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Overview 

 Building shared memory data structures 

 Lists, queues, hashtables, … 

 Why? 

 Used directly by applications (e.g., in C/C++, Java, C#, …) 

 Used in the language runtime system (e.g., management of 
work, implementations of message passing, …) 

 Used in traditional operating systems (e.g., synchronization 
between top/bottom-half code) 

 Why not? 

 Don’t think of “threads + shared data structures” as a 
default/good/complete/desirable programming model 

 It’s better to have shared memory and not need it… 
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Correctness 

What does it mean  
to be correct? 

e.g., if multiple concurrent 
threads are using iterators on a 

shared data structure at the 
same time? 

Ease to  
write 

What do we care about? 
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Does it matter?  Who is the 
target audience?  How much 
effort can they put into it?  Is 

implementing a data structure 
an undergrad programming 

exercise?  …or a research 
paper? 

When can it 
be used? 

How well 
does it scale? 

How fast is it? 

Between threads in the same 
process?  Between processes 
sharing memory?  Within an 

interrupt handler?  
With/without some kind of 
runtime system support? 

Suppose I have a sequential 
implementation (no 

concurrency control at all): is 
the new implementation 5% 

slower?  5x slower? 100x 
slower? 

How does performance change 
as we increase the number of 

threads?  When does the 
implementation add or avoid 

synchronization? 



Correctness 

Ease to  
write 

What do we care about? 
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When can it 
be used? 

How well 
does it scale? 

How fast is it? 



What do we care about? 

1. Be explicit about goals and trade-offs 

 A benefit in one dimension often has costs in another 

 Does a perf increase prevent a data structure being used in 
some particular setting? 

 Does a technique to make something easier to write make the 
implementation slower? 

 Do we care?  It depends on the setting 

2. Remember, parallel programming is rarely a recreational 
activity 

 The ultimate goal is to increase perf (time, or resources used) 

 Does an implementation scale well enough to out-perform a 
good sequential implementation? 
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Suggested reading 

 “The art of multiprocessor programming”, Herlihy & Shavit 
– excellent coverage of shared memory data structures, 
from both practical and theoretical perspectives 

 “Transactional memory, 2nd edition”, Harris, Larus, Rajwar – 
recently revamped survey of TM work, with 350+ references 

 “NOrec: streamlining STM by abolishing ownership 
records”, Dalessandro, Spear, Scott, PPoPP 2010 

 “Simplifying concurrent algorithms by exploiting 
transactional memory”, Dice, Lev, Marathe, Moir, 
Nussbaum, Olszewski, SPAA 2010 

 Intel “Haswell” spec for SLE (speculative lock elision) and 
RTM (restricted transactional memory) 
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Basic spin-locks 



Test and set (pseudo-code) 

bool testAndSet(bool *b) { 

  bool result; 

  atomic { 

    result = *b; 

    *b = TRUE; 

  } 

  return result; 

} 

Pointer to a location 
holding a boolean 

value (TRUE/FALSE) 

Read the current 
contents of the 

location b points to… 

…set the contents of 
*b to TRUE 
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Test and set 

time 

• Suppose two threads use it at once 

Thread 2: 

Thread 1: 

testAndSet(b)->true 

testAndSet(b)->false 
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FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

Test and set lock 

FALSE => lock available 
TRUE => lock held 

Each call tries to acquire 
the lock, returning TRUE 

if it is already held 

NB: all this is pseudo-
code, assuming SC 

memory 
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Test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 
    while (testAndSet(lock)) { 
       /* Nothing */ 
    } 
} 

void releaseLock(bool *lock) { 
   *lock = FALSE; 
} 

Thread 1 

TRUE 

Thread 2 
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What are the problems here? 

testAndSet 
implementation 

causes contention 
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Single-
threaded 

core 

Contention from testAndSet 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

Non-blocking data structures and transactional memory 14 



Single-
threaded 

core 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

Multi-core h/w – separate L2 

testAndSet(k) 

k 

k 
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Single-
threaded 

core 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

Multi-core h/w – separate L2 

testAndSet(k) 

k 

k 
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Single-
threaded 

core 

L1 cache 

Single-
threaded 

core 

L1 cache 

Main memory 

L2 cache L2 cache 

Multi-core h/w – separate L2 

testAndSet(k) 

k 

k 

Non-blocking data structures and transactional memory 

Does this still happen in 
practice?  Do modern 

CPUs avoid fetching the 
line in exclusive mode 

on  failing TAS? 
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What are the problems here? 

Spinning may waste 
resources while 

waiting 

No control over 
locking policy 

testAndSet 
implementation 

causes contention 

Only supports mutual 
exclusion: not reader-

writer locking 
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General problem 

 No logical conflict between two failed lock acquires 

 Cache protocol introduces a physical conflict 

 For a good algorithm: only introduce physical conflicts if a 
logical conflict occurs 

 In a lock: successful lock-acquire & failed lock-acquire 

 In a set: successful insert(10) & failed insert(10) 

 But not: 

 In a lock: two failed lock acquires 

 In a set: successful insert(10) & successful insert(20) 

 In a non-empty queue: enqueue on the left and remove on the 
right 
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Test and test and set lock 

FALSE 
lock: 

void acquireLock(bool *lock) { 

  do { 

    while (*lock) { }          

  } while (testAndSet(lock)); 

} 

void releaseLock(bool *lock) { 

   *lock = FALSE; 

} 

FALSE => lock available 
TRUE => lock held 

Spin while the lock is 
held… only do 

testAndSet when it is 
clear 
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Performance 

# Threads 

T
im

e 

Ideal 

TATAS 
TAS 

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 21 



Stampedes 

TRUE 
lock: 

void acquireLock(bool *lock) { 

  do { 

    while (*lock) { }          

  } while (testAndSet(lock)); 

} 

void releaseLock(bool *lock) { 

   *lock = FALSE; 

} 
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Back-off algorithms 

1. Start by spinning, watching the lock for “s” 
iterations 

2. If the lock does not become free, wait 
locally for “w” (without watching the lock) 

What should “s” be? 
What should “w” be? 
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Time spent spinning on the lock “s” 

 Lower values: 

 Less time to build up a set of threads that will 
stampede 

 Less contention in the memory system, if 
remote reads incur a cost 

 Risk of a delay in noticing when the lock 
becomes free if we are not watching 

 Higher values: 

 Less likelihood of a delay between a lock being 
released and a waiting thread noticing 
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Local waiting time “w” 

 Lower values: 

 More responsive to the lock becoming available 

 Higher values: 

 If the lock doesn’t become available then the 
thread makes fewer accesses to the shared 
variable 
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Methodical approach 

 For a given workload and performance model: 

 What is the best that could be done (i.e. given an 
“oracle” with perfect knowledge of when the lock 
becomes free)? 

 How does a practical algorithm compare with this? 

 Look for an algorithm with a bound between its 
performance and that of the oracle 

 “Competitive spinning” 
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Rule of thumb 

 Spin on the lock for a duration that’s comparable 
with the shortest back-off interval 

 Exponentially increase the per-thread back-off 
interval (resetting it when the lock is acquired) 

 Use a maximum back-off interval that is large 
enough that waiting threads don’t interfere with 
the other threads’ performance 
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Systems problems 

28 

Shared physical 
memory 

Cache(s) 

Lots of h/w threads  
multiplexed over a core 

Core 

… 

 The threads need to “wait 
efficiently” 

 Not consuming processing 
resources (contending with lock 
holder) & not consuming power 

 “monitor” / “mwait” operations – 
e.g., SPARC M7 



Systems problems 
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Shared physical 
memory 

Cache(s) 

S/W threads multiplexed  
on cores 

 Spinning gets in the way of other 
s/w threads, even if done efficiently 

 For long delays, may need to 
actually block and unblock 

 ...as with back-off, how long to 
spin for before blocking? 

Core Core … 



Queue-based locks 
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Queue-based locks 

 Lock holders queue up: immediately provides FCFS 
behavior 

 Each spins locally on a flag in their queue entry: no 
remote memory accesses while waiting 

 A lock release wakes the next thread directly: no 
stampede 
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MCS locks 

lock: 

FALSE FALSE FALSE 

QNode 1 QNode 2 QNode 3 

Head Tail 

Local flag 

Lock 
identifies tail 
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MCS lock acquire 

lock: 

FALSE 
void acquireMCS(mcs *lock, QNode *qn) { 

  QNode *prev; 

  qn->flag = false; 

  qn->next = NULL; 

  while (true) { 

     prev = lock->tail; 

     /* Label 1 */ 

     if (CAS(&lock->tail, prev, qn)) break; 

  } 

  if (prev != NULL) { 

    prev->next = qn; /* Label 2 */ 

    while (!qn->flag) { } // Spin 

} } 

Find previous 
tail node 

Atomically replace 
“prev” with “qn” in 

the lock itself 

Add link within 
the queue 
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MCS lock release 

lock: 

FALSE 

void releaseMCS(mcs *lock, QNode *qn) { 

  if (lock->tail = qn) { 

     if (CAS(&lock->tail, qn, NULL)) return; 

  } 

  while (qn->next == NULL) { } 

  qn->next->flag = TRUE; 

} 

TRUE 
qn: 

If we were at the tail 
then remove us 

Wait for next lock holder 
to announce themselves; 

signal them 
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Hierarchical locks 



Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 
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Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 
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Hierarchical locks 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Pass lock 
“nearby” if 

possible 

Call this a 
“cluster” of 

cores 
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Hierarchical TATAS with backoff 

-1 

lock: 

void acquireLock(bool *lock) { 

  do { 

    holder = *lock; 

    if (holder != -1) { 

       if (holder == MY_CLUSTER) { 

          BackOff(SHORT); 

       } else { 

          BackOff(LONG); 

       } 

    }  

  } while (!CAS(lock, -1, MY_CLUSTER)); 

} 

-1 => lock available 
n => lock held by cluster n 
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Hierarchical locks: unfairness v throughput 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 

Memory bus 

Memory 

Avoid this cycle 
repeating, 

starving 5 & 7… 
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Lock cohorting 

 “Lock Cohorting: A General Technique for Designing NUMA 
Locks”, Dice et al PPoPP 2012 
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Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 
Per-NUMA-

domain lock SA 
Per-NUMA-

domain lock SB 

System-wide 
arbitration lock G 



Lock cohorting 

 Lock acquire, uncontended 
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Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 
Per-NUMA-

domain lock SA 
Per-NUMA-

domain lock SB 

System-wide 
arbitration lock G 

(1) Acquire local lock 

(2) Acquire global lock 



Lock cohorting 

 Lock acquire, contended 
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Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 
Per-NUMA-

domain lock SA 
Per-NUMA-

domain lock SB 

System-wide 
arbitration lock G 

(1) Wait for local lock (e.g., MCS) 



Lock cohorting 

 Lock release, with successor 

44 

Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 
Per-NUMA-

domain lock SA 
Per-NUMA-

domain lock SB 

System-wide 
arbitration lock G 

(1) Pass global lock to successor 



Lock cohorting, requirements 

 Global: “thread oblivious” (acq one thread, release another) 

 Local lock: “cohort detection” (can test for successors) 
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Core 1 Core 2 

Core 3 Core 4 

Shared L2 cache 

Core 5 Core 6 

Core 7 Core 8 

Shared L2 cache 
Per-NUMA-

domain lock SA 
Per-NUMA-

domain lock SB 

System-wide 
arbitration lock G 



Reader-writer locks 



Reader-writer locks (TATAS-like) 
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0 

lock: 

void acquireWrite(int *lock) { 

    do { 

       if ((*lock == 0) && 

           (CAS(lock, 0, -1))) { 

        break; 

    } while (1); 

} 

void releaseWrite(int *lock) { 

   *lock = 0; 

} 

-1 => Locked for write 

0 => Lock available 

+n => Locked by n readers 

void acquireRead(int *lock) { 

    do { 

        int oldVal = *lock; 

        if ((oldVal >= 0) && 

            (CAS(lock, oldVal, oldVal+1))) {  

               break; 

    } } while (1); 

} 

void releaseRead(int *lock) { 

   FADD(lock, -1); // Atomic fetch-and-add 

} 



The problem with readers 
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int readCount() { 

    acquireRead(lock); 

    int result = count; 

    releaseRead(lock); 

    return result; 

} 

void incrementCount() { 

    acquireWrite(lock); 

    count++; 

    releaseWrite(lock); 

} 

 Each acquireRead fetches the cache line holding the lock in 
exclusive mode 

 Again: acquireRead are not logically conflicting, but this 
introduces a physical confliect 

 The time spent managing the lock is likely to vastly 
dominate the actual time looking at the counter 

 Many workloads are read-mostly… 



Keeping readers separate 
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Owner Flag-1 Flag-2 Flag-3 Flag-N 

Acquire write on core i:  

CAS the owner from 0 to i 

…then spin until all of the 

flags are clear 

…then check that the owner is 0  

(if not then clear own flag and wait) 

Acquire read on core i: set 

own flag to true… 



Keeping readers separate 

 With care, readers do not need to synchronize with other 
readers 

 Extend the flags to be whole cache lines  

 Pack multiple locks flags for the same thread onto the same 
line  

 Exploit the cache structure in the machine: Dice & Shavit’s 
TLRW byte-lock on SPARC Niagara 

 If “N” threads is very large.. 

 Dedicate the flags to specific important threads 

 Replace the flags with ordinary multi-reader locks 

 Replace the flags with per-NUMA-domain multi-reader locks 
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Other locking techniques 

 Affinity 

 Allow one thread fast access to the lock 

 “One thread” – e.g., previous lock holder 

 “Fast access” – e.g., with fewer / no atomic CAS operations 

 Mike Burrows “Implementing unnecessary mutexes”  
(Do the assumptions hold?  How slow is an uncontended CAS 
on a modern machine?  Are these techniques still useful?) 
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Other locking techniques 

 Affinity 

 Allow one thread fast access to the lock 

 “One thread” – e.g., previous lock holder 

 “Fast access” – e.g., with fewer / no atomic CAS operations 

 Mike Burrows “Implementing unnecessary mutexes”  
(Do the assumptions hold?  How slow is an uncontended CAS 
on a modern machine?  Are these techniques still useful?) 

 Inflation 

 Start out with a simple lock for likely-to-be-uncontended use 

 Replace with a “proper” lock if contended 

 David Bacon (thin locks), Agesen et al (meta-locks) 

 Motivating example: standard libraries in Java 
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Where are we  

 Amdahl’s law: to scale to large numbers of cores, we need 
critical sections to be rare and/or short 

 A lock implementation may involve updating a few 
memory locations 

 Accessing a data structure may involve only a few memory 
locations too 

 If we try to shrink critical sections then the time in the lock 
implementation becomes proportionately greater 

 So: 

 try to make the cost of the operations in the critical section 
lower, or 

 try to write critical sections correctly without locking 
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Reading without  
 
locking 
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What if updates are very rare 
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No updates at 
all: no need for 

locking 

Modest number 
of updates: could 
use reader-writer 

locks  



Version numbers 
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100 

Per-data-
structure 
version 
number 

Sequential 
data structure 

with write 
lock 



Version numbers: writers 
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100 



Version numbers: writers 
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101 
1. Take write lock 
2. Increment  
 version number 

 

Writers: 



Version numbers: writers 
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101 
1. Take write lock 
2. Increment  

version number 
3. Make update 
 
 

 

Writers: 



Version numbers: writers 
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102 
1. Take write lock 
2. Increment  

version number 
3. Make update 
4. Increment  

version number 
5. Release write 

lock 
 
 

 

Writers: 



Version numbers: readers 
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102 
1. Take write lock 
2. Increment  

version number 
3. Make update 
4. Increment  

version number 
5. Release write 

lock 
 
 

 

Writers: 

1. Wait for version 
number to be even 

Readers: 



Version numbers: readers 
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102 
1. Take write lock 
2. Increment  

version number 
3. Make update 
4. Increment  

version number 
5. Release write 

lock 
 
 

 

Writers: 

1. Wait for version 
number to be even 

2. Do operation 
 

 

Readers: 



Version numbers: readers 
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102 
1. Take write lock 
2. Increment  

version number 
3. Make update 
4. Increment  

version number 
5. Release write 

lock 
 
 

 

Writers: 

1. Wait for version 
number to be even 

2. Do operation 
3. Has the version  

number changed? 
4. Yes?   Go to 1 

 
 

Readers: 



Why do we need the two steps? 
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102 
1. Take write lock 
2. Increment  

version number 
3. Make update 
4. Increment  

version number 
5. Release write 

lock 
 
 

 

Writers: 

1. Wait for version 
number to be even 

2. Do operation 
3. Has the version  

number changed? 
4. Yes?   Go to 1 

 
 

Readers: 



Read-Copy-Update (RCU) 
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Read-Copy-Update (RCU) 
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1. Copy existing structure 



Read-Copy-Update (RCU) 
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1. Copy existing structure 
2. Update copy 



Read-Copy-Update (RCU) 
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1. Copy existing structure 
2. Update copy 
3. Install copy with CAS on root pointer 



Read-Copy-Update (RCU) 

69 

 Use locking to serialize updates (typically) 
 …but allow readers to operate concurrently with updates 

 Ensure that readers don’t go wrong if they access data  
mid-update 
 Have data structures reachable via a single root pointer: 

update the root pointer rather than updating the data 
structure in-place 

 Ensure that updates don’t affect readers – e.g., initializing 
nodes before splicing them into a list, and retaining “next” 
pointers in deleted nodes 

 Exact semantics offered can be subtle (ongoing research 
direction) 

 Memory management problems common with lock-free 
data structures  

 



When will these techniques be effective? 

 Update rate low 

 So the need to serialize updates is OK 

 Readers behaviour is OK mid-update 

 E.g., structure small enough to clone, rather than update in 
place 

 Readers will be OK until a version number check (not enter 
endless loops / crash / etc.) 

 Deallocation or re-use of memory can be controlled 
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Flat combining 
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Flat combining 

 “Flat Combining and the Synchronization-Parallelism 
Tradeoff”, Hendler et al 

 Intuition: 

 Acquiring and releasing a lock involves numerous cache line 
transfers on the interconnect 

 These may take hundreds of cycles (e.g., between cores in 
different NUMA nodes) 

 The work protected by the lock may involve only a few 
memory accesses… 

 …and these accesses may be likely to hit in the cache of the 
previous lock holder (but miss in your own) 

 So: if a lock is not available, request that the current lock 
holder does the work on your behalf 
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Flat combining 
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Lock 
Sequential data 

structure 

Request / response 
table 

 
Thread 1 

 
Thread 2 

 
Thread 3  

… 



Flat combining: uncontended acquire 
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Lock 
Sequential data 

structure 

Request / response 
table 

 
Thread 1 

 
Thread 2 

 
Thread 3  

… 

1. Write proposed op 

to req/resp table 

2. Acquire lock if it is 

free 

3. Process requests 

4. Release lock 

5. Pick up response 

Lock 

Thread 2’s request Thread 2’s response 



Flat combining: contended acquire 
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Lock 
Sequential data 

structure 

Request / response 
table 

 
Thread 1 

 
Thread 2 

 
Thread 3  

… 

1. Write proposed op 

to req/resp table 

2. See lock is not free 

3. Wait for response 

4. Pick up response 

Lock 

Thread 2’s request Thread 2’s response 

Thread 3’s request Thread 3’s response 



Recent research: 
 
Parallel work  
 
distribution 
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The following is intended to provide some insight into a line of research in Oracle 

Labs. It is intended for information purposes only, and may not be incorporated 

into any contract. It is not a commitment to deliver any material, code, or 

functionality, and should not be relied upon in making purchasing decisions. 

Oracle reserves the right to alter its development plans and practices at any 

time, and the development, release, and timing of any features or functionality 

described in connection with any Oracle product or service remains at the sole 

discretion of Oracle.  Any views expressed in this presentation are my own and 

do not necessarily reflect the views of Oracle. 
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PageRank inner loop 
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PageRank inner loop 
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Batch size / load imbalance trade-off 

Divide into large batches of vertices 
 
Reduce overheads 
Risk load imbalance  
 

Divide into small batches of vertices 
 
Increase overheads distributing work 
Achieve better load balance 
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Batch size / load imbalance trade-off 

Iteration number 

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Variable 
amount of 
work per 
iteration 

(Actual data – #out-edges of the 
top 1000 nodes in the SNAP 
Twitter dataset) 
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Example performance 
Complete PageRank execution, SNAP LiveJournal data set 

8-socket SPARC T5 
16 cores per socket 

8 h/w threads per core 
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Batch size / load imbalance trade-off 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Our approach: 
efficient fine-
grained distribution 

Divide into large batches of vertices 
 
Reduce overheads 
Risk load imbalance  
 

Divide into small batches of vertices 
 
Increase overheads distributing work 
Achieve better load balance 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

0..125 125..250 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

0..125 125..250 

Per-thread request flags 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

0..125 125..250 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

0..125 125..250 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

0..125 125..250 
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Consider distributing 0..16000 vertices, 
batch size 10 

8 sockets 

16 cores per socket 

0..1
0 

10..
20 

20..30 8 h/w threads per core 

Distribute vertices at  
start of loop down to  
per-core counters 

Aggregate requests  
upwards within a core 

30..125 125..250 
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PageRank – SNAP LiveJournal (4.8M vertices, 
69M edges) 
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More details 

• Callisto-RTS: Fine-Grain Parallel Loops  

• Tim Harris, Stefan Kaestle, USENIX ATC 2015 

• https://timharris.uk/papers/2015-atc-callisto.pdf 
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