
NON-BLOCKING DATA STRUCTURES

AND TRANSACTIONAL MEMORY

Tim Harris, 21 Oct 2016

Lecture 1/3

 Introduction

 Basic spin-locks

 Queue-based locks

 Hierarchical locks

 Reader-writer locks

 Reading without locking

 Flat combining

 Recent research: parallel work distribution

Overview

 Building shared memory data structures

 Lists, queues, hashtables, …

 Why?

 Used directly by applications (e.g., in C/C++, Java, C#, …)

 Used in the language runtime system (e.g., management of
work, implementations of message passing, …)

 Used in traditional operating systems (e.g., synchronization
between top/bottom-half code)

 Why not?

 Don’t think of “threads + shared data structures” as a
default/good/complete/desirable programming model

 It’s better to have shared memory and not need it…

3

Correctness

What does it mean
to be correct?

e.g., if multiple concurrent
threads are using iterators on a

shared data structure at the
same time?

Ease to
write

What do we care about?

4

Does it matter? Who is the
target audience? How much
effort can they put into it? Is

implementing a data structure
an undergrad programming

exercise? …or a research
paper?

When can it
be used?

How well
does it scale?

How fast is it?

Between threads in the same
process? Between processes
sharing memory? Within an

interrupt handler?
With/without some kind of
runtime system support?

Suppose I have a sequential
implementation (no

concurrency control at all): is
the new implementation 5%

slower? 5x slower? 100x
slower?

How does performance change
as we increase the number of

threads? When does the
implementation add or avoid

synchronization?

Correctness

Ease to
write

What do we care about?

5

When can it
be used?

How well
does it scale?

How fast is it?

What do we care about?

1. Be explicit about goals and trade-offs

 A benefit in one dimension often has costs in another

 Does a perf increase prevent a data structure being used in
some particular setting?

 Does a technique to make something easier to write make the
implementation slower?

 Do we care? It depends on the setting

2. Remember, parallel programming is rarely a recreational
activity

 The ultimate goal is to increase perf (time, or resources used)

 Does an implementation scale well enough to out-perform a
good sequential implementation?

6

Suggested reading

 “The art of multiprocessor programming”, Herlihy & Shavit
– excellent coverage of shared memory data structures,
from both practical and theoretical perspectives

 “Transactional memory, 2nd edition”, Harris, Larus, Rajwar –
recently revamped survey of TM work, with 350+ references

 “NOrec: streamlining STM by abolishing ownership
records”, Dalessandro, Spear, Scott, PPoPP 2010

 “Simplifying concurrent algorithms by exploiting
transactional memory”, Dice, Lev, Marathe, Moir,
Nussbaum, Olszewski, SPAA 2010

 Intel “Haswell” spec for SLE (speculative lock elision) and
RTM (restricted transactional memory)

7

Basic spin-locks

Test and set (pseudo-code)

bool testAndSet(bool *b) {

 bool result;

 atomic {

 result = *b;

 *b = TRUE;

 }

 return result;

}

Pointer to a location
holding a boolean

value (TRUE/FALSE)

Read the current
contents of the

location b points to…

…set the contents of
*b to TRUE

9

Test and set

time

• Suppose two threads use it at once

Thread 2:

Thread 1:

testAndSet(b)->true

testAndSet(b)->false

Non-blocking data structures and transactional memory 10

FALSE
lock:

void acquireLock(bool *lock) {
 while (testAndSet(lock)) {
 /* Nothing */
 }
}

void releaseLock(bool *lock) {
 *lock = FALSE;
}

Test and set lock

FALSE => lock available
TRUE => lock held

Each call tries to acquire
the lock, returning TRUE

if it is already held

NB: all this is pseudo-
code, assuming SC

memory

Non-blocking data structures and transactional memory 11

Test and set lock

FALSE
lock:

void acquireLock(bool *lock) {
 while (testAndSet(lock)) {
 /* Nothing */
 }
}

void releaseLock(bool *lock) {
 *lock = FALSE;
}

Thread 1

TRUE

Thread 2

Non-blocking data structures and transactional memory 12

What are the problems here?

testAndSet
implementation

causes contention

Non-blocking data structures and transactional memory 13

Single-
threaded

core

Contention from testAndSet

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Non-blocking data structures and transactional memory 14

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 15

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory 16

Single-
threaded

core

L1 cache

Single-
threaded

core

L1 cache

Main memory

L2 cache L2 cache

Multi-core h/w – separate L2

testAndSet(k)

k

k

Non-blocking data structures and transactional memory

Does this still happen in
practice? Do modern

CPUs avoid fetching the
line in exclusive mode

on failing TAS?

17

What are the problems here?

Spinning may waste
resources while

waiting

No control over
locking policy

testAndSet
implementation

causes contention

Only supports mutual
exclusion: not reader-

writer locking

18

General problem

 No logical conflict between two failed lock acquires

 Cache protocol introduces a physical conflict

 For a good algorithm: only introduce physical conflicts if a
logical conflict occurs

 In a lock: successful lock-acquire & failed lock-acquire

 In a set: successful insert(10) & failed insert(10)

 But not:

 In a lock: two failed lock acquires

 In a set: successful insert(10) & successful insert(20)

 In a non-empty queue: enqueue on the left and remove on the
right

19

Test and test and set lock

FALSE
lock:

void acquireLock(bool *lock) {

 do {

 while (*lock) { }

 } while (testAndSet(lock));

}

void releaseLock(bool *lock) {

 *lock = FALSE;

}

FALSE => lock available
TRUE => lock held

Spin while the lock is
held… only do

testAndSet when it is
clear

20

Performance

Threads

T
im

e

Ideal

TATAS
TAS

Based on Fig 7.4, Herlihy & Shavit, “The Art of Multiprocessor Programming” 21

Stampedes

TRUE
lock:

void acquireLock(bool *lock) {

 do {

 while (*lock) { }

 } while (testAndSet(lock));

}

void releaseLock(bool *lock) {

 *lock = FALSE;

}

Non-blocking data structures and transactional memory 22

Back-off algorithms

1. Start by spinning, watching the lock for “s”
iterations

2. If the lock does not become free, wait
locally for “w” (without watching the lock)

What should “s” be?
What should “w” be?

Non-blocking data structures and transactional memory 23

Time spent spinning on the lock “s”

 Lower values:

 Less time to build up a set of threads that will
stampede

 Less contention in the memory system, if
remote reads incur a cost

 Risk of a delay in noticing when the lock
becomes free if we are not watching

 Higher values:

 Less likelihood of a delay between a lock being
released and a waiting thread noticing

Non-blocking data structures and transactional memory 24

Local waiting time “w”

 Lower values:

 More responsive to the lock becoming available

 Higher values:

 If the lock doesn’t become available then the
thread makes fewer accesses to the shared
variable

Non-blocking data structures and transactional memory 25

Methodical approach

 For a given workload and performance model:

 What is the best that could be done (i.e. given an
“oracle” with perfect knowledge of when the lock
becomes free)?

 How does a practical algorithm compare with this?

 Look for an algorithm with a bound between its
performance and that of the oracle

 “Competitive spinning”

Non-blocking data structures and transactional memory 26

Rule of thumb

 Spin on the lock for a duration that’s comparable
with the shortest back-off interval

 Exponentially increase the per-thread back-off
interval (resetting it when the lock is acquired)

 Use a maximum back-off interval that is large
enough that waiting threads don’t interfere with
the other threads’ performance

Non-blocking data structures and transactional memory 27

Systems problems

28

Shared physical
memory

Cache(s)

Lots of h/w threads
multiplexed over a core

Core

…

 The threads need to “wait
efficiently”

 Not consuming processing
resources (contending with lock
holder) & not consuming power

 “monitor” / “mwait” operations –
e.g., SPARC M7

Systems problems

29

Shared physical
memory

Cache(s)

S/W threads multiplexed
on cores

 Spinning gets in the way of other
s/w threads, even if done efficiently

 For long delays, may need to
actually block and unblock

 ...as with back-off, how long to
spin for before blocking?

Core Core …

Queue-based locks

30

Queue-based locks

 Lock holders queue up: immediately provides FCFS
behavior

 Each spins locally on a flag in their queue entry: no
remote memory accesses while waiting

 A lock release wakes the next thread directly: no
stampede

Non-blocking data structures and transactional memory 31

MCS locks

lock:

FALSE FALSE FALSE

QNode 1 QNode 2 QNode 3

Head Tail

Local flag

Lock
identifies tail

Non-blocking data structures and transactional memory 32

MCS lock acquire

lock:

FALSE
void acquireMCS(mcs *lock, QNode *qn) {

 QNode *prev;

 qn->flag = false;

 qn->next = NULL;

 while (true) {

 prev = lock->tail;

 /* Label 1 */

 if (CAS(&lock->tail, prev, qn)) break;

 }

 if (prev != NULL) {

 prev->next = qn; /* Label 2 */

 while (!qn->flag) { } // Spin

} }

Find previous
tail node

Atomically replace
“prev” with “qn” in

the lock itself

Add link within
the queue

Non-blocking data structures and transactional memory 33

MCS lock release

lock:

FALSE

void releaseMCS(mcs *lock, QNode *qn) {

 if (lock->tail = qn) {

 if (CAS(&lock->tail, qn, NULL)) return;

 }

 while (qn->next == NULL) { }

 qn->next->flag = TRUE;

}

TRUE
qn:

If we were at the tail
then remove us

Wait for next lock holder
to announce themselves;

signal them

Non-blocking data structures and transactional memory 34

Hierarchical locks

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Non-blocking data structures and transactional memory 37

Hierarchical locks

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Pass lock
“nearby” if

possible

Call this a
“cluster” of

cores

Non-blocking data structures and transactional memory 38

Hierarchical TATAS with backoff

-1

lock:

void acquireLock(bool *lock) {

 do {

 holder = *lock;

 if (holder != -1) {

 if (holder == MY_CLUSTER) {

 BackOff(SHORT);

 } else {

 BackOff(LONG);

 }

 }

 } while (!CAS(lock, -1, MY_CLUSTER));

}

-1 => lock available
n => lock held by cluster n

Non-blocking data structures and transactional memory 39

Hierarchical locks: unfairness v throughput

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache

Memory bus

Memory

Avoid this cycle
repeating,

starving 5 & 7…

Non-blocking data structures and transactional memory 40

Lock cohorting

 “Lock Cohorting: A General Technique for Designing NUMA
Locks”, Dice et al PPoPP 2012

41

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

Lock cohorting

 Lock acquire, uncontended

42

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Acquire local lock

(2) Acquire global lock

Lock cohorting

 Lock acquire, contended

43

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Wait for local lock (e.g., MCS)

Lock cohorting

 Lock release, with successor

44

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

(1) Pass global lock to successor

Lock cohorting, requirements

 Global: “thread oblivious” (acq one thread, release another)

 Local lock: “cohort detection” (can test for successors)

45

Core 1 Core 2

Core 3 Core 4

Shared L2 cache

Core 5 Core 6

Core 7 Core 8

Shared L2 cache
Per-NUMA-

domain lock SA
Per-NUMA-

domain lock SB

System-wide
arbitration lock G

Reader-writer locks

Reader-writer locks (TATAS-like)

47

0

lock:

void acquireWrite(int *lock) {

 do {

 if ((*lock == 0) &&

 (CAS(lock, 0, -1))) {

 break;

 } while (1);

}

void releaseWrite(int *lock) {

 *lock = 0;

}

-1 => Locked for write

0 => Lock available

+n => Locked by n readers

void acquireRead(int *lock) {

 do {

 int oldVal = *lock;

 if ((oldVal >= 0) &&

 (CAS(lock, oldVal, oldVal+1))) {

 break;

 } } while (1);

}

void releaseRead(int *lock) {

 FADD(lock, -1); // Atomic fetch-and-add

}

The problem with readers

48

int readCount() {

 acquireRead(lock);

 int result = count;

 releaseRead(lock);

 return result;

}

void incrementCount() {

 acquireWrite(lock);

 count++;

 releaseWrite(lock);

}

 Each acquireRead fetches the cache line holding the lock in
exclusive mode

 Again: acquireRead are not logically conflicting, but this
introduces a physical confliect

 The time spent managing the lock is likely to vastly
dominate the actual time looking at the counter

 Many workloads are read-mostly…

Keeping readers separate

49

Owner Flag-1 Flag-2 Flag-3 Flag-N

Acquire write on core i:

CAS the owner from 0 to i

…then spin until all of the

flags are clear

…then check that the owner is 0

(if not then clear own flag and wait)

Acquire read on core i: set

own flag to true…

Keeping readers separate

 With care, readers do not need to synchronize with other
readers

 Extend the flags to be whole cache lines

 Pack multiple locks flags for the same thread onto the same
line

 Exploit the cache structure in the machine: Dice & Shavit’s
TLRW byte-lock on SPARC Niagara

 If “N” threads is very large..

 Dedicate the flags to specific important threads

 Replace the flags with ordinary multi-reader locks

 Replace the flags with per-NUMA-domain multi-reader locks

50

Other locking techniques

 Affinity

 Allow one thread fast access to the lock

 “One thread” – e.g., previous lock holder

 “Fast access” – e.g., with fewer / no atomic CAS operations

 Mike Burrows “Implementing unnecessary mutexes”
(Do the assumptions hold? How slow is an uncontended CAS
on a modern machine? Are these techniques still useful?)

51

Other locking techniques

 Affinity

 Allow one thread fast access to the lock

 “One thread” – e.g., previous lock holder

 “Fast access” – e.g., with fewer / no atomic CAS operations

 Mike Burrows “Implementing unnecessary mutexes”
(Do the assumptions hold? How slow is an uncontended CAS
on a modern machine? Are these techniques still useful?)

 Inflation

 Start out with a simple lock for likely-to-be-uncontended use

 Replace with a “proper” lock if contended

 David Bacon (thin locks), Agesen et al (meta-locks)

 Motivating example: standard libraries in Java

52

Where are we

 Amdahl’s law: to scale to large numbers of cores, we need
critical sections to be rare and/or short

 A lock implementation may involve updating a few
memory locations

 Accessing a data structure may involve only a few memory
locations too

 If we try to shrink critical sections then the time in the lock
implementation becomes proportionately greater

 So:

 try to make the cost of the operations in the critical section
lower, or

 try to write critical sections correctly without locking

53

Reading without

locking

54

What if updates are very rare

55

No updates at
all: no need for

locking

Modest number
of updates: could
use reader-writer

locks

Version numbers

56

100

Per-data-
structure
version
number

Sequential
data structure

with write
lock

Version numbers: writers

57

100

Version numbers: writers

58

101
1. Take write lock
2. Increment
 version number

Writers:

Version numbers: writers

59

101
1. Take write lock
2. Increment

version number
3. Make update

Writers:

Version numbers: writers

60

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

Version numbers: readers

61

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

Readers:

Version numbers: readers

62

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation

Readers:

Version numbers: readers

63

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version

number changed?
4. Yes? Go to 1

Readers:

Why do we need the two steps?

64

102
1. Take write lock
2. Increment

version number
3. Make update
4. Increment

version number
5. Release write

lock

Writers:

1. Wait for version
number to be even

2. Do operation
3. Has the version

number changed?
4. Yes? Go to 1

Readers:

Read-Copy-Update (RCU)

65

Read-Copy-Update (RCU)

66

1. Copy existing structure

Read-Copy-Update (RCU)

67

1. Copy existing structure
2. Update copy

Read-Copy-Update (RCU)

68

1. Copy existing structure
2. Update copy
3. Install copy with CAS on root pointer

Read-Copy-Update (RCU)

69

 Use locking to serialize updates (typically)
 …but allow readers to operate concurrently with updates

 Ensure that readers don’t go wrong if they access data
mid-update
 Have data structures reachable via a single root pointer:

update the root pointer rather than updating the data
structure in-place

 Ensure that updates don’t affect readers – e.g., initializing
nodes before splicing them into a list, and retaining “next”
pointers in deleted nodes

 Exact semantics offered can be subtle (ongoing research
direction)

 Memory management problems common with lock-free
data structures

When will these techniques be effective?

 Update rate low

 So the need to serialize updates is OK

 Readers behaviour is OK mid-update

 E.g., structure small enough to clone, rather than update in
place

 Readers will be OK until a version number check (not enter
endless loops / crash / etc.)

 Deallocation or re-use of memory can be controlled

70

Flat combining

71

Flat combining

 “Flat Combining and the Synchronization-Parallelism
Tradeoff”, Hendler et al

 Intuition:

 Acquiring and releasing a lock involves numerous cache line
transfers on the interconnect

 These may take hundreds of cycles (e.g., between cores in
different NUMA nodes)

 The work protected by the lock may involve only a few
memory accesses…

 …and these accesses may be likely to hit in the cache of the
previous lock holder (but miss in your own)

 So: if a lock is not available, request that the current lock
holder does the work on your behalf

72

Flat combining

73

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3

…

Flat combining: uncontended acquire

74

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3

…

1. Write proposed op

to req/resp table

2. Acquire lock if it is

free

3. Process requests

4. Release lock

5. Pick up response

Lock

Thread 2’s request Thread 2’s response

Flat combining: contended acquire

75

Lock
Sequential data

structure

Request / response
table

Thread 1

Thread 2

Thread 3

…

1. Write proposed op

to req/resp table

2. See lock is not free

3. Wait for response

4. Pick up response

Lock

Thread 2’s request Thread 2’s response

Thread 3’s request Thread 3’s response

Recent research:

Parallel work

distribution

76

The following is intended to provide some insight into a line of research in Oracle

Labs. It is intended for information purposes only, and may not be incorporated

into any contract. It is not a commitment to deliver any material, code, or

functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any

time, and the development, release, and timing of any features or functionality

described in connection with any Oracle product or service remains at the sole

discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10
10

10

5

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches of vertices

Reduce overheads
Risk load imbalance

Divide into small batches of vertices

Increase overheads distributing work
Achieve better load balance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Variable
amount of
work per
iteration

(Actual data – #out-edges of the
top 1000 nodes in the SNAP
Twitter dataset)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Example performance
Complete PageRank execution, SNAP LiveJournal data set

8-socket SPARC T5
16 cores per socket

8 h/w threads per core

1024

512

256

128

64

32

1024 256 64 16 4

T
h
re

a
d
s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
tio

n
 tim

e

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Our approach:
efficient fine-
grained distribution

Divide into large batches of vertices

Reduce overheads
Risk load imbalance

Divide into small batches of vertices

Increase overheads distributing work
Achieve better load balance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

0..125 125..250

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Per-thread request flags

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

0..125 125..250

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Consider distributing 0..16000 vertices,
batch size 10

8 sockets

16 cores per socket

0..1
0

10..
20

20..30 8 h/w threads per core

Distribute vertices at
start of loop down to
per-core counters

Aggregate requests
upwards within a core

30..125 125..250

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0 N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices,
69M edges)

Before After

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

More details

• Callisto-RTS: Fine-Grain Parallel Loops

• Tim Harris, Stefan Kaestle, USENIX ATC 2015

• https://timharris.uk/papers/2015-atc-callisto.pdf

https://timharris.uk/papers/2015-atc-callisto.pdf
https://timharris.uk/papers/2015-atc-callisto.pdf
https://timharris.uk/papers/2015-atc-callisto.pdf
https://timharris.uk/papers/2015-atc-callisto.pdf
https://timharris.uk/papers/2015-atc-callisto.pdf

