
1 . 1

[12] CASE STUDY: UNIX

1 . 2

OUTLINE

IO

Implementation, The Buffer Cache

Processes

Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Examples, Standard IO

Main Unix Features

2 . 1

IO

IO

Implementation, The Buffer Cache

Processes
The Shell
Summary

2 . 2

IO IMPLEMENTATION

Everything accessed via the file system

Two broad categories: block and character; ignoring low-level gore:

Character IO low rate but complex — most functionality is in the "cooked"

interface

Block IO simpler but performance matters — emphasis on the buffer cache

2 . 3

THE BUFFER CACHE

Basic idea: keep copy of some parts of disk in memory for speed

On read do:

Locate relevant blocks (from inode)

Check if in buffer cache

If not, read from disk into memory

Return data from buffer cache

On write do same first three, and then update version in cache, not on disk

"Typically" prevents 85% of implied disk transfers

But when does data actually hit disk?

Call sync every 30 seconds to flush dirty buffers to disk

Can cache metadata too — what problems can that cause?

3 . 1

PROCESSES

IO

Processes
Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Main Unix Features

3 . 2

UNIX PROCESSES

Recall: a process is a program in execution

Processes have three segments: text, data
and stack. Unix processes are heavyweight

Text: holds the machine instructions for the
program

Data: contains variables and their values

Stack: used for activation records (i.e.
storing local variables, parameters, etc.)

3 . 3

UNIX PROCESS DYNAMICS

Process is represented by an opaque process id (pid), organised hierarchically with

parents creating children. Four basic operations:

pid = fork ()
reply = execve(pathname, argv, envp)
exit(status)
pid = wait(status)

fork() nearly always

followed by exec()
leading to vfork()
and/or copy-on-write

(COW). Also makes a copy

of entire address space

which is not terribly

efficient

3 . 4

START OF DAY

Kernel (/vmunix) loaded from disk (how — where's the filesystem?) and execution

starts. Mounts root filesystem. Process 1 (/etc/init) starts hand-crafted

init reads file /etc/inittab and for each entry:

Opens terminal special file (e.g. /dev/tty0)

Duplicates the resulting fd twice.

Forks an /etc/tty process.

Each tty process next: initialises the terminal; outputs the string login: & waits

for input; execve()'s /bin/login

login then: outputs "password:" & waits for input; encrypts password and checks it

against /etc/passwd; if ok, sets uid & gid, and execve() shell

Patriarch init resurrects /etc/tty on exit

3 . 5

UNIX PROCESS SCHEDULING (I)
Priorities 0—127; user processes PUSER = 50. Round robin within priorities,
quantum 100ms.
Priorities are based on usage and nice, i.e.

gives the priority of process j at the beginning of interval i where:

and is a (partially) user controllable adjustment parameter in the range

 is the sampled average length of the run queue in which process resides,
over the last minute of operation

3 . 6

UNIX PROCESS SCHEDULING (II)
Thus if e.g. load is 1 this means that roughly 90% of 1s CPU usage is "forgotten"

within 5s

Base priority divides processes into bands; CPU and nice components prevent

processes moving out of their bands. The bands are:

Swapper; Block IO device control; File manipulation; Character IO device

control; User processes

Within the user process band the execution history tends to penalize CPU

bound processes at the expense of IO bound processes

3 . 7

UNIX PROCESS STATES

ru = running
(user-
mode)

rk = running
(kernel-
mode)

z = zombie p = pre-
empted

sl = sleeping rb = runnable

c = created

NB. This is simplified — see Concurrent
Systems section 23.14 for detailed
descriptions of all states/transitions

4 . 1

THE SHELL

IO

Processes

The Shell

Examples, Standard IO

Main Unix Features

4 . 2

THE SHELL

Shell just a process like everything else.
Needn't understand commands, just files

Uses path for convenience, to avoid needing
fully qualified pathnames

Conventionally & specifies background

Parsing stage (omitted) can do lots: wildcard
expansion ("globbing"), "tilde" processing

4 . 3

SHELL EXAMPLES

$ pwd
/Users/mort/src
$ ls -F
awk-scripts/ karaka/ ocamllint/ sh-scripts/
backup-scripts/ mrt.0/ opensharingtoolkit/ sockman/
bib2x-0.9.1/ ocal/ pandoc-templates/ tex/
c-utils/ ocaml/ pttcp/ tmp/
dtrace/ ocaml-libs/ pyrt/ uon/
exapraxia-gae/ ocaml-mrt/ python-scripts/ vbox-bridge/
external/ ocaml-pst/ r/
junk/ ocaml.org/ scrapers/
$ cd python-scripts/
/Users/mort/src/python-scripts
$ ls -lF
total 224
-rw-r--r-- 1 mort staff 17987 2 Jan 2010 LICENSE
-rw-rw-r-- 1 mort staff 1692 5 Jan 09:18 README.md
-rwxr-xr-x 1 mort staff 6206 2 Dec 2013 bberry.py*
-rwxr-xr-x 1 mort staff 7286 14 Jul 2015 bib2json.py*
-rwxr-xr-x 1 mort staff 7205 2 Dec 2013 cal.py*
-rw-r--r-- 1 mort staff 1860 2 Dec 2013 cc4unifdef.py
-rwxr-xr-x 1 mort staff 1153 2 Dec 2013 filebomb.py*
-rwxr-xr-x 1 mort staff 1059 2 Jan 2010 forkbomb.py*

Prompt is $. Use man to find out about commands. User friendly?

4 . 4

STANDARD IO

Every process has three fds on creation:

stdin: where to read input from
stdout: where to send output
stderr: where to send diagnostics

Normally inherited from parent, but shell allows redirection to/from a file, e.g.,

ls >listing.txt
ls >&listing.txt
sh <commands.sh

Consider: ls >temp.txt; wc <temp.txt >results

Pipeline is better (e.g. ls | wc >results)
Unix commands are often filters, used to build very complex command lines
Redirection can cause some buffering subtleties

5 . 1

MAIN UNIX FEATURES
IO

Processes

The Shell

Main Unix Features

5 . 2

MAIN UNIX FEATURES
File abstraction

A file is an unstructured sequence of bytes
(Not really true for device and directory files)

Hierarchical namespace
Directed acyclic graph (if exclude soft links)
Thus can recursively mount filesystems

Heavy-weight processes
IO: block and character
Dynamic priority scheduling

Base priority level for all processes
Priority is lowered if process gets to run
Over time, the past is forgotten

But V7 had inflexible IPC, inefficient memory management, and poor kernel
concurrency
Later versions address these issues.

6

SUMMARY
IO

Implementation, The Buffer Cache

Processes

Unix Process Dynamics, Start of Day, Scheduling and States

The Shell

Examples, Standard IO

Main Unix Features

