
Constructing and Evaluating
Word Embeddings

Dr Marek Rei and Dr Ekaterina Kochmar
Computer Laboratory

University of Cambridge

Representing words as vectors

Let’s represent words (or any objects) as vectors.
We want to construct them so that similar words have similar vectors.

Sequence

I live in Cambridge

I live in Paris

I live in Tallinn

I live in yellow

Representing words as vectors

Let’s represent words (or any objects) as vectors.
We want to construct them so that similar words have similar vectors.

Sequence Count

I live in Cambridge 19

I live in Paris 68

I live in Tallinn 0

I live in yellow 0

Representing words as vectors

Let’s represent words (or any objects) as vectors.
We want to construct them so that similar words have similar vectors.

Sequence Count

I live in Cambridge 19

I live in Paris 68

I live in Tallinn 0

I live in yellow 0

1-hot vectors

How can we represent words as vectors?

Option 1: each element represents a different word.

Also known as “1-hot” or “1-of-V” representation.

 bear=[1.0, 0.0, 0.0] cat=[0.0, 1.0, 0.0]

bear cat frog

bear 1 0 0

cat 0 1 0

frog 0 0 1

1-hot vectors

When using 1-hot vectors, we can’t fit many and they tell us very little.

Need a separate dimension for every word we want to represent.

Distributed vectors

Option 2: each element represents a property, and they are shared between the
words.

Also known as “distributed” representation.

 bear = [0.9, 0.85, 1.0] cat = [0.85, 0.15, 1.0]

furry dangerous mammal

bear 0.9 0.85 1

cat 0.85 0.15 1

frog 0 0.05 0

Distributed vectors

Distributed vectors group similar words/objects together

furry dangerous

bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8

lion 0.85 0.9

dog 0.8 0.15

Distributed vectors

Can use cosine to calculate similarity between two words

cos(lion, bear) = 0.998

cos(lion, dog) = 0.809

cos(cobra, dog) = 0.727

Distributed vectors

We can infer some information, based only on the vector of the word

We don’t even need to know the labels on the vector elements

Distributional hypothesis

Words which are similar in meaning occur in similar contexts.
(Harris, 1954)

You shall know a word by the company it keeps
(Firth, 1957)

He is reading a magazine I was reading a newspaper

This magazine published my story The newspaper published an article

She buys a magazine every month He buys this newspaper every day

Count-based vectors

One way of creating a vector for a word:
Let’s count how often a word occurs together with specific other words.

He is reading a magazine I was reading a newspaper

This magazine published my story The newspaper published an article

She buys a magazine every month He buys this newspaper every day

reading a this published my buys the an every month day

magazine 1 2 1 1 1 1 0 0 1 1 0

newspaper 1 1 1 1 0 1 1 1 1 0 1

Count-based vectors

● More frequent words dominate the vectors.
Can use a weighting scheme like PMI or TF-IDF.

● Large number of sparse features
Can use matrix decomposition like Singular Value Decomposition (SVD) or
Latent Dirichlet Allocation (LDA).

Neural word embeddings

Neural networks will automatically try to discover useful features in the data, given
a specific task.

Idea: Let’s allocate a number of parameters for each word and allow the neural
network to automatically learn what the useful values should be.

Often referred to as “word embeddings”, as we are embedding the words into a
real-valued low-dimensional space.

Embeddings through language modelling

Predict the next word in a sequence,
based on the previous words.

Use this to guide the training for
word embeddings.

Bengio et. al. 2003. A Neural
Probabilistic Language Model. I read at my desk

I study at my desk

Embeddings through error detection

Take a grammatically correct
sentence and create a corrupted
counterpart.

Train the neural network to assign
a higher score to the correct
version of each sentence.

Collobert et. al. 2011. Natural
Language Processing (Almost)
from Scratch.

my cat climbed a tree

my cat bridge a tree

Embedding matrix

Two ways of thinking about the embedding matrix.

1. Each row contains a word embedding, which we need to extract

2. It is a normal weight matrix, working with a 1-hot input vector

Word2vec

A popular tool for creating word embeddings.

Available from: https://code.google.com/archive/p/word2vec/

Can also download embeddings that are pretrained on 100 billion words.

Preprocess the data!

● Tokenise
● Lowercase (usually)

./word2vec -train input.txt -output vectors.txt -cbow 0 -size 100

-window 5 -negative 5 -hs 0 -sample 1e-3 -threads 8

https://code.google.com/archive/p/word2vec/

Continuous Bag-of-Words (CBOW) model

Predict the current word, based
on the surrounding words

Mikolov et. al. 2013. Efficient
Estimation of Word
Representations in Vector Space.

Skip-gram model

Predict the surrounding words,
based on the current word.

Mikolov et. al. 2013. Efficient
Estimation of Word
Representations in Vector Space.

Word similarity

Collobert et. al. 2011. Natural Language Processing (Almost) from Scratch.

Word similarity

Joseph Turian

Word similarity

Joseph Turian

Word similarity

Joseph Turian

Analogy recovery

The task of analogy recovery. Questions in the form:

a is to b as c is to d

The system is given words a, b, c, and it needs to find d. For example:

‘apple’ is to ‘apples’ as ‘car’ is to ?
or

‘man’ is to ‘woman’ as ‘king’ is to ?

Mikolov et. al. 2013. Efficient Estimation of Word Representations in Vector
Space.

Analogy recovery

Task: a is to b as c is to d

Idea: The direction of the relation
should remain the same.

Analogy recovery

Task: a is to b as c is to d

Idea: The offset of vectors should
reflect their relation.

Analogy recovery

Example output using word2vec vectors.

Word embeddings in practice

Word2vec is often used for pretraining.

● It will help your models start from an informed position
● Requires only plain text - which we have a lot
● Is very fast and easy to use
● Already pretrained vectors also available (trained on 100B words)

However, for best performance it is important to continue training (fine-tuning).

Raw word2vec vectors are good for predicting the surrounding words, but not
necessarily for your specific task.

Simply treat the embeddings the same as other parameters in your model and
keep updating them during training.

Problems with word embeddings

Word embeddings allow us to learn similar representations for semantically or
functionally similar words.

BUT

1. If a token has not been seen during training, we have to use a generic OOV
(out-of-vocabulary) token to represent it.

2. Infrequent words have very low-quality embeddings, due to lack of data.

3. Morphological and character-level information is ignored when treating words
as atomic units.

Character-based representations

We can augment word embeddings by learning character-based representations.

Rei et al. (2016)

Multimodal embeddings
We can map text and images into the same space

Kiros et al. (2014, 2015)

Conclusion
Word embeddings are the building blocks for higher-level models

Questions?

