Quantum Computing
Lecture 6

Quantum Search

Maris Ozols

Grover's search problem

One of the two most important algorithms in quantum computing is
Grover's search algorithm (invented by Lov Grover in 1996) for searching
for a particular value in an unstructured / unsorted search space.

Example: Searching in a sorted vs unsorted database:
e find a name in a telephone directory

e find a phone number in a telephone directory

Given a black box that for each of IV different input strings answers
either yes or no, and there is a unique string with answer yes, Grover's
algorithm finds this string with O(v/N') questions (with high probability).

This is a quantum alternative to brute-force search.

Oracle function

Suppose the search space consists of N = 2" elements which we identify
with n-bit strings. Let f:{0,1}" — {0,1} be a function telling which of
these elements are marked:

x € {0,1}" is marked if f(x) =1 and unmarked otherwise.

Important: The oracle can recognize a solution but may not know what
the solution is. Even when given the “source code” of f, we may still not
be able to easily find = such that f(z) = 1.

Example: Assume f is hiding a password in one of two ways:
o f(x) =1 iff z = password (knows the password)

o f(z) =1 iff h(z) = cOb9I3£3£0682250b6cE8331b7ee68£d8
(recognizes a correct password but does not know it since inverting a
hash function i : {0,1}" — {0,1,..., £} in general is very hard)

Grover's black box

Recall from Lecture 4 that any Boolean function f: {0,1}" — {0,1} can
be implemented reversibly as follows, where z € {0,1}", y € {0,1}:

Uslz)ly) = |x)|y © f(x))))
) ly @ f(z))

We refer to Uy as the black box or oracle for computing f.

Suppose there is a unique a € {0,1}" that yields value 1. Let

fa(ﬂf){l ifr=a

0 otherwise

Grover's algorithm can determine the value of a with O(v/N) calls to the
black box Uy, where N = [{0,1}"]| = 2™

Deutsch’s algorithm revisited

Deutsch’s algorithm determines f(0) & f(1) with a single call to the
oracle Uy for function f: {0,1} — {0,1}:

0) il)il A
>—u—|>

Recall from Uy|z)|y) = |z)|y & f(x)) the phase kick-back trick:

Utla)|=) = (=1)7@]z)|-)

Since the last qubit remains unaffected, we effectively have a single-qubit
phase oracle V; that acts as follows:

Vile) = (1@l o) — |l — -0l

Note that V is a diagonal matrix with a &1 version of the truth table of
f on its diagonal.

The action of V
For any f:{0,1}" — {0,1} and x € {0,1}" the two oracles are

) { } (=1)/@z) |z) { Vi } (1)) |z)

=) =)

For simplicity, we will assume from now on that we are directly given the
n-qubit phase oracle V} rather than the (n + 1)-qubit oracle Uy.

Recall that f,(x) =1 when x = a and f,(x) = 0 otherwise. Hence

Vi la) = —|a)
Vi lz) = +|x) for any z # a

Equivalently, the phase oracle for f, is
Vi, =1 —2la)(al

This is known as the reflection with respect to |a).

Circuit for Grover's algorithm

Let N = 2" and V be the phase oracle of some n-argument Boolean
function f,. Then Grover's algorithm looks as follows:

0) & - 7
0y — ..
0) W w . A
0) & - 7
0) & - 7
O(V'N)
Here W = —(I — 2|W)(W|) is another reflection, with respect to
" 1
W =He el =+H"=—= > |
M s€{0,1}"

The operator G = WV is known as the Grover iterate.

The final state before measurement is
GVN . HE L |0)E = GV L |10 = GV | w)

The Grover iterate

Recall that G = WV where
W =2|U)(¥| -1 V =1 —2|a){(a|

Since |W) is the uniform superposition over N = 2" strings and a is one
of them, (¥|a) = (a|T) = 1/v/N.

Consider the actions of W and V' on the two states |¥) and |a):

2

W) =) VIw) = |¥) — \/—N\@
2
Wla) = \/—Nl‘m = a) Via) = —|a)

Starting from the state |V), repeated applications of V' and W will
always give a real linear combination of |a) and |¥). Thus, the state
remains in a 2-dimensional subspace throughout the algorithm!

Geometric view of Grover's algorithm

We can picture the action of V' and W in the two-dimensional real plane
spanned by the vectors |a) and |¥). They are both reflections:

o V reflects about the line perpendicular to |a), since V|a) = —|a)
o W reflects about |¥), since W|V¥) = |)
@) 4

WV o)

v W

V|v)

Fact: The composition of two reflections is a rotation. If the angle
between the reflection axes is 6 then the angle of rotation is 26.

The Grover rotation

The Grover iterate G = W'V is a rotation through an angle 20 in the
direction from |U) to |a), where the angle between [V) and |a) is § — 0:

11
\/N_Qn/2

U) and |a) are nearly orthogonal so 6 is small:

sinf = cos(§5 —0) = (a|¥) =

If N is large,

11
\/N_2n/2

6 ~

Number of iterations

After t = ”2—/92 ~ %\/N iterations of G = W'V, the state of the system
G'|w)
is within an angle 6 of |a).

At this point, a measurement in the computational basis yields the state
|a) with probability

|<a‘Gt‘\D>|2 > (COS 9)2 =1 — (Sin6)2 _ %

which is close to 1 when N is large.

Note: Further iterations beyond ¢ will reduce the probability of finding |a).

Multiple solutions

Grover's algorithm works even if the solution a € {0,1}" is not unique.

Suppose there is a set of solutions A C {0,1}" and let M = |A| be the
number of solutions and N = 2" be the total number of strings.

Grover iterate is then a rotation in the space spanned by the following
two vectors:

1 1
\‘I’>:\/—— Z |s) ‘A>:\/—MC§4‘G>

se{0,1}"™

As the angle between these is smaller, the number of iterations drops,
but so does the probability of success.

The total number of iterations in this case is O(y/N/M).

Implementing W

How do we implement the second reflection W = 2|W)(¥| — I using only
CNOT and single-qubit unitaries (see Lecture 4)7

Recall that |¥) = |+)®™ is the uniform superposition over all n-bit strings.

Note that for any n-qubit unitary U,
UWUT =UQIU)(¥| — NUT =2U|¥N(W|UT - T
so UWUT is a reflection around U|U). If we take U = H®" then
H®"WH®™ = 2|0™)(0"] — I
since H|+) = |0), where |[0™) = |0)®™. Further notice that
XOM(HE"WHO) X®" =2|11") (1" - I
Doing everything in reverse, we can express W as follows:

W = —H®"(X®"C,_(Z)X®")H®"

Implementing multiple-controlled Z
What remains is to implement the (n — 1)-fold controlled Z operation

Cno1(Z)=T-2[11...1)(11...1]

that reflects around the final standard basis vector.

10 -+ 0 0)
n—1 01 --- 0
Crn1(2) = | :
Z 0 0 1 0
0 0 0 —1/

Note that C;(X) = CNOT is the controlled NOT while C1(Z) is the
controlled Z gate. Also note that HZH = X, so we can implement
C1(Z) using H and CNOT:

C1(Z) = (I ® HYCNOT(I @ H)

Cpn—1(Z) can be implemented using O(n) Toffoli and C;(Z) gates, using
some extra workspace qubits.

Quantum speed-up

For classical algorithms, searching an unstructured space of size NV
requires at least ()(/V) calls to the black box function f to identify the
unique solution.

Grover's algorithm demonstrates that for certain problems a quantum
algorithm can beat any classical algorithm.

It is possible to show an 2(v/N) lower bound for the number of calls to
Uy (or V) by any quantum algorithm that identifies a unique solution.

Grover's algorithm does not allow quantum computers to solve
NP-complete problems in polynomial time. It can only provide a
polynomial speed-up!

Summary

e Grover’s problem: given access to f, find x such that f(z) =1
(equivalent to brute-force search)

e Black box function: U¢|z)|y) = |x)|y & f(x)), it can recognize a
solution but may not know it

e Phase oracle: V;|z) = (—1)/(®)|z); you get it from U; by putting
|—) in the last register; Vi, = I — 2|a)(a| when f,(z) =1iff z =a
e Reflection: I — 2|v)(v| is a reflection around vector |v)
e Grover iterate: G = WV where W = 2|U)(V| — [and
| W) = |+)®"; V is the phase oracle for f, for some unknown a
e Grover's algorithm: GV |+)®" where N = 2"
e Grover’s rotation: two reflections make a rotation!

o Complexity: O(v/N) iterations suffice to find the unique solution
with probability 1 — 1/N; for M solutions, O(y/N/M) iterations
suffice to find a random solution with probability 1 — M /N

e Implementation: W = —H®"(X®"C,,_1(Z)X®")H®" where
Cpn_1(Z) is the (n — 1)-fold controlled Z gate

