
Tuning as Ranking
Pairwise Ranking Optimisation (PRO)
HOPKINS, M. & MAY, J.

2011



Statistical Machine Translation (MT)

 An SMT system translates from one human 

language to another

 Such systems typically have a lot of parameters 

that need to be tuned



Current Tuning Solutions

 MERT

 Well-understood, easy to implement, and runs quickly

 Does not scale beyond a handful of features

 MIRA

 Shown to perform well on large-scale tasks

 Complex and architecturally different from MERT



Pairwise Ranking Optimisation (PRO)

 Adapts the MERT system

 Provides comparable performance to both

 Scales comparably to MIRA but is much simpler

 Should take about 2 hours to implement (supposedly)



Set-up 

(Definitions!)



Candidate Space 〈∆, I, J, e, x〉

 ∆, the space’s dimensionality (a positive integer)

 I, sentence indices (a set of positive integers)

 J maps

 Each sentence index

 To a set of candidate indices (positive integers)



Candidate Space 〈∆, I, J, e, x〉

 e(i, j) maps

 Each pair 〈i, j〉 ∈ I × J(i) 

 To the jth target-language candidate translation of source 

sentence i

 x(i, j) maps

 Each pair 〈i, j〉 ∈ I × J(i)

 To a ∆-dimension feature vector representation of e(i, j)



Policy p(i)

 A function corresponding to a candidate space

 It maps

 Each source sentence index (i ∈ I)

 To a candidate sentence index (∈ J(i))



Scoring Function, hw(i, j) = w · x(i, j)

 Indicates how good candidate j is for source sentence i

 w is a weight vector that must be learnt

 Typically returns positive real numbers (higher ⇒ better)

 Can extend this idea to policy p by summing the costs of 

each candidate translation

Hw(p) = ∑i∈I hw(i, p(i))



A Gold Scoring Function, G

 An idealised equivalent of Hw(p)

 Maps

 Each policy

 To a real-valued score

 Typically calculated by a library, such as IBM Bleu



Goal of Tuning

 Goal is to find a weight vector w

 For space s, we want a w that, equivalently

Gives an Hw which behaves “similarly” to G on s

Minimises a loss function ls(Hw, G)



MERT



Two-Stage Feedback Loop

 Candidate Generation

 Candidate translations are selected from a base candidate space s

 Translations are added the candidate pool, s’

 Optimisation

 The weight vector w is optimised to minimise a loss function ls’(Hw, G)

 Loss defined to prefer weight vectors such that the gold function G 

scores Hw’s best policy as highly as possible (0 loss if equal to G’s best)

 Implemented by line optimisation



Issues

 Does not scale well with dimensionality

 MERT optimisation focuses on Hw’s best policy, and 

not on its overall ability to rank policies



Pairwise Ranking 

Optimisation 

(PRO)



 Assume the gold scoring function G decomposes to:

 Here, g is a local scoring function

 It is equivalent to hw for Hw

 It can be used to rank candidate translations for 

each source sentence

Local Scoring Function, g



Example

Sentence string



Reframing the Learning Task with g

 The task is to classify candidate pairs, 〈e(i, j), e(i, j’)〉, 
into two categories

 Correctly ordered (the first is better than the second)

 Incorrectly ordered (the second is better than the first)



Reframing the Learning Task with g

 Thus, for a translations e(i, j) and e(i, j’), we want w such that

g(i, j) > g(i, j’) ⇔ hw(i, j) > hw(i, j’)

 We can algebraically turn this into a binary classification problem!



To Create Training Instances

1. Compute the difference vector x(i, j) − x(i, j’)

2. Label it:

 ‘Positive’ if the first vector is superior, according to g

 ‘Negative’ if the second vector is superior, according to g

 Consider both difference vectors from a pair

 Randomly sample these vectors to create training data



Dimensional 

Scalability 

Evaluation



Set-up

1. Define G = Hw∗ (p) for some gold weight vector w∗

2. Generate a ∆-dimensionality candidate pool

 500 source “sentences”, each with 100 candidate “translations”

 Draw, at random, ∆-dimensional feature vector values

3. Run the tuners

4. Repeat 1-3 with different ∆ values

5. Repeat 1-4 with Gaussian noise added to feature vectors



Results



Translation 

Evaluation



SBMT vs PBMT

 Syntax-Based systems (SBMT)

 Based on the idea of translating syntactic units

 Rather than single words or sequences of words

 Phrase-Based systems (PBMT)

 Based on idea of translating whole sequences of words

 Reduces the restrictions of word-based translation

 The sequence lengths may differ



Evaluation Feature Sets

 Baseline feature set

 Correspond to a typical small feature set in MT literature

 Gives a low (around 20) dimensional candidate space

 Extended feature set

 Only used with MIRA and PRO

 Gives a high (thousands) dimensional candidate space



Results



Monotonicity



Summary



Successes of this Publication

 Thorough explanation of background and concepts

 Appears to perform comparably to contemporary systems

 Illustrates idea of mapping to a well-solved problem

 Surprisingly good results by solving an apparently simpler problem

 Source code not released, which is a pity

 Comparisons to alternative baselines might be interesting


