
Quantum Computing
Lecture 8

Quantum Automata and Complexity

Maris Ozols

Computational models and complexity

Shor’s algorithm solves, in polynomial time, a problem for which no
classical polynomial time algorithm is known.

What class of problems are solvable by quantum machines in polynomial
time?

How does the model of quantum computing compare to other models,
such as ones with randomness or non-determinism?

How does the quantum model of computation affect our understanding
of computational complexity?

This lecture:

1. finite-state automata

2. computational complexity

Finite-state automata
A finite-state automaton (FSA) consists of

• a finite set of states Q
• a finite input alphabet Σ
• an initial state and some accepting states A ⊆ Q
• transitions between states

Example:

q0 q1

a a

b

b
• states: Q = {q0, q1}
• alphabet: Σ = {a, b}
• initial state: q0,

accepting states: A = {q1}
• transitions: q0

a→ q0, q0
b→ q1, . . .

It accepts the set of all strings over {a, b} that contain at least one b.

Its operation can be described by a pair of transition matrices:

Ma =

(
1 0
0 1

)
|q0〉
|q1〉

Mb =

(
0 0
1 1

)
|q0〉
|q1〉

That is, Ma|qi〉 = |qi〉 and Mb|qi〉 = |q1〉 for all i ∈ {0, 1}. After reading
the string abb, the transitions between states are described by MbMbMa.

Different flavours of FSA

An n-state automaton with alphabet Σ is described by a collection of
n× n matrices {Ma : a ∈ Σ}, i.e., one matrix for each symbol a ∈ Σ.

Depending on allowed M , we get different flavours of automata:

• Deterministic: M is a 0/1 matrix and each column of M has
exactly one entry 1

• Reversible: M is a 0/1 matrix and each row and column of M has
exactly one entry 1, i.e., M is a permutation matrix

• Non-deterministic: M is an arbitrary 0/1 matrix

• Probabilistic: all entries of M are in [0, 1] and each column sums
up to 1, i.e., M is a stochastic matrix

• Quantum: M is unitary

Example: Here are different types of transitions matrices:(
1 1
0 0

) (
0 1
1 0

) (
1 0
1 0

) (
1/2 0
1/2 1

) (
1 0
0 i

)
deterministic reversible non-deterministic probabilistic quantum

Intermediate states

Depending on the type of automata, we get different types of
intermediate states:

• Deterministic: it is a standard basis vector |q〉 for some q ∈ Q
• Reversible: same as above; moreover, given the last input symbol

we can also recover the previous state by applying MT

• Non-deterministic:
∑

q∈Q cq|q〉 where cq ∈ {0, 1, 2, . . .}
• Probabilistic:

∑
q∈Q cq|q〉 where cq ∈ [0, 1] and

∑
q∈Q cq = 1;

equivalently, it is a probability distribution over Q

• Quantum:
∑

q∈Q cq|q〉 where cq ∈ C and
∑

q∈Q|cq|
2

= 1;
equivalently, it is a quantum state that is a superposition over Q

Note: For non-deterministic automata, cq ∈ N counts the number of
different paths from the initial state to q using transitions given by the
input string. Normally one cares only about the existence of a path, so
we can replace all cq ≥ 1 by 1 so that cq ∈ {0, 1} and the state is always
of the form

∑
q∈S |q〉 for some subset S ⊆ Q.

Acceptance

Let A ⊆ Q denote the set of all accepting states. Then we accept the
input word if the current state

∑
q∈Q cq|q〉 satisfies:

• Deterministic: the state is |q〉 for some q ∈ A
• Reversible: same as above

• Non-deterministic:
∑

q∈A cq ≥ 1, i.e., at least one accepting state

• Probabilistic:
∑

q∈A cq ≥ 2/3

• Quantum:
∑

q∈A|cq|
2 ≥ 2/3

Note: The threshold 2/3 is arbitrary (any fixed constant > 1/2).

The language accepted or recognized by a finite automaton consists of all
finite strings over Σ that are accepted: L ⊆ Σ∗.

Some remarks

Deterministic, non-deterministic, and probabilistic automata accept
exactly the class of regular languages.

Automaton’s complexity is |Q|, its number of states. Different models
may require different number of states to solve the same problem.

Reversible and quantum automata are weaker because of reversibility.

Possible fix: we can allow intermediate measurements in the quantum
case. Then we can simulate randomness by measuring |+〉. This makes
quantum automata at least as powerful as probabilistic ones.

Turing machines are much more interesting than finite automata. . .

Turing machine

Turing machine (TM) consists of a finite automaton attached to an
infinite read-write tape. The tape is initially blank and contains only a
finite-length input.

TM is determined by an alphabet Σ, a finite set of states Q, and a
transition function δ which, for each symbol and state, gives:

• next state,

• new replacement symbol to write on the tape,

• direction in which to move the tape head.

TM has infinitely many possible configurations (reserving the word
“state” for elements of Q). Each configuration c is determined by a
state, the contents of the tape (a finite string), and the head’s position.

Acceptance

Let c0 denote the starting configuration of a TM: the automaton is in its
initial state, the tape contains the input w ∈ Σ∗, and the tape head is at
the left end of the string.

The input w is accepted if the computation c0 → c1 → · · · → ct
eventually reaches an accepting state, where t denotes the amount of
time the computation takes.

The action of the TM can equivalently be described as a linear operator
on an infinite-dimensional space, where the set of configurations form a
basis for the space.

This operation should be reversible/unitary for reversible/quantum
Turing machines. Such description is very hard to work with, so that’s
why we instead use quantum circuits (recall Lecture 4).

Computational resources and models

Models of computation:

• deterministic

• non-deterministic

• probabilistic

• quantum

Resources:

• time

• space

Randomness supplied upfront: Randomized computation can
implemented by a deterministic Turing machine that has a supply of
random bits written on the tape.

Computation vs verification: Non-deterministic computation can be
thought of as verification. If we make all the non-deterministic choices
upfront, this corresponds to guessing the answer and then verifying that
it is indeed correct.

Randomness from quantumness: Quantum computer can obtain
random bits by measuring |+〉.

Basic complexity classes

Promise problem: A = (Ayes, Ano) where Ayes, Ano ⊆ Σ∗ such that
Ayes ∩Ano = ∅. We promise not to give inputs Σ∗ − (Ayes ∪Ano).

Example (cat videos): Ayes ∪Ano is the set of all possible videos where
Ayes contains cats but Ano does not. Σ∗ − (Ayes ∪Ano) are not videos.

Complexity classes: Given A = (Ayes, Ano), let M be a deterministic
poly-time Turing machine that receives x ∈ Ayes ∪Ano. Then

• A ∈ P = (deterministic) Polynomial-time: if M accepts all
x ∈ Ayes and rejects all x ∈ Ano

• A ∈ PP = Probabilistic Polynomial-time: if M can access random
bits and accepts/rejects with probability > 1/2

• A ∈ BPP = Bounded-error Probabilistic Polynomial-time: if M
can access random bits and accepts/rejects with probability ≥ 2/3

• A ∈ BQP = Bounded-error Quantum Polynomial-time: if M
produces a poly-time quantum circuit that accepts/rejects with
probability ≥ 2/3

Verification complexity
King Arthur asks an all-powerful Wizard Merlin to convince him that x is
a correct solution. But he is afraid to get fooled by Merlin!

Arthur has x, Merlin provides a proof y

Given A = (Ayes, Ano), let M be a deterministic poly-time Turing
machine (Arthur) that receives x ∈ Ayes ∪Ano. Moreover:

• for every x ∈ Ayes there is a proof y such that M accepts (x, y)

• for every x ∈ Ano there is no proof y such that M accepts (x, y)

Verification complexity classes

Complexity classes:

• A ∈ NP = Non-deterministic Polynomial-time:
Arthur is a deterministic poly-time P algorithm

• A ∈ MA = Merlin–Arthur:
Arthur is probabilistic, BPP; accepts/rejects with probability ≥ 2/3

• A ∈ QMA = Quantum Merlin–Arthur:
Arthur is quantum, BQP; Merlin supplies him with a quantum state
as a proof and Arthur accepts/rejects with probability ≥ 2/3

Summary of complexity classes

Finding Verifying
solution solution

Deterministic P NP
Probabilistic BPP MA

Quantum BQP QMA

Some more classes:

• PP = like BPP but unbounded error

• EXP = like P but exponential-time

• PSPACE = like P but polynomial-space (and any time)

• NP-complete = “the hardest” problems in NP

See https://complexityzoo.uwaterloo.ca/ for even more!

https://complexityzoo.uwaterloo.ca/

Inclusions
EXP

PSPACE

PP

QMA

BQP MA

BPP NP

P

Trivial inclusions:

• randomness at least as good as
determinism: P ⊆ BPP, NP ⊆ MA

• quantumness at least as good as
randomness: BPP ⊆ BQP,
MA ⊆ QMA

• verifying a solution cannot be harder
than finding one: P ⊆ NP,
BPP ⊆ MA, BQP ⊆ QMA

• poly space can store at most exp
number of different strings:
PSPACE ⊆ EXP

Non-trivial inclusions:

• GapP functions: BQP ⊆ PP

• guess a random proof: QMA ⊆ PP

• try all strings and count solutions:
PP ⊆ PSPACE

Separations?
EXP

PSPACE

PP

QMA

BQP MA

BPP NP

P

Non-trivial separations:

• Time hierarchy theorem: P (EXP

Major open problems:

• P vs NP – is finding a solution
really harder than verifying one?
(you can get $106 for solving this)

• P vs BPP – does randomness help?

• BPP vs BQP – are quantum
computers more powerful that
(probabilistic) classical ones?
E.g., is factoring hard classically
(cannot be done in poly time)?

• P vs PSPACE – we have no clue
even on how to show that these to
classes are different. . .

Problems of interest

QMA

NP

BQP

BPP

P

NP-complete

NP-intermediate graph isomorphism

factoring

primality testing

Most problems in NP are either complete or in P. The outliers are called

NP-inermediate = NP− (NP-complete ∪ P)

Ladner’s Theorem: P = NP if and only if NP-inermediate is empty.

Technology cannot make
the world a better place,

people can.

Thank you!

