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And the answer is. . .

The IBM Quantum Experience:
http://www.research.ibm.com/quantum/

Quantum information: applications
This lecture is on communication and the benefits of using quantum
states to encode information. We will discuss three protocols:

• Quantum key distribution

• Superdense coding

• Quantum teleportation

These do not rely on quantum computation as such, but the properties of
information encoded in quantum states: superposition and entanglement.
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Currently running online course on Quantum Cryptography:
https://www.edx.org/course/quantum-cryptography-caltechx-delftx-qucryptox

http://www.research.ibm.com/quantum/
https://www.edx.org/course/quantum-cryptography-caltechx-delftx-qucryptox


One-time pad
Goal: Send a private message using public communication.
Protocol:

1. Preparation: Alice and Bob meet upfront to generate random bits
r1, r2, . . . and both take a copy of these bits with them.

2. Encoding: If the i-th message bit is mi, Alice sends mi ⊕ ri.
3. Decoding: If Bob receives m̃i, the actual message bit is m̃i ⊕ ri.

Security: Eve gains no information about the message.

mi ⊕ ri

message bit:
mi

decoding:
(mi ⊕ ri)⊕ ri = mi
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random
bits ri

random
bits ri

One-time pad

Resource trade-off: 1 shared random bit + 1 bit of public
communication = 1 bit of private communication

Good:

• Eve gets no information about mi as she observes a uniformly
random bit (if ri is uniform, then so is mi ⊕ ri irrespectively of mi).

• One-time pad is unconditionally secure (there are no computational
hardness assumptions).

Bad:

• The encryption key r1, r2, . . . is the same length as the message.

• The key cannot be replenished and should not be reused.

• How can Alice and Bob establish the key in the first place?



Quantum key distribution (QKD)
A quantum protocol for key distribution was invented by Bennett and
Brassard in 1984 (it is known as BB84).

It provides means of establishing a private key—a random sequence of
bits shared between Alice and Bob but unknown to any third party.

Later this key can be used in one-time pad to transmit a private message.

The protocol uses only public classical and quantum communication.
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Key principle: Information gain implies disturbance!
(This is closely related to Heisenberg’s uncertainty principle.)

Requirements for BB84

Public communication:

• Alice and Bob share a public authenticated classical channel.

• Alice can publicly send qubits to Bob.

Local operations:

• Alice has a private source of random classical bits.

• Alice can produce qubits in states |0〉, |1〉, |+〉, |−〉.
• Bob can measure each of the incoming qubits in

• either the standard basis {|0〉, |1〉}
• or the Hadamard basis {|+〉, |−〉}.

Experimental implementations normally use polarised photons that are
transmitted either through air or through optical fibre.



The BB84 rotocol
The basic BB84 protocol:

1. For i = 1 to n (below “∈
R
” means “a random element of”)

• Alice picks ai ∈R {0, 1} and Ui ∈R {I,H} and sends Ui|ai〉 to Bob.
• Bob guesses Vi ∈R {I,H} and applies it on the received state.
• Bob measures the resulting state ViUi|ai〉 in the standard basis.

We denote his measurement outcome by bi ∈ {0, 1}.
2. Bob announces (over the public classical channel) which basis he

used for each measurement (i.e., the string V1, . . . , Vn).
3. Alice announces S ⊆ {1, . . . , n} indicating which measurements

where made in the correct basis.
4. Note that ai = bi for all i ∈ S, so the shared key is (ai : i ∈ S).

i 1 2 3 4 5 6

Alice
|ai〉 |1〉 |0〉 |1〉 |0〉 |0〉 |1〉
Ui I H I I H H
Ui|ai〉 |1〉 |+〉 |1〉 |0〉 |+〉 |−〉 ← public

Bob
Vi H H I H I H ← public
ViUi|ai〉 |−〉 |0〉 |1〉 |+〉 |+〉 |1〉
|bi〉 |0〉 |0〉 |1〉 |0〉 |1〉 |1〉

Alice S X X X ← public
Key 0 1 1

Sanity checks

Why not announce the bases for all qubits before transmission, thus
avoiding the loss of half the bits?

• This allows Eve to intercept, measure, and re-transmit the
post-measurement state.

Why not announce the basis for each qubit after they are sent but before
Bob measures them?

• Requires Bob to store the qubits (technologically difficult).

• If Bob can store them, so can Eve. She can perform the correct
measurements and retransmit the post-measurement states to Bob.



Possible attacks
Could Eve intercept the qubits, re-transmit a copy to Bob, and then wait
for the basis to be announced before measuring her own copy?

• No-cloning theorem: There is no unitary operation U such that
U |ψ〉|0〉 = |ψ〉|ψ〉 for all |ψ〉 simultaneously.

What if Eve intercepts the qubits, measures each one randomly in either
the {|0〉, |1〉} or the {|+〉, |−〉} basis, and then retransmits them?

• Half of Eve’s measurements will be in the wrong basis.

• Moreover, these qubits will have changed state, so approximately
1/4 of the final key bits of Alice and Bob will disagree.

• Alice and Bob can choose a random sample of their shared bits and
publicly check their values against each other.

• If a large fraction disagrees (which could be either due to noise or
due to an eavesdropper) they abort the protocol.

• Information gain implies disturbance: Measurements in the
wrong basis cause disturbance that can be detected.

Extra post-processing

Ideal outcome: The strings of Alice and Bob are uniformly random,
identical, and private from Eve.

More realistic: The strings might not agree either because of noise or
because of Eve.

Extra steps:

• Information reconciliation: a form of error correction that ensures
the keys shared by Alice and Bob are identical.

• Privacy Amplification: eliminates any partial information Eve might
have about the key shared by Alice and Bob.



Local vs global operations

|ψ〉

⊗

|ϕ〉

⊗

U

V

W

Local
operations

Global (joint)
operation

Remember: Local unitary operations cannot produce or destroy
entanglement, only global operations can! Local measurements can only
destroy entanglement.

Bell states
Entanglement-based protocols generally rely on using the following four
states of a two-qubit system, known as the Bell states:

|β00〉 =
1√
2

(|00〉+ |11〉) |β01〉 =
1√
2

(|01〉+ |10〉)

|β10〉 =
1√
2

(|00〉 − |11〉) |β11〉 =
1√
2

(|01〉 − |10〉)

They form an orthonormal basis for C4, known as the Bell basis.
An orthogonal measurement in this basis is called Bell measurement.

These states can be written concisely as follows (x̄ ≡ x⊕ 1):

|βzx〉 =
1√
2

(|0, x〉+ (−1)z|1, x̄〉)

Note that, in each of the states, measuring either qubit in the
computational basis yields |0〉 or |1〉 with equal probability, and after the
measurement, the other bit is uniquely determined.



Properties of Bell states

Preparation / unpreparation: A global unitary can generate the Bell
states from the computational basis {|00〉, |01〉, |10〉, |11〉} and vice versa:

H|z〉

|x〉
|βzx〉

H |z〉

|x〉
|βzx〉

|βzx〉 = CNOT · (H ⊗ I) · |z, x〉 |z, x〉 = (H ⊗ I) · CNOT · |βzx〉

Local conversion: Any Bell state can be converted into any other by
either of the two parties using only local (Pauli) unitaries:

|βzx〉 = (ZzXx ⊗ I) · |β00〉 = (I ⊗XxZz) · |β00〉

The state |β00〉 is often called EPR pair (for Einstein–Podolsky–Rosen).

Superdense coding: sanity check

Goal: Send two classical bits by transmitting one qubit.

Holevo’s theorem: It is impossible to encode more than one classical bit
of information in a single isolated qubit and then recover it reliably.

Resolution: Superdense coding does not contradict this fact, since it
does not use an isolated qubit (i.e., a qubit that is in a product state
with the receiver). At the beginning of the protocol, Alice and Bob share
the EPR state |β00〉 = 1√

2
(|00〉+ |11〉) which is entangled.

Main idea: Alice can locally convert |β00〉 to any other Bell state |βzx〉
by performing an operation just on her own qubit. Once her qubit is sent
to Bob, it reliably conveys two bits of classical information since the four
Bell states are orthonormal.



Superdense coding

If Alice shares an EPR state |β00〉 = 1√
2
(|00〉+ |11〉) with Bob, she can

locally transform it to any other EPR state |βzx〉 by applying ZzXx on
her qubit. In this way she can encode two bits z, x ∈ {0, 1} in one of the
four orthogonal Bell states |βzx〉. If Alice sends her qubit to Bob, he can
perfectly discriminate the four cases by measuring in the Bell basis:

(H ⊗ I) · CNOT · (ZzXx ⊗ I) · |β00〉 = |z, x〉

Resource trade-off: 1 shared EPR state + 1 qubit of quantum
communication = 2 bits of classical communication

Teleportation vs superdense coding

Superdense coding and quantum teleportation are dual to each other.
By consuming one copy of a shared EPR state,

• the superdense coding protocol allows Alice to send Bob two
classical bits by transmitting a single qubit,

• the quantum teleportation protocol allows Alice to send Bob a qubit,
by transmitting just two classical bits.

Note: Teleportation does not violate the no-cloning theorem since
Alice’s copy of the state is destroyed in the process.



Quantum teleportation

Alice has a state |ψ〉 that she wishes to transmit to Bob with whom she
shares an EPR state |β00〉 = 1√

2
(|00〉+ |11〉). Alice measures her qubits

in the Bell basis and sends the classical outcomes z, x ∈ {0, 1} to Bob
who applies the Pauli correction operation ZzXx on his qubit:

|ψ〉 ⊗ |β00〉 =
1

2

∑
z,x∈{0,1}

|βzx〉 ⊗XxZz|ψ〉

Resource trade-off: 1 shared EPR state + 2 bits of classical
communication = 1 qubit of quantum communication

Summary

• One-time pad: (mi ⊕ ri)⊕ ri = mi

• BB84: Alice sends a random state from {|0〉, |0〉, |+〉, |−〉}, Bob
tries to guess the correct basis; each correct guess gives on bit of key

• Local vs global: U ⊗ V is local and cannot create entanglement;
non-product unitaries are global and they can create entanglement;
by transmitting qubits from one party to the other, global operations
can be performed locally

• Bell states: |βzx〉 = 1√
2
(|0, x〉+ (−1)z|1, x̄〉) are orthonormal and

locally convertible to each other

Resource trade-offs:

• One-time pad: 1 shared random bit + 1 bit of public
communication = 1 bit of private communication

• Superdense coding: 1 shared EPR state + 1 qubit of quantum
communication = 2 bits of classical communication

• Quantum teleportation: 1 shared EPR state + 2 bits of classical
communication = 1 qubit of quantum communication


