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IO HARDWARE
Very wide range of devices that interact with the computer via input/output (IO):

Human readable: graphical displays, keyboard, mouse, printers
Machine readable: disks, tapes, CD, sensors
Communications: modems, network interfaces, radios

All differ significantly from one another with regard to:

Data rate: orders of magnitude different between keyboard and network
Control complexity: printers much simpler than disks
Transfer unit and direction: blocks vs characters vs frame stores
Data representation
Error handling
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IO SUBSYSTEM

Results in IO subsystem generally being the "messiest" part of the OS

So much variety of devices

So many applications

So many dimensions of variation:

Character-stream or block

Sequential or random-access

Synchronous or asynchronous

Shareable or dedicated

Speed of operation

Read-write, read-only, or write-only

Thus, completely homogenising device API is not possible so OS generally splits

devices into four classes
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DEVICE CLASSES
Block devices (e.g. disk drives, CD)

Commands include read, write, seek
Can have raw access or via (e.g.) filesystem ("cooked") or memory-mapped

Character devices (e.g. keyboards, mice, serial):

Commands include get, put
Layer libraries on top for line editing, etc

Network Devices

Vary enough from block and character devices to get their own interface

Unix and Windows NT use the Berkeley Socket interface

Miscellaneous

Current time, elapsed time, timers, clocks

(Unix) ioctl covers other odd aspects of IO
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OS INTERFACES

Programs access virtual devices:

Terminal streams not terminals,

windows not frame buffer, event

streams not raw mouse, files not disk

blocks, print spooler not parallel port,

transport protocols not raw Ethernet

frames

OS handles the processor-device interface: IO instructions vs memory mapped

devices; IO hardware type (e.g. 10s of serial chips); Polled vs interrupt driven; CPU

interrupt mechanism

Virtual devices then implemented:

In kernel, e.g. files, terminal devices

In daemons, e.g. spooler, windowing

In libraries, e.g. terminal screen control, sockets



3 . 1

PERFORMING IO

Input/Output (IO)
Performing IO

Polled Mode

Interrupt Driven

Blocking vs Non-blocking

Handling IO



3 . 2

POLLED MODE

Consider a simple device with three registers:

status, data and command. Host can read

and write these via bus. Then polled mode

operation works as follows:

H repeatedly reads device-busy until clear

H sets e.g. write bit in command register, and puts data into data register

H sets command-ready bit in status register

D sees command-ready and sets device-busy
D performs write operation

D clears command-ready & then clears device-busy

What's the problem here?
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INTERRUPT DRIVEN
Rather than polling, processors provide an interrupt mechanism to handle mismatch

between CPU and device speeds:

At end of each instruction, processor checks interrupt line(s) for pending interrupt

Need not be precise (that is, occur at definite point in instruction stream)

If line is asserted then processor:

Saves program counter & processor status

Changes processor mode

Jumps to a well-known address (or contents of a well-known address)

Once interrupt-handling routine finishes, can use e.g. rti instruction to resume

More complex processors may provide:

Multiple priority levels of interrupt

Hardware vectoring of interrupts

Mode dependent registers
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HANDLING INTERRUPTS

Split the implementation into two parts:

At the bottom, the interrupt handler
At the top,  interrupt service routines (ISR; per-device)

Processor-dependent interrupt handler may:

Save more registers and establish a language environment

Demultiplex interrupt in software and invoke relevant ISR

Device- (not processor-) dependent interrupt service routine will:

For programmed IO device: transfer data and clear interrupt

For DMA devices: acknowledge transfer; request any more pending; signal any

waiting processes; and finally enter the scheduler or return

Question: Who is scheduling whom?

Consider, e.g., network livelock
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BLOCKING VS NON-BLOCKING

From programmer's point of view, IO system calls exhibit one of three kinds of

behaviour:

Blocking: process suspended until IO completed

Easy to use and understand.

Insufficient for some needs.

Nonblocking: IO call returns as much as available

Returns almost immediately with count of bytes read or written (possibly 0)

Can be used by e.g. user interface code

Essentially application-level "polled IO"

Asynchronous: process runs while IO executes

IO subsystem explicitly signals process when its IO request has completed

Most flexible (and potentially efficient)

Also most complex to use
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IO BUFFERING

To cope with various impedance mismatches between devices (speed, transfer size),

OS may buffer data in memory. Various buffering strategies:

Single buffering: OS assigns a system buffer to the user request

Double buffering: process consumes from one buffer while system fills the next

Circular buffering: most useful for bursty IO

Buffering is useful for smoothing peaks and troughs of data rate, but can't help if on

average:

Process demand > data rate (process will spend time waiting), or

Data rate > capability of the system (buffers will fill and data will spill)

Downside: can introduce jitter which is bad for real-time or multimedia

Details often dictated by device type: character devices often by line; network

devices particularly bursty in time and space; block devices make lots of fixed size

transfers and often the major user of IO buffer memory
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SINGLE BUFFERING
OS assigns a single buffer to the user request:

OS performs transfer, moving buffer to userspace when complete (remap or copy)

Request new buffer for more IO, then reschedule application to consume

(readahead or anticipated input)
OS must track buffers

Also affects swap logic: if IO is to same disk as swap device, doesn't make sense

to swap process out as it will be behind the now queued IO request!

A crude performance comparison between no buffering and single buffering:

Let t be time to input block and c be computation time between blocks

Without buffering, execution time between blocks is 

With single buffering, time is  where  is the time to move data

from buffer to user memory

For a terminal: is the buffer a line or a char? depends on user response required
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DOUBLE BUFFERING

Often used in video rendering

Rough performance comparison: takes  thus

possible to keep device at full speed if 

while if , process will not have to wait for IO

Prevents need to suspend user process between IO operations

...also explains why two buffers is better than one buffer, twice as big

Need to manage buffers and processes to ensure process doesn't start consuming

from an only partially filled buffer

 

CIRCULAR BUFFERING

Allows consumption from the buffer at a fixed rate, potentially lower than the

burst rate of arriving data

Typically use circular linked list which is equivalent to a FIFO buffer with queue

length
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OTHER ISSUES
Caching: fast memory holding copy of data for both reads and writes; critical to IO

performance

Scheduling: order IO requests in per-device queues; some OSs may even attempt

to be fair

Spooling: queue output for a device, useful if device is "single user" (e.g., printer),

i.e. can serve only one request at a time

Device reservation: system calls for acquiring or releasing exclusive access to a

device (care required)

Error handling: generally get some form of error number or code when request

fails, logged into system error log (e.g., transient write failed, disk full, device

unavailable, ...)
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KERNEL DATA STRUCTURES
To manage all this, the OS kernel must maintain state for IO components:

Open file tables

Network connections

Character device states

Results in many complex and performance criticial data structures to track buffers,

memory allocation, "dirty" blocks

Consider reading a file from disk for a process:

Determine device holding file

Translate name to device representation

Physically read data from disk into buffer

Make data available to requesting process

Return control to process
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PERFORMANCE

IO a major factor in system performance

Demands CPU to execute device driver, kernel IO code, etc.

Context switches due to interrupts

Data copying

Improving performance:

Reduce number of context switches

Reduce data copying

Reduce number of interrupts by using large transfers, smart controllers, polling

Use DMA where possible

Balance CPU, memory, bus and IO performance for highest throughput.

Improving IO performance remains a significant challenge...
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