
High-level languages

High-level languages are not immune to these problems.

Actually, the situation is even worse:

the source language typically operates over mixed-size
values (multi-word and bitfield);

the compiler might reorder/remove/add memory
accesses;

and then the hardware will do its relaxed execution.

– p. 1



Constant Propagation

x = 3287

y = 7 - x / 2
→ x = 3287

y = 7 - 3287 / 2

– p. 2



Constant Propagation

x = 3287

y = 7 - x / 2
→ x = 3287

y = 7 - 3287 / 2

Initially x = y = 0

x = 1 if (x==1) {

if (y==1) x = 0

print x y=1 }

SC: can never print 1

Sun HotSpot JVM or GCJ: always prints 1

– p. 2



Non-atomic Accesses

Consider misaligned 4-byte accesses

Initially int32 t a = 0

a = 0x44332211 if a = 0x00002211

print "oops"

– p. 3



Non-atomic Accesses

Consider misaligned 4-byte accesses

Initially int32 t a = 0

a = 0x44332211 if a = 0x00002211

print "oops"

Intel SDM x86 atomic accesses:

n-bytes on an n-byte boundary (n=1,2,4,16)

P6 or later: ...or if unaligned but within a cache line

Compiler will normally ensure alignment – But what about
multi-word high-level language values?

– p. 3



Defining PL Memory Models

Option 1: Don’t. No Concurrency

Poor match for current trends

– p. 4



Defining PL Memory Models

Option 2: Don’t. No Shared Memory

A good match for some problems

Erlang, MPI

– p. 4



Defining PL Memory Models

Option 3: Don’t. SC Shared Memory, with Races

(What OCaml gives you — but that’s not a true concurrent
impl.)

(What Haskell gives you for MVars?)

In general, it’s going to be expensive...

Naive impl: barriers between every memory access

(smarter: analysis to approximate the thread-local or non-racy accesses, but
aliasing always hard)

– p. 4



Defining PL Memory Models

Option 4: Don’t. Shared Memory, but Language ensures
Race-Free

e.g. by ensuring data accesses protected by associated locks

Possible — but inflexible... (pointer aliasing?)

What about all those fancy high-performance concurrent
algorithms?

– p. 4



Defining PL Memory Models

Option 5: Don’t. Shared Memory, but verify programs in
concurrent separation logic and prove that implies
race-freedom (and hence all executions are SC)

Appel et al.

great — but “verify”?!

– p. 4



Defining PL Memory Models

Option 6: Don’t. Leave it (sort of) up to the hardware

Example: MLton

(high-performance ML-to-x86 compiler, with concurrency
extensions)

Accesses to ML refs will exhibit the underlying x86-TSO
behaviour

But, they will at least be atomic

– p. 4



Data races
Initial state: x=0 and y=0

Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

Initially x = y = 0

x = 1 if (x==1) {

if (y==1) x = 0

print x y=1 }

Observe:

the problematic hardware and compiler transformations
do not change the meaning of single-threaded programs;

the problematic transformations are detectable only by
code that allows two threads to access the same data
“simultaneously” in conflicting ways (e.g. one thread
writes the data read by the other):

those with a data race

– p. 5



Defining PL Memory Models

Option 7: Do(!) Use Data race freedom as a definition

programs that are race-free in SC semantics have SC
behaviour

programs that have a race in some execution in SC
semantics can behave in any way at all

Kourosh Gharachorloo Sarita Adve & Mark Hill, 1990

– p. 6



Defining PL Memory Models

Option 7: Do(!) Use Data race freedom as a definition
Ensure the implementations of high-level language
synchronisation mechanisms, e.g. locks:

prevent the compiler optimising across them

insert strong enough hardware synchronisation to recover
SC inbetween (e.g. fences, x86 LOCK’d instructions,
ARM “load-acquire”/“store-release” instructions,...)

– p. 6



Option 7: DRF as a definition

Core of C++0x draft. Hans Boehm & Sarita Adve, PLDI 2008

Pro:

Simple!

Strong guarantees for most code

Allows lots of freedom for compiler and hardware
optimisations

‘Programmer-Centric’

– p. 7



Option 7: DRF as a definition

Core of C++0x draft. Hans Boehm & Sarita Adve, PLDI 2008

Con:

programs that have a race in some execution in SC
semantics can behave in any way at all

Undecidable premise.

Imagine debugging: either bug is X ... or there is a potential race in
some execution

No guarantees for untrusted code

restrictive. Forbids those fancy concurrent algorithms

need to define exactly what a race is
what about races in synchronisation and concurrent datastructure
libraries?

– p. 7



Defining PL Memory Models
Option 8: Don’t. Take a concurrency-oblivious language
spec (e.g. C) and bolt on a thread library (e.g. Posix or
Windows threads)

Posix is sort-of DRF:

Applications shall ensure that access to any memory location by
more than one thread of control (threads or processes) is
restricted such that no thread of control can read or modify a
memory location while another thread of control may be
modifying it . Such access is restricted using functions that
synchronize thread execution and also synchronize memory with
respect to other threads Single Unix SPEC V3 & others

Threads Cannot be Implemented as a Library, Hans Boehm,
PLDI 2005

– p. 8



Defining PL Memory Models
Recall DRF gives no guarantees for untrusted code

Would be a disaster for Java, which relies on unforgeable
pointers for its security guarantees

Option 9: Do. DRF + some out-of-thin-air guarantee for all
code

– p. 9



Option 9: The Java Memory Model(s)
Java has integrated multithreading, and it attempts to specify
the precise behaviour of concurrent programs.

By the year 2000, the initial specification was shown:

to allow unexpected behaviours;

to prohibit common compiler optimisations,

to be challenging to implement on top of a
weakly-consistent multiprocessor.

Superseded around 2004 by the JSR-133 memory model.
The Java Memory Model, Jeremy Manson, Bill Pugh & Sarita Adve, POPL05

– p. 10



Option 9: JSR-133

Goal 1: data-race free programs are sequentially
consistent;

Goal 2: all programs satisfy some memory safety and
security requirements;

Goal 3: common compiler optimisations are sound.

– p. 11



Option 9: JSR-133 — Unsoundness

The model is intricate, and fails to meet Goal 3.: Some
optimisations may generate code that exhibits more
behaviours than those allowed by the un-optimised source.

As an example, JSR-133 allows r2=1 in the optimised code
below, but forbids r2=1 in the source code:

x = y = 0

r1=x r2=y

y=r1 x=(r2==1)?y:1

HotSpot optimisation
−→

x = y = 0

r1=x x=1

y=r1 r2=y

Jaroslav Ševčík & Dave Aspinall, ECOOP 2008

– p. 12



Defining PL Memory Models
Recall DRF is restrictive, forbidding racy concurrent
algorithms (also costly on Power)

And note that C and C++ don’t guarantee type safety in any
case.

– p. 13



Defining PL Memory Models
Recall DRF is restrictive, forbidding racy concurrent
algorithms (also costly on Power)

And note that C and C++ don’t guarantee type safety in any
case.

Option 10: Do. DRF + low-level atomic operations with
relaxed semantics

C++0x approach.

Foundations of the C++ Memory Model, Boehm&Adve PLDI08

Working Draft, Standard for Programming Language C++, N3090, 2010-03
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2010/

with Lawrence Crowl, Paul McKenney, Clark Nelson, Herb Sutter,...

– p. 13

http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2010/


Option 10: C/C++11

normal loads and stores

lock/unlock

atomic operations (load, store, read-modify-write, ...)
seq cst

relaxed, consume, acquire, release, acq rel

Idea: if you only use SC atomics, you get DRF guarantee
Non-SC atomics there for experts.

Informal-prose spec.

Formalisation by Batty, Owens, Sarkar, Sewell, Weber,
PLDI11

– p. 14



Problem: Untested Subtlety
For any such subtle and loose specification, how can we have
any confidence that it:

is well-defined?
must be mathematically precise

has the desired behaviour on key examples?
exploration tools

is internally self-consistent?
formalisation and proof of metatheory

is what is implemented by compiler+hw?
testing tools; compiler proof

is comprehensible to the programmer?
must be maths explained in prose

lets us write programs above the model?
static analysis/dynamic checker/daemonic emulator

is implementable with good performance?
implement... – p. 15



Problem/Opportunity: Legacy Complexity

Most of these talks have been dominated by complex legacy
choices:

hw: x86, Power, Alpha, Sparc, Itanium

sw: C, C++ and Java compiler optimisations, language
standards and programming idioms

We may be stuck with these - but maybe not... Can we build
radically more scalable systems with a better hw/sw or
lang/app interface?

– p. 16



The End

Thanks!

– p. 17


	High-level languages
	Constant Propagation
	Constant Propagation

	Non-atomic Accesses
	Non-atomic Accesses

	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models
	Defining PL Memory Models

	Data races
	Defining PL Memory Models
	Defining PL Memory Models

	Option 7: DRF as a definition
	Option 7: DRF as a definition

	Defining PL Memory Models
	Defining PL Memory Models
	Option 9: The Java Memory Model(s)
	Option 9: JSR-133
	Option 9: JSR-133 --- Unsoundness
	Defining PL Memory Models
	Defining PL Memory Models

	Option 10: C/C++11
	onlySlide *{1}{Problem}: Untested Subtlety
	Problem/Opportunity: Legacy Complexity

