are latent continuous features

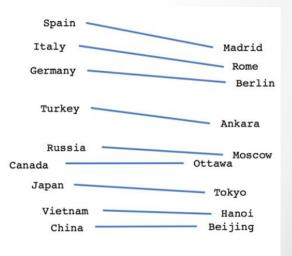
- <u>Attributional similarities</u>:
 - words that appear in similar
 contexts will be close to each
 other in the vector space



- <u>Relational similarities:</u>
 - vectors can also encode linguistic

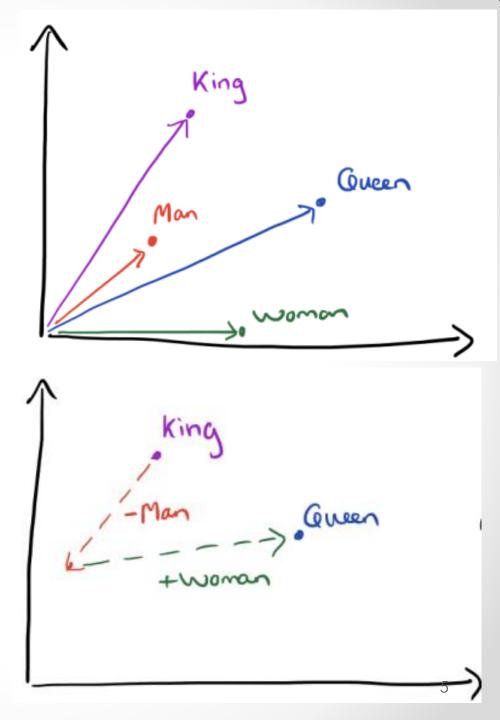
relations like gender, tense





Country-Capital

Relational similarities can be reflected in vector offsets between word pairs and accessed by using simple vector arithmetic:



- An alternative to neural embeddings are <u>explicit</u> <u>vector representations</u>:
 - Each word is associated with a very high dimensional but sparse vector capturing the contexts in which it occurs
 - Each dimension corresponds to a context

This paper...

- Aims to show that the explicit vector space also encodes relational similarity information which can be recovered
- Contributes to the idea that the vector arithmetic method can be decomposed into a linear combination of three pairwise similarities
- And suggests a modified optimisation objective

Explicit vector space representations

→ For vocabulary V and a set of contexts C The result is a |V| x |C| sparse matrix S Where S_{ij} corresponds to the strength of the association between word *i* and context *j*

- The 'association' is measured by the positive pointwise mutual information (PPMI) metric
- The contexts are linear contexts which encompass the words surrounding the target word w within a window of 2 to each side

The analogy task

 \rightarrow a is to a* as b is to b*

• (1): 3COSADD: $\arg \max_{b^* \in V} (\cos (b^*, b - a + a^*))$

• (3): 3COSADD:

$$\arg \max_{b^* \in V} (\cos (b^*, b) - \cos (b^*, a) + \cos (b^*, a^*))$$

• (2): PAIRDIRECTION: $\arg \max_{b^* \in V} (\cos (b^* - b, a^* - a))$

Basic setup

- English Wikipedia
- Word representations: WORD2VEC
- Evaluation datasets:

Open vocabularies: MSR, Google
 Closed vocabulary: SEMEVAL
 Micro-averaged
 accuracy
 Macro-averaged
 accuracy

A reminder

 Derive explicit and neural embedded vector representations and compare their capacities to recover relational similarities using objectives 3COSADD (3) and PAIRDIRECTION (2)

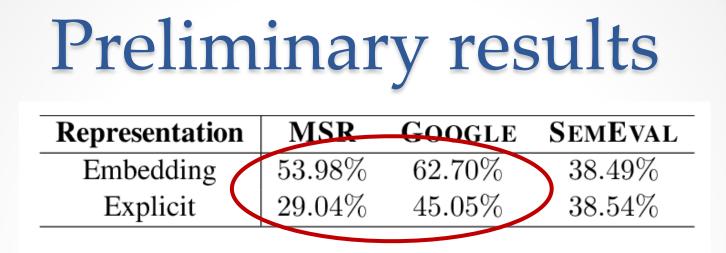


Table 1: Performance of **3COSADD** on different tasks with the explicit and neural embedding representations.

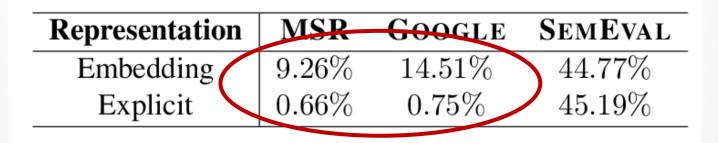


Table 2: Performance of **PAIRDIRECTION** on different tasks with the explicit and neural embedding representations.

Refining the maths

• (3): 3COSADD:

$$\arg \max_{b^* \in V} (\cos (b^*, b) - \cos (b^*, a) + \cos (b^*, a^*))$$

• (4): 3COSMUL
$$\arg \max_{b^* \in V} \frac{\cos(b^*, b)\cos(b^*, a^*)}{\cos(b^*, a) + \varepsilon}$$

Results

Objective	Representation	MSR	GOOGLE	SemEval
3CosAdd	Embedding	53.98%	62.70%	38.49%
	Explicit	29.04%	45.05%	38.54%
3CosMul	Embedding	59.09%	66.72%	38.37%
	Explicit	56.83%	68.24%	38.67%
	-	-		-0.0110

Table 3: Comparison of **3COSADD** and **3COSMUL**.

• 14

Error analysis

	Both	Both	Embedding	Explicit	71 00/
	Correct	Wrong	Correct	Correct	71.9%
MSR	43.97%	28.06%	15.12%	12.85% 🧹	
GOOGLE	57.12%	22.17%	9.59%	11.12% 🥿	
ALL	53.58%	23.76%	11.08%	11.59%	
					77.8%

Table 4: Agreement between the representations on open-vocabulary tasks.

Error		Relation	Embedding	Explicit
		capital-common-countries	90.51%	99.41%
1 • (capital-world	77.61%	92.73%
analysis		city-in-state	56.95%	64.69%
arrary Did		currency	14 55%	10.53%
		family (gender inflections)	76.48%	60.08%
	ш	gram1-adjective-to-adverb	24.29%	14.01%
	GL	gram2-opposite	37.07%	28.94%
	õ	gram3 comparative	30.11 %	77 85%
	0	gram4-superlative	56.72%	63.45%
		gram5-present-participle	63.35%	65.06%
		gram6-nationality-adjective	89.37%	90.56%
		gram7-past-tense	65.83 <i>%</i>	48.85%
		gram8-plural (nouns)	72.15%	76.05%
		gram9-plural-verbs	71.15%	55.75%
	~	adjectives	45.88%	56.46%
	MSR	nouns	56.96%	63.07%
	\mathbf{Z}	verbs	69.90%	52.97%

Table 5: Breakdown of relational similarities in each representation by relation type, using 3CosMuL.

DEL (TRO)	Worr	Exm	Eve
RELATION	WORD	Емв	EXP
gram7-past-tense	who	0	138
city-in-state	fresno	82	24
gram6-nationality-adjective	slovak	39	39
gram6-nationality-adjective	argentine	37	39
gram6-nationality-adjective	belarusian	37	39
gram8-plural (nouns)	colour	36	35
gram3-comparative	higher	34	35
city-in-state	smith	1	61
gram7-past-tense	and	0	49
gram1-adjective-to-adverb	be	0	47
family (gender inflections)	daughter	8	47
city-in-state	illinois	3	40
currency	currency	5	40
gram1-adjective-to-adverb	and	0	39
gram7-past-tense	enhance	39	20

Error analysis

Table 6: Common default-behavior errors under both representations. EMB / EXP: the number of time the word was returned as an incorrect answer for the given relation under the embedded or explicit representation.

Why is all this cool?

- Words have several properties that affect how they relate to other words (i.e. their attributional similarities)
- Relational similarities are a composition of attributional similarities with each one reflecting a different aspect
 - Solving the analogy problem requires identifying the relevant aspects and changing one while preserving the other
- Explicit vector representations are just as good as neural embeddings, and less opaque

Inspecting the vectors

Aspect	Examples	Top Features
Female	$woman \odot queen$	estrid ⁺¹ ketevan ⁺¹ adeliza ⁺¹ nzinga ⁺¹ gunnhild ⁺¹ impregnate ⁻² hippolyta ⁺¹
Royalty	$queen \odot king$	savang ⁺¹ uncrowned ⁻¹ pmare ⁺¹ sisowath ⁺¹ nzinga ⁺¹ tupou ⁺¹ uvea ⁺² majesty ⁻¹
Currency	$yen \odot ruble$	$devalue^{-2} banknote^{+1} denominated^{+1} billion^{-1} banknotes^{+1} pegged^{+2} coin^{+1}$
Country	$germany \odot australia$	$emigrates^{-2}$ 1943-45 ⁺² pentathletes ⁻² $emigrated^{-2}$ $emigrate^{-2}$ hong-kong ⁻¹
Capital	$berlin \odot canberra$	$hotshots^{-1} mbassy^{-2} 1925-26^{+2} metal^{+2} metups^{-2} munciature^{-2}$
Superlative	$sweetest \odot tallest$	freshest ⁺² asia's ⁻¹ cleveland's ⁻² smartest ⁺¹ world's ⁻¹ city's ⁻¹ america's ⁻¹
Height	$taller \odot tallest$	regnans ^{-2} skyscraper ^{$+1$} skyscrapers ^{$+1$} 6'4 ^{$+2$} windsor's ^{-1} smokestacks ^{$+1$} burj ^{$+2$}

My two cents

The good

Great contextualising

paper

The less good

- Ignores syntactic relations
- Doesn't explain why/why not PPMI
- Ignores the nonimprovement in SEMEVAL
 3COSMUL results
- Very theoretical

