
Optimising Compilers - Notes on Constraint Based

Analysis

Dominic Orchard

January 12, 2009

1 Introduction

Generally a constraint-based analysis traverses a program, emitting and
solving constraints describing properties of the program. Many program
analyses in essence solve a set of constraints e.g. constraining and unify-
ing type information in Hindley-Milner type checking, or constraining the
set of “live” variables in a statement with respect to successive statements
in live-variable analysis. We consider here a constraint-based analysis of
control-flow in functional programs.

Functional programming languages typically allow definition of higher-
order functions – a function that takes a function as a parameter. Therefore
control flow in functional languages is modified not only by conditional con-
structs (if statements), and standard function applications, but also by the
application of functions passed as parameters.

The programming model behind functional languages is usually very
different to the architectural model of the target machine, which is typically
imperative. Knowing control-flow information for a functional program is
useful for efficient compilation that makes use of imperative loop constructs
and other optimisations such as inlining, tail-recursion, and specialisation –
where the compiler can generate faster implementations of a function given
information about parameters, types, and return values.

A brief note on terminology: A function definition has formal parameters

e.g. λx. . . . has formal parameter x. A function is called with (applied to)
actual parameters e.g. (λx. . . .) 2 – the lambda expression has the actual
parameter 2.

2 0-CFA [3, 4]

0-CFA (0th-order Control-Flow Analysis) is one such analysis of control-flow
in functional programs. The “0th-order” naming denotes that contextual
information is not considered; all local semantics are combined into a global

1



semantics. Although 0-CFA is a control-flow analysis the constraints are
generated over a subset of a program’s data-flow: the flow of function values

i.e. λ expressions. Other values, such as integers, are not considered in
the constraints although it is simple to extend 0-CFA to include the flow of
other values through a program (as in the lecture notes) thus creating a mix
of control-flow and data-flow analysis.

We consider 0-CFA on the following simple language where x ranges over
variables, c ranges over integer constants, and ⊕ is a binary operation:

e ::= x | c |λx.e | e1 e2 | let x = e1 in e2 | if e1 then e2 else e3 | e1 ⊕ e2

In 0-CFA each expression and subexpression in a program is labelled with
a unique integer i and associated with the flow set αi of function values that
can be returned by (or can “flow” from) evaluation of the subexpression.
Subset constraints are generated on the flow sets for an expression and its
subexpressions. The constraints can be satisfied iteratively until a fixed-
point is reached. Initially all flow sets αi = ∅. The rules for constraint
generation are as follows:

[const] ci → no constraints

[op] (ej
1
⊕ ek

2
)i → no constraints

[var] xi → αj ⊆ αi where xj is the binding of x

[lam] (λxj .ek)i → {(λxj .ek)} ⊆ αi

[app] (ej
1
ek
2
)i → ∀(λxa.eb) ∈ αj : (αk ⊆ αa ∧ αb ⊆ αi)

[let] (let xl = e
j
1
in ek

2
)i → αk ⊆ αi ∧ αj ⊆ αl

[if] (if e
j
1
then ek

2
else el

3
)i → αk ⊆ αi ∧ αl ⊆ αi

The majority of the rules are straightforward.

• [const] and [op]: Neither have associated flow sets or constraints as
neither can return a function value.

• [var]: For a variable reference, labelled i, there must be a binding of
the variable, labelled j, either as a let expression or as the formal
parameter of a function e.g.

let xj = . . . in . . . xi . . .

or
λxj . . . xi . . .

The generated constraint αj ⊆ αi ensures that any function values
bound to xj are in the flow set for xi.

• [lam]: The defined function value is in the flow set αi.

2



• [let]: The set αk for the let body is a subset of the set for the whole
expression αi. The set of the bound expression αj is a subset of the
set for the target variable of the binding αl.

• [if]: The set for the “true” branch and the “false” branch are subsets
of the flow set for the overall expression. The constraint is equivalent
to αk ∪ αl ⊆ αi but is defined without a union for consistency.

The function application rule is more interesting and is described in
depth below with an example.

• [app] (ej
1
ek
2
)i → ∀(λxa.eb) ∈ αj : (αk ⊆ αa ∧ αb ⊆ αi)

The rule matches an application (ej
1
ek
2
)i, where e

j
1

is an expression re-
turning a function, and generates constraints for each possible function
that may be returned by e

j
1

e.g. e
j
1

may be a variable bound to any of
a number of functions.

For each function in the flow set for e
j
1
, i.e. ∀(λxa.eb) ∈ αj , the

following constraints are generated:

– αk ⊆ αa, relating to the formal parameters of the applied func-
tion: The flow set of the actual parameter to the function, la-
belled k, is a subset of the flow set of the formal parameter,
labelled a. Therefore the flow set αa for the formal parameter of
a function contains all actual parameters from the various appli-
cations of the function in the program (thus realising the global
semantics of 0-CFA, cf. k-CFA, section 2.1).

– αb ⊆ αi, relating to the return result of the applied function:
The return values of the function, flow set αb, are a subset of
the return values of the application expression, αi. Therefore the
flow set of the application expression αi contains all return flow
sets of all possibly applied functions.

Therefore the [app] rule provides constraints on how function values
flow to formal parameters, are applied, and returned, hence facilitating
an analysis of function application, and thus control-flow, within a
functional program.

Consider the following example code and a labelling:

f = λx.x ∗ 3

g = λx.x + 2

h = λx.x 2

z = h f + h g

(a) unlabelled

f = (λx2.(x ∗ 3)3)1

g = (λx5.(x + 2)6)4

h = (λx8.(x9 210)11)7

z = (h13 f14)12 + (h16 g17)15

(b) partially labelled

3



The function h takes a function as a parameter, bound to the formal
parameter x, hence h is a high-order function. The function bound to
x is then applied to the number 2.

The [app] rule applied to the two applications of h in the definition
for z produces {(λx2.(x ∗ 3)3)1, (λx5.(x + 2)6)4} ⊆ α9. The derivation
of this is not shown for brevity but it should be clear that the formal
parameter for h can only ever be the f lambda expression or the g

lambda expression.

Consider the [app] rule applied to the function body of h:

[app] (x9 210)11 → ∀(λxa.eb) ∈ α9 : (α10 ⊆ αa ∧ αb ⊆ α11)

Now ∀(λxa.eb) ∈ α9:

– (λx2.(x ∗ 3)3)1 ∈ α9 generates: α10 ⊆ α2 ∧ α3 ⊆ α11.

– (λx5.(x + 2)6)4 ∈ α9 generates: α10 ⊆ α5 ∧ α6 ⊆ α11.

As neither f nor g take a function or return a function the flow sets
for their parameters and return values are all empty. To make the
relationship clearer for this example we temporarily assume that con-
straints are generated for all integer values, therefore adding further
data-flow information into the analysis, via these rules:

[const] ci → {c} ⊆ αi

[op] (ej
1
⊕ ek

2
)i → {αj ⊕ αk} ⊆ αi

Applying the integer constraints to the example and solving the con-
straints on the functions produces the following flow sets:

{2} ⊆ α10 2 is the only actual parameter to the application in h

α10 ⊆ α2 ⇒ {2} ⊆ α2 2 flows to the formal parameter for f

α10 ⊆ α5 ⇒ {2} ⊆ α5 2 flows to the formal parameter for g

α3 ⊆ α11 ⇒ {3 ∗ 2} ⊆ α11 3*2 is a possible return result of the application in h

α6 ⊆ α11 ⇒ {2 + 2} ⊆ α11 2+2 is a possible return result of the application in h

⇒ {3 ∗ 2, 2 + 2} ⊆ α11

For further reading on CFA see [3, 2, 4, 5]. The usual presentation of 0-
CFA is as a function from labels to term constraints, a separate function from
variable names to variable constraints, and inference rules for the derivation
of such constraints from terms in a language. The function of variable names
to variable constraints does not differentiate between variables in different
scopes. Separation of constraints for variables of the same name in different
scopes was provided in these notes by generating constraints on flow sets for
all terms and variables together, indexed by unique labels.

4



2.1 k-CFA

A quick note on k-CFA [non-examinable]: k-CFA takes into account scop-
ing and the context of function application thus differentiating between the
different points of application (or call sites) of a function. 0-CFA collects all
actual parameter flow sets, from all application points, into the formal pa-
rameter flow set; 0-CFA returns no information on static or dynamic point
of application. k-CFA has sequentially labelled flow sets for each successive
application of a function. Therefore, for example, k-CFA can differentiate
between the first and subsequent applications of a recursive function. Fur-
ther function specialisation and inlining can be achieved given more precise
information about a function’s application at specific program points.

2.2 Relation to the 2008 Lecture Notes

These notes provided clarification of the CFA material [1], presenting rules
for generating constraints that differ slightly in presentation from those given
in the lecture notes. For function application these notes presented the rule
for generating constraints as:

[app] (ej
1
ek
2)

i → ∀(λxa.eb) ∈ αj : (αk ⊆ αa ∧ αb ⊆ αi) (1)

On the other hand, the 2008 lecture notes present the following rule
(page 27):

(ej
1
ek
2)

i → (αk 7→ αi) ⊇ αj (2)

which is shorthand for further generated constraints:

whenever αj ⊇ {(λxq.er)p} → αq ⊇ αk ∧ αi ⊇ αr (3)

The generated constraints of (3) are equivalent to (1) presented in these
notes: “whenever αj ⊇ {λ . . .” in (3) is equivalent to “∀(λ . . .) ∈ αj” in (1)
and the following clause in (3) is written using ⊇ as opposed to ⊆ in (1) –
which was chosen for clairty when left-to-write reading.

In the example given in the lecture slides the short hand constraint (2)
is seen in a general form on slide 19 of lecture 11, and is instantiated on slide
20. These shorthand constraints are encountered in the example on slides
28 and 32 and are expanded to generate two constraints (each clause of the
∧ in (3)) on slide 29 and 33 respectively (show in blue on the slides).

Additionally in the lecture slides the example takes into account integer
values in the flow sets for expressions – hence the analysis is actually a mix
of control and data-flow analysis.

5



References

[1] Optimising Compilers, Cambridge, Computer Laboratory, 2008.
http://www.cl.cam.ac.uk/teaching/0809/OptComp/.

[2] Nevin Heintze. Set-based analysis of ML programs. SIGPLAN Lisp

Pointers, VII(3):306–317, 1994.

[3] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of

Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

[4] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analy-
sis: a collecting semantics for closure analysis. In POPL ’97: Proceedings

of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 332–345, New York, NY, USA, 1997. ACM.

[5] O. Shivers. Control flow analysis in Scheme. In PLDI ’88: Proceedings of

the ACM SIGPLAN 1988 conference on Programming Language design

and Implementation, pages 164–174, New York, NY, USA, 1988. ACM.

6


