A Stopping Criterion for Active Learning

VLACHOS, A.

2008

A Stopping Criterion

Manual annotation takes time and human effort

- Could stop when some performance is achieved
- A better solution would consider how much can be learnt by labelling unlabelled instances
- Proposed approach examines classifier confidence

Reuters Document Classification

Support Vector Machines (SVM)

Typically used as a binary classifier

► Kernel functions (such as linear, $K(x_i, x_j) = x_i \cdot x_j$)

Compare instances

Effectively map to higher dimensions

Classify by finding hyperplane with maximal margin

Training a Reuters SVM Classifier with AL

- SVMs trained on most popular topic in Reuters
- Margin used as measure of uncertainty
- Average margin of test set data used as a measure of the confidence of the classifier
- Three SVMs compared:
 - Random test data sampling
 - AL, adding 1% of pool to the training data each time
 - ► AL, adding 0.1% of pool to the training data each time

Linear SVM Training on Reuters

The Rise-Peak-Fall Pattern

The confidence follows a rise-peak-fall pattern

- Rise to a peak as training data with novel information is used (performance changes little after this)
- ► Falls as contradictory instances selected:
 - The classifier is confident, but incorrect, about these
 - Presumably, these are due to limitations of the feature set (eg a bag-of-words model ignoring word order)

Gaussian SVM Training on Reuters

Contradictory Information

 Contradictory information is added when
 An instance whose label is incorrectly predicted
 Is added to the training data
 For round t this is computed as:
 Contradictory_information(t) = ∑_{i∈it} | f^t(x_i) | | f^t(x_i) |

SVM Contradictory Information

Linear SVM for an Infrequent Class

Experiments With Other Classifiers

Bayesian Logistic Regression Classifier

Maximum Entropy Classifier

Binary NER Classification

Set-up

The dataset has four entity types to be recognised

- Reduce this to a binary task by just identifying if there is a named entity or not
- Train a linear kernel SVM using AL
 - Randomly choose 1% of data as seed data
 - ▶ Use 1% and 0.1% batches
- Classifier uses simple lexical features

Linear SVM for NER

Tricking the Stopping Criterion

The criterion detects a rise-peak-fall pattern

- The criterion can be satisfied non-optimally with
 - ► A noisy or misleading seed
 - Bad early selections

Instead, require a consistent drop in the confidence

Multiclass SVM

The One-Against-All Scheme

This is a way to adapt SVMs for multiple classes

Approach

- Each classifier classifies true/false for one class
- Select the class which gives the largest positive margin
- Define Confidence as the difference in the size of
 - ► The most positive margin
 - The next most positive margin

Set-up

NER experiments

- As before, but use the four separate classes
- Shallow parsing experiments
 - Goal is to divide text into chunks ("syntactically-related, non-overlapping groups of tokens")
 - Each token belongs to one syntactic category
 - > 23 classes (with widely-varying numbers of instances)
 - ► Uses a previously-defined feature set

Multiclass SVM Experiments

Multiclass NER Classifier

Shallow Parsing Classifier

Conclusion

Applicability of Stopping Criterion

- These experiments show how a stopping criterion based on the rise-peak-drop pattern could work
- We saw how this pattern appeared consistently with a variety of problems and classifiers

Thorough explanation of background and context

- Appears to be a novel, sensible, and effective extension of the then state-of-the-art
- Should be particularly useful for NLP tasks
- Formulation of the criterion wasn't made very explicit
- Comparisons to alternatives might be interesting