
1 . 1

[05] SCHEDULING ALGORITHMS

1 . 2

OUTLINE

First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

2 . 1

FIRST-COME FIRST-SERVED (FCFS)

Simplest possible scheduling algorithm, depending only on the order in which
processes arrive

E.g. given the following demand:

Process Burst Time

2 . 2

EXAMPLE: FCFS
Consider the average waiting time under different arrival orders

, , :

Waiting time , ,
Average waiting time:

, , :

Waiting time , ,
Average waiting time:

Arriving in reverse order is three times as good!

The first case is poor due to the convoy effect: later processes are held up behind
a long-running first process
FCFS is simple but not terribly robust to different arrival processes

2 . 3

SHORTEST JOB FIRST (SJF)
Intuition from FCFS leads us to shortest job first (SJF) scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest time

Use, e.g., FCFS to break ties

2 . 4

EXAMPLE: SJF
Process Arrival Time Burst Time

Waiting time for , , , . Average waiting time:

SJF is optimal with respect to average waiting time:

It minimises average waiting time for a given set of processes
What might go wrong?

2 . 5

SHORTEST REMAINING-TIME FIRST (SRTF)
Simply a preemptive version of SJF: preempt the running process if a new process
arrives with a CPU burst length less than the remaining time of the current
executing process

2 . 6

EXAMPLE: SRTF
As before:

Process Arrival Time Burst Time

Waiting time for , , ,

Average waiting time:

2 . 7

EXAMPLE: SRTF
Surely this is optimal in the face of new runnable processes arriving? Not
necessarily — why?

Context switches are not free: many very short burst length processes may thrash
the CPU, preventing useful work being done

More fundamentally, we can't generally know what the future burst length is!

2 . 8

PREDICTING BURST LENGTHS

For both SJF and SRTF require the next "burst length" for each process means we
must estimate it

Can be done by using the length of previous CPU bursts, using exponential
averaging:

1. = actual length of CPU burst.
2. = predicted value for next CPU burst.
3. For define:

2 . 9

PREDICTING BURST LENGTHS

If we expand the formula we get:

where is some constant

Choose value of according to our belief about the system, e.g., if we believe
history irrelevant, choose and then get
In general an exponential averaging scheme is a good predictor if the variance is
small
Since both and are less than or equal to one, each successive term has
less weight than its predecessor
NB. Need some consideration of load, else get (counter-intuitively) increased
priorities when increased load

2 . 10

ROUND ROBIN

A preemptive scheduling scheme for time-sharing systems.

Define a small fixed unit of time called a quantum (or time-slice), typically 10 —
100 milliseconds
Process at the front of the ready queue is allocated the CPU for (up to) one
quantum
When the time has elapsed, the process is preempted and appended to the ready
queue

2 . 11

ROUND ROBIN: PROPERTIES

Round robin has some nice properties:

Fair: given n processes in the ready queue and time quantum q, each process gets

 of the CPU

Live: no process waits more than time units before receiving a CPU

allocation

Typically get higher average turnaround time than SRTF, but better average

response time

But tricky to choose the correct size quantum, :

 too large becomes FCFS/FIFO

 too small becomes context switch overhead too high

2 . 12

PRIORITY SCHEDULING
Associate an (integer) priority with each process, e.g.,

Prio Process type

0 system internal processes

1 interactive processes (staff)

2 interactive processes (students)

3 batch processes

Simplest form might be just system vs user tasks

2 . 13

PRIORITY SCHEDULING
Then allocate CPU to the highest priority process: "highest priority" typically
means smallest integer

Get preemptive and non-preemptive variants
E.g., SJF is a priority scheduling algorithm where priority is the predicted next
CPU burst time

2 . 14

TIE-BREAKING
What do with ties?

Round robin with time-slicing, allocating quantum to each process in turn

Problem: biases towards CPU intensive jobs (Why?)

Solution?
Per-process quantum based on usage?
Just ignore the problem?

2 . 15

STARVATION

Urban legend about IBM 7074 at MIT: when shut down in 1973, low-priority processes
were found which had been submitted in 1967 and had not yet been run...

This is the biggest problem with static priority systems: a low priority process is not
guaranteed to run — ever!

2 . 16

DYNAMIC PRIORITY SCHEDULING
Prevent the starvation problem: use same scheduling algorithm, but allow priorities

to change over time

Processes have a (static) base priority and a dynamic effective priority

If process starved for seconds, increment effective priority

Once process runs, reset effective priority

2 . 17

EXAMPLE: COMPUTED PRIORITY

First used in Dijkstra's THE

Timeslots:
In each time slot , measure the CPU usage of process
Priority for process in slot :

E.g.,
Penalises CPU bound but supports IO bound

Once considered impractical but now such computation considered acceptable

3

SUMMARY
First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

