
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 18 November 2016

Lecture 7

 Linearizability

 Lock-free progress properties

 Queues

 Reducing contention

 Explicit memory management

Linearizability

3

More generally

 Suppose we build a shared-memory data structure directly
from read/write/CAS, rather than using locking as an
intermediate layer

4

H/W primitives: read,
write, CAS, ...

Locks

Data structure

H/W primitives: read,
write, CAS, ...

Data structure

 Why might we want to do this?

 What does it mean for the data structure to be correct?

What we’re building

 A set of integers, represented by a sorted linked list

 find(int) -> bool

 insert(int) -> bool

 delete(int) -> bool

5

Searching a sorted list

 find(20):

H 10 30 T

20?

 find(20) -> false

6

Inserting an item with CAS

 insert(20):

H 10 30 T

20

30  20


 insert(20) -> true

7

Inserting an item with CAS

 insert(20):

H 10 30 T

20

30  20

25

30  25





• insert(25):

8

Searching and finding together

 find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

This thread saw 20
was not in the set...

...but this thread
succeeded in putting

it in!

• Is this a correct implementation of a set?

• Should the programmer be surprised if this happens?

• What about more complicated mixes of operations?

9

Correctness criteria

10

Informally:

Look at the behaviour of the data structure (what
operations are called on it, and what their results are).

If this behaviour is indistinguishable from atomic calls
to a sequential implementation then the concurrent
implementation is correct.

Sequential specification

 Ignore the list for the moment, and focus on the set:

find(int) -> bool

insert(int) -> bool

delete(int) -> bool

10, 20, 30

10, 15, 20, 30

10, 15, 30 10, 15, 20, 30

insert(15)->true

insert(20)->false delete(20)->true

Sequential: we’re only
considering one operation

on the set at a time

Specification: we’re saying what
a set does, not what a list does,

or how it looks in memory

11

System model

12

time

L
o

o
ku

p
(20

)

Tru
e

In
se

rt(15)

Tru
e

High-level operation

Primitive step
(read/write/CAS)

H H->10 10->20 H H->10 New CAS

High level: sequential history

time

T
1: in

sert(10
)

->
 t

ru
e

T
2

: in
sert(20

)

->
 t

ru
e

T
1: fin

d
(15)

->
 f

al
se

• No overlapping invocations:

10 10, 20 10, 20

13

High level: concurrent history

time

• Allow overlapping invocations:

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false

14

Linearizability

• Is there a correct sequential history:

• Same results as the concurrent one

• Consistent with the timing of the
invocations/responses?

15

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(20)->true

find(20)->false
A valid sequential

history: this concurrent
execution is OK

16

Example: linearizable

time

Thread 2:

Thread 1:

insert(10)->true delete(10)->true

find(10)->false

17

A valid sequential
history: this concurrent

execution is OK

Example: not linearizable

time

Thread 2:

Thread 1:

insert(10)->true insert(10)->false

delete(10)->true

18

Returning to our example

• find(20)

H 10 30 T

 -> false

20

20?

• insert(20) -> true

Thread 2:

Thread 1:

insert(20)->true

find(20)->false

A valid sequential history:
this concurrent execution

is OK

19

Recurring technique

 For updates:

 Perform an essential step of an operation by a single atomic
instruction

 E.g. CAS to insert an item into a list

 This forms a “linearization point”

 For reads:

 Identify a point during the operation’s execution when the
result is valid

 Not always a specific instruction

20

Adding “delete”

 First attempt: just use CAS
delete(10):

H 10 30 T

10  30 

21

Delete and insert:

 delete(10) & insert(20):

H 10 30 T

10  30 

20

30  20 



22

Logical vs physical deletion

H 10 30 T

20

10  30


30  30X




30  20 



23

 Use a ‘spare’ bit to indicate logically deleted nodes:

Delete-greater-than-or-equal

deleteany() -> int 10, 20, 30

deleteany()->10

20, 30

deleteany()->20

10, 30

This is still a sequential spec... just
not a deterministic one

24

Delete-greater-than-or-equal

 DeleteGE(int x) -> int

 Remove “x”, or next element above “x”

H 10 30 T

• DeleteGE(20) -> 30

H 10 T

25

Does this work: DeleteGE(20)

H 10 30 T

1. Walk down the list, as in a
normal delete, find 30 as

next-after-20

2. Do the deletion as normal:
set the mark bit in 30, then

physically unlink

26

Delete-greater-than-or-equal

time

Thread 2:

Thread 1:

insert(25)->true insert(30)->false

deleteGE(20)->30

A B

C

A must be after C
(otherwise C should

have returned 15)

C must be after B
(otherwise B should

have succeeded)

B must be after A
(thread order)

27

Lock-free progress

properties

28

static volatile int MY_LIST = 0;

bool find(int key) {

 // Wait until list available

 while (CAS(&MY_LIST, 0, 1) == 1) {

 }

 ...

 // Release list

 MY_LIST = 0;

}

OK, we’re not calling
pthread_mutex_lock... but
we’re essentially doing the

same thing

29

Progress: is this a good “lock-free” list?

“Lock-free”

 A specific kind of non-blocking progress guarantee

 Precludes the use of typical locks

 From libraries

 Or “hand rolled”

 Often mis-used informally as a synonym for

 Free from calls to a locking function

 Fast

 Scalable

30

“Lock-free”

 A specific kind of non-blocking progress guarantee

 Precludes the use of typical locks

 From libraries

 Or “hand rolled”

 Often mis-used informally as a synonym for

 Free from calls to a locking function

 Fast

 Scalable

31

The version number mechanism is an example of a technique
that is often effective in practice, does not use locks, but
is not lock-free in this technical sense

time

Wait-free

 A thread finishes its own operation if it continues executing steps

S
tart

F
in

ish

F
in

ish

S
tart

F
in

ish

32

S
tart

Implementing wait-free algorithms
 Important in some significant niches

 e.g., in real-time systems with worst-case execution time
guarantees

 General construction techniques exist (“universal constructions”)

 Queuing and helping strategies: everyone ensures oldest
operation makes progress
 Often a high sequential overhead
 Often limited scalability

 Fast-path / slow-path constructions
 Start out with a faster lock-free algorithm
 Switch over to a wait-free algorithm if there is no progress
 ...if done carefully, obtain wait-free progress overall

 In practice, progress guarantees can vary between operations on
a shared object
 e.g., wait-free find + lock-free delete

33

time

Lock-free

 Some thread finishes its operation if threads continue taking
steps

S
tart

S
tart

F
in

ish

F
in

ish

S
tart

S
tart

F
in

ish

34

A (poor) lock-free counter

35

int getNext(int *counter) {
 while (true) {
 int result = *counter;
 if (CAS(counter, result, result+1)) {
 return result;
 }
 }
}

Not wait free: no
guarantee that any

particular thread will
succeed

Implementing lock-free algorithms

 Ensure that one thread (A) only has to repeat work if some
other thread (B) has made “real progress”

 e.g., insert(x) starts again if it finds that a conflicting update
has occurred

 Use helping to let one thread finish another’s work

 e.g., physically deleting a node on its behalf

36

time

Obstruction-free

 A thread finishes its own operation if it runs in isolation

S
tart

S
tart

F
in

ish
 Interference here can prevent

any operation finishing

37

A (poor) obstruction-free counter

38

int getNext(int *counter) {
 while (true) {
 int result = LL(counter);
 if (SC(counter, result+1)) {
 return result;
 }
 }
}

Assuming a very weak
load-linked (LL) store-
conditional (SC): LL on

one thread will prevent an
SC on another thread

succeeding

Building obstruction-free algorithms

 Ensure that none of the low-level steps leave a data
structure “broken”

 On detecting a conflict:

 Help the other party finish

 Get the other party out of the way

 Use contention management to reduce likelihood of live-
lock

39

Hashtables and

skiplists

40

Hash tables

0 16 24

5

3 11

Bucket array:
8 entries in

example

List of items with
hash val modulo 8 == 0

41

Hash tables: Contains(16)

0 16 24

5

3 11

1. Hash 16.
Use bucket 0

2. Use normal
list operations

42

Hash tables: Delete(11)

0 16 24

5

3 11

1. Hash 11.
Use bucket 3

2. Use normal
list operations

43

Lessons from this hashtable

 Informal correctness argument:

 Operations on different buckets don’t conflict: no extra
concurrency control needed

 Operations appear to occur atomically at the point where the
underlying list operation occurs

 (Not specific to lock-free lists: could use whole-table lock,
or per-list locks, etc.)

44

Practical difficulties:

 Key-value mapping

 Population count

 Iteration

 Resizing the bucket array

Options to consider when
implementing a “difficult” operation:

Relax the semantics
(e.g., non-exact count, or non-linearizable count)

Fall back to a simple implementation if permitted
(e.g., lock the whole table for resize)

Design a clever implementation
(e.g., split-ordered lists)

Use a different data structure
(e.g., skip lists)

45

Skip lists

5 11 16 24 0 3

Each node is a “tower” of
random size. High levels

skip over lower levels

All items in a single list:
this defines the set’s

contents

46

Skip lists: Delete(11)

5 11 16 24 0 3

Principle: lowest list is the truth

1. Find “11” node, mark it
logically deleted

2. Link by link remove “11”
from the towers

3. Finally, remove “11”
from lowest list

47

Queues

48

Work stealing queues

PushBottom(Item)
PopBottom() -> Item

PopTop() -> Item

Add/remove items,
PopBottom must return
an item if the queue is

not empty

Try to steal an item.
May sometimes return

nothing “spuriously” 1. Semantics relaxed for “PopTop”

2. Restriction: only one thread ever calls “Push/PopBottom”

3. Implementation costs skewed toward “PopTop” complex

49

0

1

2

3

4

Bounded deque

Top / V0

Bottom “Bottom” is a normal
integer, updated only by

the local end of the queue

Items between the
indices are present in the

queue “Top” has a version
number, updated
atomically with it

50 Arora, Blumofe, Plaxton

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

51

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

52

Top / V1

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

if (bottom==top) {

 bottom = 0;

 if (CAS(&<top,version>,

 <tmp_top,tmp_v>,

 <0,tmp_v+1>)) {

 return result;

 }

}

<top,version>=<0,v+1>

Item popTop() {

 if (bottom <= top) return null;

 <tmp_top,tmp_v> = <top, version>;

 result = tasks[tmp_top];

 if (CAS(&<top,version>,

 <tmp_top, tmp_v>,

 <tmp_top+1, tmp_v+1>)) {

 return result;

 }

 return null;

}

53

0

1

2

3

4

Bounded deque

Top / V0

Bottom

void pushBottom(Item i){

 tasks[bottom] = i;

 bottom++;

}

Item popBottom() {

 if (bottom ==0) return null;

 bottom--;

 result = tasks[bottom];

 <tmp_top,tmp_v> = <top,version>;

 if (bottom > tmp_top) return result;

 ….

 return null;

}

if (bottom==top) {

 bottom = 0;

 if (CAS(&<top,version>,

 <tmp_top,tmp_v>,

 <0,tmp_v+1>)) {

 return result;

 }

}

<top,version>=<0,v+1>

Item popTop() {

 if (bottom <= top) return null;

 <tmp_top,tmp_v> = <top, version>;

 result = tasks[tmp_top];

 if (CAS(&<top,version>,

 <tmp_top, tmp_v>,

 <tmp_top+1, tmp_v+1>)) {

 return result;

 }

 return null;

}

54

ABA problems

0

1

2

3

4

Top

Item popTop() {

 if (bottom <= top) return null;

 tmp_top = top;

 result = tasks[tmp_top];

 if (CAS(&top, top, top+1)) {

 return result;

 }

 return null;

}

AAA

BBB

CCC

Bottom

result = CCC

FFF

EEE

DDD

55

General techniques

 Local operations designed to avoid CAS

 Traditionally slower, less so now

 Costs of memory fences can be important (“Idempotent work
stealing”, Michael et al, and the “Laws of Order” paper)

 Local operations just use read and write

 Only one accessor, check for interference

 Use CAS:

 Resolve conflicts between stealers

 Resolve local/stealer conflicts

 Version number to ensure conflicts seen

56

Reducing contention

57

Reducing contention

 Suppose you’re implementing a shared counter with the
following sequential spec:

58

void increment(int *counter) {

 atomic {

 (*counter) ++;

 }

}

How well can this scale?

void decrement(int *counter) {

 atomic {

 (*counter) --;

 }

}

bool isZero(int *counter) {

 atomic {

 return (*counter) == 0;

 }

}

SNZI trees

59

SNZI

(10,100)

SNZI

(2,230)

SNZI

(5,250)

T2 T1 T3 T5 T4 T6

Child SNZI forwards
inc/dec to parent when

the child changes
to/from zero

Each node holds a value
and a version number

(updated together with
CAS)

SNZI: Scalable NonZero Indicators, Ellen et al

SNZI trees, linearizability on 0->1 change

60

SNZI

(0,100)

SNZI

(0,230)

T2 T1

1. T1 calls increment
2. T1 increments child to 1
3. T2 calls increment
4. T2 increments child to 2
5. T2 completes
6. Tx calls isZero
7. Tx sees 0 at parent
8. T1 calls increment on parent
9. T1 completes

Tx

SNZI trees

61

void increment(snzi *s) {

 bool done=false;

 int undo=0;

 while(!done) {

 <val,ver> = read(s->state);

 if (val >= 1 && CAS(s->state, <val,ver>, <val+1,ver>)) { done = true; }

 if (val == 0 && CAS(s->state, <val,ver>, <½, ver+1>)) {

 done = true; val=½; ver=ver+1

 }

 if (val == ½) {

 increment(s->parent);

 if (!CAS(s->state, <val, ver>, <1, ver>)) { undo ++; }

 }

 }

 while (undo > 0) {

 decrement(s->parent);

 }

}

Reducing contention: stack

62

A scalable lock-free stack algorithm, Hendler et al

Existing lock-free stack
(e.g., Treiber’s): good

performance under low
contention, poor

scalability

P
u

sh

P
o

p

P
o

p

P
u

sh

P
u

sh

Pairing up operations

63

P
u

sh
(10

)

P
u

sh
(20

)

P
u

sh
(30

)

P
o

p

20

P
o

p

10

Back-off elimination array

64

Stack

Elimination array

Contention on
the stack? Try
the array

Don’t get
eliminated?

Try the stack

Operation record: Thread, Push/Pop, …

Explicit memory

management

65

Deletion revisited: Delete(10)

H 10 30 T

H 10 30 T

H 10 30 T

66

De-allocate to the OS?

H 30 T 10

Search(20)

67

Re-use as something else?

H 30 T 10 100 200

Search(20)

68

Re-use as a list node?

H 30 T 10

H 30 T

20

Search(20)

69

H 10 30 T

Reference counting

1 1 1 1

1. Decide what to access

70

H 10 30 T

Reference counting

2 1 1 1

1. Decide what to access
2. Increment reference count

71

H 10 30 T

Reference counting

2 1 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

72

H 10 30 T

Reference counting

2 2 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

73

H 10 30 T

Reference counting

1 2 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK

74

H 10 30 T

Reference counting

1 1 1 1

1. Decide what to access
2. Increment reference count
3. Check access still OK
4. Defer deallocation until count 0

75

Epoch mechanisms
Global epoch: 1000
Thread 1 epoch: -
Thread 2 epoch: -

H 10 30 T

76

H 10 30 T

Epoch mechanisms
Global epoch: 1000

Thread 1 epoch: 1000
Thread 2 epoch: -

1. Record global epoch at start of
operation

77

H 10 30 T

Epoch mechanisms
Global epoch: 1000

Thread 1 epoch: 1000
Thread 2 epoch: 1000

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

Deallocate @ 1000

78

H 10 30 T

Epoch mechanisms
Global epoch: 1001

Thread 1 epoch: 1000
Thread 2 epoch: -

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

3. Increment global epoch at end
of operation (or periodically)

79

Deallocate @ 1000

Epoch mechanisms
Global epoch: 1002
Thread 1 epoch: -
Thread 2 epoch: -

1. Record global epoch at start of
operation

2. Keep per-epoch deferred
deallocation lists

3. Increment global epoch at end
of operation (or periodically)

4. Free when everyone past epoch

10

Deallocate @ 1000

80

H 30 T

The “repeat offender problem”

81

Free: ready for
allocation

Allocated and
linked in to a data

structure

Escaping: unlinked,
but possibly

temporarily in use

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

82

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

83

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

84

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

85

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

86

H 10 30 T

Re-use via ROP

1. Decide what to access
2. Set guard
3. Check access still OK

Thread 1
guards

87

H 10 30 T

Re-use via ROP

H 10 30 T

1. Decide what to access
2. Set guard
3. Check access still OK
4. Batch deallocations and defer on

objects while guards are present

Thread 1
guards

88

See also: “Safe
memory reclamation”

& hazard pointers,
Maged Michael

