Optimizing Search Engines using Clickthrough Data

By Thorsten Joachims

R222 Presentation by Kaitlin Cunningham 23 January 2017 What is clickthrough data?

Triplet: (q, r, c)

Premise: set c conveys some information about user preferences

1. Kernel Machines					
http://svm.first.gmd.de/					
2. Support Vector Machine					
http://jbolivar.freeservers.com/					
3. SVM-Light Support Vector Machine					
$http://ais.gmd.de/\sim thorsten/svm_light/$					
4. An Introduction to Support Vector Machines					
http://www.support-vector.net/					
5. Support Vector Machine and Kernel Methods References					
http://svm.research.bell - labs.com/SVMrefs.html					
6. Archives of SUPPORT-VECTOR-MACHINES@JISCMAIL.AC.UK					
http://www.jiscmail.ac.uk/lists/SUPPORT-VECTOR-MACHINES.html					
7. Lucent Technologies: SVM demo applet					
http://svm.research.bell - labs.com/SVT/SVMsvt.html					
8. Royal Holloway Support Vector Machine					
http://svm.dcs.rhbnc.ac.uk/					
9. Support Vector Machine - The Software					
http://www.support-vector.net/software.html					
10. Lagrangian Support Vector Machine Home Page					
http://www.cs.wisc.edu/dmi/lsvm					

Pairwise preferences

 $link_{3} <_{\mathbf{r}^{*}} link_{2} \qquad link_{7} <_{\mathbf{r}^{*}} link_{2} \qquad (1)$ $link_{7} <_{\mathbf{r}^{*}} link_{4}$ $link_{7} <_{\mathbf{r}^{*}} link_{5}$ $link_{7} <_{\mathbf{r}^{*}} link_{6}$

Algorithm 1. (Extracting Preference Feedback from Clickthrough)

For a ranking $(link_1, link_2, link_3, ...)$ and a set C containing the ranks of the clicked-on links, extract a preference example

 $link_i <_{T^*} link_j$

for all pairs $1 \leq j < i$, with $i \in C$ and $j \notin C$.

A new learning algorithm

Optimal (target) ranking r* v. system ranking r_{f(q)}

Kendall's τ:

$$\tau(\mathbf{r}_a, \mathbf{r}_b) = \frac{P - Q}{P + Q} = 1 - \frac{2Q}{\binom{m}{2}}$$
(2)

Expected Kendall's τ:

$$\tau_P(\mathbf{f}) = \int \tau(\mathbf{r}_{\mathbf{f}(\mathbf{q})}, \mathbf{r}^*) d\Pr(\mathbf{q}, \mathbf{r}^*)$$
(6)

SVM algorithm for learning

Empirical risk minimization approach:

$$\tau_S(\mathbf{f}) = \frac{1}{n} \sum_{i=1}^n \tau(\mathbf{r}_{\mathbf{f}(\mathbf{q}_i)}, \mathbf{r}_i^*).$$
(8)

$$\forall (\mathbf{d}_i, \mathbf{d}_j) \in \mathbf{r}_1^* : \quad \vec{w} \Phi(\mathbf{q}_1, \mathbf{d}_i) > \vec{w} \Phi(\mathbf{q}_1, \mathbf{d}_j) \tag{10}$$

$$\forall (\mathbf{d}_i, \mathbf{d}_j) \in \mathbf{r}_n^* : \ \vec{w} \Phi(\mathbf{q}_n, \mathbf{d}_i) > \vec{w} \Phi(\mathbf{q}_n, \mathbf{d}_j)$$
(11)

...

OPTIMIZATION PROBLEM 1. (RANKING SVM) minimize: $V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k}$ (12) subject to: $\forall (d_i, d_j) \in r_1^* : \vec{w} \Phi(q_1, d_i) \ge \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1}$... (13) $\forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \ge \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n}$ $\forall i \forall j \forall k : \xi_{i,j,k} \ge 0$ (14) Using partial feedback

Replace r* with r':

Optimization Problem 2. (Ranking SVM (partial))

 $\begin{array}{ll} minimize: \quad V(\vec{w}, \vec{\xi}) = \frac{1}{2} \ \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k} \quad (21) \\ subject \ to: \\ \forall (d_i, d_j) \in r'_1 : \vec{w} \Phi(q_1, d_i) > \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\ & \dots \quad (22) \\ \forall (d_i, d_j) \in r'_n : \vec{w} \Phi(q_n, d_i) > \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \\ \forall i \forall j \forall k : \xi_{i,j,k} \ge 0 \quad (23) \end{array}$

Experiment: Offline

- Training set: 112 queries over one month to Google and MSNSearch through "Striver"
- Feature mapping $\Phi(q,d)$:
 - 38 rank-based features
 - 3 query/content features
 - ~20 000 popularity attribute features
- Extracted pairwise preferences using Alg 1
- 50 constraints added

Offline: Results

 Test error decreases to ~10% with 80 training queries (out of 112)

✓ Proof of concept

Figure 4: Generalization error of the Ranking SVM depending on the size of the training set. The error bars show one standard error.

Experiment: Interactive Online

- Training set: 260 queries from 20 users over less than a month
- Evaluation period of ~2 weeks
- Compared against Google, MSNSearch and Toprank

Interactive Online: Results

Comparison	more clicks on learned	less clicks on learned	tie (with clicks)	no clicks	total
Learned vs. Google	29	13	27	19	88
Learned vs. MSNSearch	18	4	7	11	40
Learned vs. Toprank	21	9	11	11	52

Table 2: Pairwise comparison of the learned retrieval function with Google, MSNSearch, and the non-learning meta-search ranking. The counts indicate for how many queries a user clicked on more links from the top of the ranking returned by the respective retrieval function.

Users clicked on more links from the learned retrieval function than the other search engines

✓ Learned function improves retrieval

Discussion

- Personalised retrieval functions which can be tailored to small homogenous groups or individual users
- Function doesn't rely on explicit relevance judgements
- Question: What are the computational demands of training using clickthrough data?

Critique

- Theory well-placed in context of other measures and research
- Well-reasoned explanations throughout

Critique

Little to no discussion about the constraints

- No discussion about the relevance/influence of the tied clicks or no clicks in the online experiment
- Experiments based on homogenous user base:
 - How diverse were the queries in the training and testing periods
- Hypothesise the effect of scaling up the number of queries