
Quantum Computing
Lecture 6

Quantum Search

Maris Ozols

Grover’s search problem

One of the two most important algorithms in quantum computing is
Grover’s search algorithm (invented by Lov Grover in 1996) for searching
for a particular value in an unstructured / unsorted search space.

Example: Searching in a sorted vs unsorted database:

• find a name in a telephone directory

• find a phone number in a telephone directory

Given a black box that for each of N different input strings answers
either yes or no, and there is a unique string with answer yes, Grover’s
algorithm finds this string with O(

√
N) questions (with high probability).

This is a quantum alternative to brute-force search.

Oracle function

Suppose the search space consists of N = 2n elements which we identify
with n-bit strings. Let f : {0, 1}n → {0, 1} be a function telling which of
these elements are marked:

x ∈ {0, 1}n is marked if f(x) = 1 and unmarked otherwise.

Important: The oracle can recognize a solution but may not know what
the solution is. Even when given the “source code” of f , we may still not
be able to easily find x such that f(x) = 1.

Example: Assume f is hiding a password in one of two ways:

• f(x) = 1 iff x = password (knows the password)

• f(x) = 1 iff h(x) = c9b93f3f0682250b6cf8331b7ee68fd8

(recognizes a correct password but does not know it since inverting a
hash function h : {0, 1}n → {0, 1, . . . , f}m in general is very hard)

Grover’s black box

Recall from Lecture 4 that any Boolean function f : {0, 1}n → {0, 1} can
be implemented reversibly as follows, where x ∈ {0, 1}n, y ∈ {0, 1}:

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉 Uf
|x〉

|y〉

|x〉

|y ⊕ f(x)〉

We refer to Uf as the black box or oracle for computing f .

Suppose there is a unique a ∈ {0, 1}n that yields value 1. Let

fa(x) =

{
1 if x = a

0 otherwise

Grover’s algorithm can determine the value of a with O(
√
N) calls to the

black box Ufa where N = |{0, 1}n| = 2n.

Deutsch’s algorithm revisited

Deutsch’s algorithm determines f(0)⊕ f(1) with a single call to the
oracle Uf for function f : {0, 1} → {0, 1}:

Uf
H H|0〉

|−〉 |−〉

Recall from Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉 the phase kick-back trick:

Uf |x〉|−〉 = (−1)f(x)|x〉|−〉

Since the last qubit remains unaffected, we effectively have a single-qubit
phase oracle Vf that acts as follows:

Vf |x〉 = (−1)f(x)|x〉 Vf|x〉 (−1)f(x)|x〉

Note that Vf is a diagonal matrix with a ±1 version of the truth table of
f on its diagonal.

The action of Vf
For any f : {0, 1}n → {0, 1} and x ∈ {0, 1}n the two oracles are

Uf
|x〉

|−〉

(−1)f(x)|x〉

|−〉

Vf|x〉 (−1)f(x)|x〉

For simplicity, we will assume from now on that we are directly given the
n-qubit phase oracle Vf rather than the (n+ 1)-qubit oracle Uf .

Recall that fa(x) = 1 when x = a and fa(x) = 0 otherwise. Hence

Vfa |a〉 = −|a〉
Vfa |x〉 = +|x〉 for any x 6= a

Equivalently, the phase oracle for fa is

Vfa = I − 2|a〉〈a|

This is known as the reflection with respect to |a〉.

Circuit for Grover’s algorithm

Let N = 2n and V be the phase oracle of some n-argument Boolean
function fa. Then Grover’s algorithm looks as follows:

|0〉
|0〉
|0〉
|0〉

H

H

H

H

V W V W

. . .

. . .

. . .

. . .

V W

O(
√
N)

Here W = −(I − 2|Ψ〉〈Ψ|) is another reflection, with respect to

|Ψ〉 = |+〉 ⊗ · · · ⊗ |+〉︸ ︷︷ ︸
n

= |+〉⊗n =
1√
2n

∑
s∈{0,1}n

|s〉

The operator G = WV is known as the Grover iterate.

The final state before measurement is

G
√
N ·H⊗n · |0〉⊗n = G

√
N · |+〉⊗n = G

√
N · |Ψ〉

The Grover iterate

Recall that G = WV where

W = 2|Ψ〉〈Ψ| − I V = I − 2|a〉〈a|

Since |Ψ〉 is the uniform superposition over N = 2n strings and a is one
of them, 〈Ψ|a〉 = 〈a|Ψ〉 = 1/

√
N .

Consider the actions of W and V on the two states |Ψ〉 and |a〉:

W |Ψ〉 = |Ψ〉 V |Ψ〉 = |Ψ〉 − 2√
N
|a〉

W |a〉 =
2√
N
|Ψ〉 − |a〉 V |a〉 = −|a〉

Starting from the state |Ψ〉, repeated applications of V and W will
always give a real linear combination of |a〉 and |Ψ〉. Thus, the state
remains in a 2-dimensional subspace throughout the algorithm!

Geometric view of Grover’s algorithm

We can picture the action of V and W in the two-dimensional real plane
spanned by the vectors |a〉 and |Ψ〉. They are both reflections:

• V reflects about the line perpendicular to |a〉, since V |a〉 = −|a〉
• W reflects about |Ψ〉, since W |Ψ〉 = |Ψ〉

V

|a〉

W|Ψ〉

θ
θ

V |Ψ〉

2θ

WV |Ψ〉

Fact: The composition of two reflections is a rotation. If the angle
between the reflection axes is θ then the angle of rotation is 2θ.

The Grover rotation

The Grover iterate G = WV is a rotation through an angle 2θ in the
direction from |Ψ〉 to |a〉, where the angle between |Ψ〉 and |a〉 is π

2 − θ:

sin θ = cos(π2 − θ) = 〈a|Ψ〉 =
1√
N

=
1

2n/2

If N is large, |Ψ〉 and |a〉 are nearly orthogonal so θ is small:

θ ∼ 1√
N

=
1

2n/2

Number of iterations

After t = π/2
2θ ∼

π
4

√
N iterations of G = WV , the state of the system

Gt|Ψ〉

is within an angle θ of |a〉.

At this point, a measurement in the computational basis yields the state
|a〉 with probability

|〈a|Gt|Ψ〉|2 ≥ (cos θ)2 = 1− (sin θ)2 =
N − 1

N

which is close to 1 when N is large.

Note: Further iterations beyond t will reduce the probability of finding |a〉.

Multiple solutions

Grover’s algorithm works even if the solution a ∈ {0, 1}n is not unique.

Suppose there is a set of solutions A ⊆ {0, 1}n and let M = |A| be the
number of solutions and N = 2n be the total number of strings.

Grover iterate is then a rotation in the space spanned by the following
two vectors:

|Ψ〉 =
1√
N

∑
s∈{0,1}n

|s〉 |A〉 =
1√
M

∑
a∈A
|a〉

As the angle between these is smaller, the number of iterations drops,
but so does the probability of success.

The total number of iterations in this case is O(
√
N/M).

Implementing W

How do we implement the second reflection W = 2|Ψ〉〈Ψ| − I using only
CNOT and single-qubit unitaries (see Lecture 4)?

Recall that |Ψ〉 = |+〉⊗n is the uniform superposition over all n-bit strings.

Note that for any n-qubit unitary U ,

UWU† = U(2|Ψ〉〈Ψ| − I)U† = 2U |Ψ〉〈Ψ|U† − I

so UWU† is a reflection around U |Ψ〉. If we take U = H⊗n then

H⊗nWH⊗n = 2|0n〉〈0n| − I

since H|+〉 = |0〉, where |0n〉 ≡ |0〉⊗n. Further notice that

X⊗n(H⊗nWH⊗n)X⊗n = 2|1n〉〈1n| − I

Doing everything in reverse, we can express W as follows:

W = −H⊗n
(
X⊗nCn−1(Z)X⊗n

)
H⊗n

Implementing multiple-controlled Z
What remains is to implement the (n− 1)-fold controlled Z operation

Cn−1(Z) = I − 2|11 . . . 1〉〈11 . . . 1|

that reflects around the final standard basis vector.

n− 1

Z

Cn−1(Z) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 −1


Note that C1(X) = CNOT is the controlled NOT while C1(Z) is the
controlled Z gate. Also note that HZH = X, so we can implement
C1(Z) using H and CNOT:

C1(Z) = (I ⊗H)CNOT(I ⊗H)

Cn−1(Z) can be implemented using O(n) Toffoli and C1(Z) gates, using
some extra workspace qubits.

Quantum speed-up

For classical algorithms, searching an unstructured space of size N
requires at least Ω(N) calls to the black box function f to identify the
unique solution.

Grover’s algorithm demonstrates that for certain problems a quantum
algorithm can beat any classical algorithm.

It is possible to show an Ω(
√
N) lower bound for the number of calls to

Uf (or Vf) by any quantum algorithm that identifies a unique solution.

Grover’s algorithm does not allow quantum computers to solve
NP-complete problems in polynomial time. It can only provide a
polynomial speed-up!

Summary

• Grover’s problem: given access to f , find x such that f(x) = 1
(equivalent to brute-force search)

• Black box function: Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉, it can recognize a
solution but may not know it

• Phase oracle: Vf |x〉 = (−1)f(x)|x〉; you get it from Uf by putting
|−〉 in the last register; Vfa = I − 2|a〉〈a| when fa(x) = 1 iff x = a

• Reflection: I − 2|v〉〈v| is a reflection around vector |v〉
• Grover iterate: G = WV where W = 2|Ψ〉〈Ψ| − I and
|Ψ〉 = |+〉⊗n; V is the phase oracle for fa for some unknown a

• Grover’s algorithm: G
√
N |+〉⊗n where N = 2n

• Grover’s rotation: two reflections make a rotation!

• Complexity: O(
√
N) iterations suffice to find the unique solution

with probability 1− 1/N ; for M solutions, O(
√
N/M) iterations

suffice to find a random solution with probability 1−M/N

• Implementation: W = −H⊗n(X⊗nCn−1(Z)X⊗n)H⊗n where
Cn−1(Z) is the (n− 1)-fold controlled Z gate

