
Part C
Instruction scheduling

Instruction scheduling

intermediate code

parse tree

token stream

character stream

target code

optimisation

optimisation

optimisation

decompilation

Motivation

We have seen optimisation techniques which involve
removing and reordering code at both the source- and
intermediate-language levels in an attempt to achieve

the smallest and fastest correct program.

These techniques are platform-independent, and pay
little attention to the details of the target architecture.

We can improve target code if we consider the
architectural characteristics of the target processor.

Single-cycle implementation
In single-cycle processor designs, an entire instruction

is executed in a single clock cycle.

Each instruction will use some of the processor’s
functional units:

Instruction
fetch
(IF)

Register
fetch
(RF)

Execute
(EX)

Memory
access
(MEM)

Register
write-back

(WB)

For example, a load instruction uses all five.

Single-cycle implementation

IF RF EX MEM WB IF RF EX MEM WB IF RF EX MEM WB

lw $1,0($0) lw $2,4($0) lw $3,8($0)

Single-cycle implementation

On these processors, the order of instructions doesn’t
make any difference to execution time: each instruction
takes one clock cycle, so n instructions will take n cycles

and can be executed in any (correct) order.

In this case we can naïvely translate our optimised 3-
address code by expanding each intermediate instruction

into the appropriate sequence of target instructions;
clever reordering is unlikely to yield any benefits.

Pipelined implementation

In pipelined processor designs (e.g. MIPS R2000), each
functional unit works independently and does its job
in a single clock cycle, so different functional units

can be handling different instructions simultaneously.

These functional units are arranged in a pipeline, and
the result from each unit is passed to the next one
via a pipeline register before the next clock cycle.

Pipelined implementation

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $1,0($0)

lw $2,4($0)

lw $3,8($0)

Pipelined implementation

In this multicycle design the clock cycle is much
shorter (one functional unit vs. one complete

instruction) and ideally we can still execute one
instruction per cycle when the pipeline is full.

Programs will therefore execute more quickly.

Pipeline hazards
However, it is not always possible to run the

pipeline at full capacity.

Some situations prevent the next instruction
from executing in the next clock cycle: this is a

pipeline hazard.

On interlocked hardware (e.g. SPARC) a hazard
will cause a pipeline stall; on non-interlocked

hardware (e.g. MIPS) the compiler must
generate explicit NOPs to avoid errors.

add $3,$1,$2
add $5,$3,$4

Pipeline hazards

Consider data hazards: these occur when an instruction
depends upon the result of an earlier one.

The pipeline must stall until the result of the first add
has been written back into register $3.

Pipeline hazards

IF RF EX MEM WB

IF RF EX

add $3,$1,$2

add $5,$3,$4 STALL

Pipeline hazards

The severity of this effect can be reduced by using
feed-forwarding: extra paths are added between

functional units, allowing data to be used before it
has been written back into registers.

Pipeline hazards

IF RF EX MEM WBadd $3,$1,$2

add $5,$3,$4 IF RF EX MEM WB

Pipeline hazards

But even when feed-forwarding is used,
some combinations of instructions will

always result in a stall.

Pipeline hazards

IF RF EX MEM WBlw $1,0($0)

add $3,$1,$2 IF RF EX MEM WBSTALL

Instruction order

lw $1,0($0)
add $2,$2,$1
lw $3,4($0)
add $4,$4,$3

Since particular combinations of instructions cause this
problem on pipelined architectures, we can achieve better
performance by reordering instructions where possible.

Instruction order

IF RF EX MEM WBlw $1,0($0)

add $2,$2,$1 IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $3,4($0)

add $4,$4,$3

STALL

STALL

10 cycles

lw $3,4($0)

add $2,$2,$1

Instruction order

IF RF EX MEM WBlw $1,0($0)

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WBadd $4,$4,$3

8 cycles

Instruction dependencies

We can only reorder target-code instructions if
the meaning of the program is preserved.

We must therefore identify and respect the data
dependencies which exist between instructions.

In particular, whenever an instruction is
dependent upon an earlier one, the order of
these two instructions must not be reversed.

Instruction dependencies

There are three kinds of data dependency:

• Read after write

• Write after read

• Write after write

Whenever one of these dependencies exists between
two instructions, we cannot safely permute them.

Instruction dependencies

Read after write:
An instruction reads from a location

after an earlier instruction has written to it.

add $3,$1,$2
…
add $4,$4,$3

add $4,$4,$3
…
add $3,$1,$2

✗Reads old value

Instruction dependencies

Write after read:
An instruction writes to a location

after an earlier instruction has read from it.

add $4,$4,$3
…
add $3,$1,$2

add $3,$1,$2
…
add $4,$4,$3

✗Reads new value

Instruction dependencies

Write after write:
An instruction writes to a location

after an earlier instruction has written to it.

add $3,$1,$2
…
add $3,$4,$5

add $3,$4,$5
…
add $3,$1,$2

✗Writes old value

Instruction scheduling
We would like to reorder the instructions

within each basic block in a way which

• preserves the dependencies between those
instructions (and hence the correctness of
the program), and

• achieves the minimum possible number of
pipeline stalls.

We can address these two goals separately.

Preserving dependencies

Firstly, we can construct a directed acyclic graph (DAG)
to represent the dependencies between instructions:

• For each instruction in the basic block, create a
corresponding vertex in the graph.

• For each dependency between two instructions,
create a corresponding edge in the graph.

‣ This edge is directed: it goes from the earlier
instruction to the later one.

Preserving dependencies

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

1 2

3 4

5 6

7

Preserving dependencies

Any topological sort of this DAG (i.e. any linear
ordering of the vertices which keeps all the edges

“pointing forwards”) will maintain the dependencies
and hence preserve the correctness of the program.

Preserving dependencies
1 2

3 4

5 6

7

1, 2, 3, 4, 5, 6, 7
2, 1, 3, 4, 5, 6, 7

1, 2, 3, 5, 4, 6, 7
1, 2, 5, 3, 4, 6, 7
1, 5, 2, 3, 4, 6, 7
5, 1, 2, 3, 4, 6, 7

2, 1, 3, 5, 4, 6, 7
2, 1, 5, 3, 4, 6, 7
2, 5, 1, 3, 4, 6, 7
5, 2, 1, 3, 4, 6, 7

Minimising stalls
Secondly, we want to choose an instruction order
which causes the fewest possible pipeline stalls.

Unfortunately, this problem is (as usual) NP-complete
and hence difficult to solve in a reasonable amount of

time for realistic quantities of instructions.

However, we can devise some static scheduling
heuristics to help guide us; we will hence choose a

sensible and reasonably optimal instruction order, if
not necessarily the absolute best one possible.

Minimising stalls

• does not conflict with the previous emitted instruction

• is most likely to conflict if first of a pair (e.g. prefer lw
to add)

• is as far away as possible (along paths in the DAG)
from an instruction which can validly be scheduled last

Each time we’re emitting the next instruction,
we should try to choose one which:

Algorithm

Armed with the scheduling DAG and the static
scheduling heuristics, we can now devise an
algorithm to perform instruction scheduling.

Algorithm

• Construct the scheduling DAG.

‣We can do this in O(n2) by scanning backwards
through the basic block and adding edges as
dependencies arise.

• Initialise the candidate list to contain the minimal
elements of the DAG.

Algorithm

• While the candidate list is non-empty:

• If possible, emit a candidate instruction satisfying all
three of the static scheduling heuristics;

• if no instruction satisfies all the heuristics, either
emit NOP (on MIPS) or an instruction satisfying
only the last two heuristics (on SPARC).

• Remove the instruction from the DAG and insert
the newly minimal elements into the candidate list.

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 1, 2, 5 }

lw $1,0($0)1

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 2, 5 }

lw $1,0($0)
lw $2,4($0)

1
2

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3, 5 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)

1
2
5

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2

1
2
5
3

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 4 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)

1
2
5
3
4

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 6 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4

1
2
5
3
4
6

Algorithm
1 2

3 4

5 6

7

Candidates:
{ 7 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7

Algorithm

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7

2 stalls
13 cycles

no stalls
11 cycles

Original code: Scheduled code:

Dynamic scheduling

Instruction scheduling is important for getting the best
performance out of a processor; if the compiler does a
bad job (or doesn’t even try), performance will suffer.

As a result, modern processors (e.g. Intel Pentium)
have dedicated hardware for performing instruction

scheduling dynamically as the code is executing.

This may appear to render compile-time scheduling
rather redundant.

Dynamic scheduling

• This is still compiler technology, just increasingly
being implemented in hardware.

• Somebody — now hardware designers — must
still understand the principles.

• Embedded processors may not do dynamic
scheduling, or may have the option to turn the
feature off completely to save power, so it’s still
worth doing at compile-time.

But:

Summary

• Instruction pipelines allow a processor to work on
executing several instructions at once

• Pipeline hazards cause stalls and impede optimal
throughput, even when feed-forwarding is used

• Instructions may be reordered to avoid stalls

• Dependencies between instructions limit reordering

• Static scheduling heuristics may be used to achieve
near-optimal scheduling with an O(n2) algorithm

