
1 . 1

[03] PROCESSES

1 . 2

OUTLINE

Process Concept
Relationship to a Program
What is a Process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

Inter-Process Communication
Requirements
Concept
Mechanisms

2 . 1

PROCESS CONCEPTS

Process Concept
Relationship to a Program
What is a Process?

Process Lifecycle
Process Management
Inter-Process Communication

2 . 2

WHAT IS A PROCESS?
The computer is there to execute programs, not the operating system!

Process Program

A program is static, on-disk

A process is dynamic, a program in execution

On a batch system, might refer to jobs instead of processes

2 . 3

WHAT IS A PROCESS?
Unit of protection and resource allocation

So you may have multiple copies of a process running

Each process executed on a virtual processor

Has a virtual address space (later)

Has one or more threads, each of which has

1. Program Counter: which instruction is executing

2. Stack: temporary variables, parameters, return addresses, etc.

3. Data Section: global variables shared among threads

2 . 4

PROCESS STATES

New: being created
Running: instructions are being executed
Ready: waiting for the CPU, ready to run
Blocked: stopped, waiting for an event to occur
Exit: has finished execution

3 . 1

PROCESS LIFECYCLE

Process Concept
Process Lifecycle

Creation
Termination
Blocking

Process Management
Inter-Process Communication

3 . 2

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing:
Parent and children share all resources
Children share subset of parent's resources
Parent and child share no resources

3 . 3

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution:

Parent and children execute concurrently
Parent waits until children terminate

3 . 4

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution
Address space:

Child duplicate of parent
Child has a program loaded into it

3 . 5

EXAMPLES
Unix:

fork() system call creates a child process, cloned from parent; then
execve() system call used to replace the process' memory space with a new
program

NT/2K/XP:

CreateProcess() system call includes name of program to be executed

3 . 6

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it (exit):

Output data from child to parent (wait)

Process' resources are deallocated by the OS

3 . 7

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it

2. Process performs an illegal operation, e.g.,

Makes an attempt to access memory to which it is not authorised

Attempts to execute a privileged instruction

3 . 8

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the OS to delete it

2. Process performs an illegal operation

3. Parent may terminate execution of child processes (abort, kill), e.g. because

Child has exceeded allocated resources

Task assigned to child is no longer required

Parent is exiting ("cascading termination")

EXAMPLES

Unix: wait(), exit() and kill()

NT/2K/XP: ExitProcess() for self, TerminateProcess() for others

3 . 9

BLOCKING

In general a process blocks on an event, e.g.,

An IO device completes an operation

Another process sends a message

Assume OS provides some kind of general-purpose blocking primitive, e.g.,

await()
Need care handling concurrency issues, e.g.,

What happens if a key is pressed at the first {?

Complicated! For next year... :)

 if(no key being pressed) {
 await(keypress);
 print("Key has been pressed!\n");
 }
 // handle keyboard input

3 . 10

CPU IO BURST CYCLE

Process execution consists of a cycle of CPU execution and IO wait

Processes can be described as either:

1. IO-bound:

spends more time doing IO than computation

many short CPU bursts

2. CPU-bound:

spends more time doing computations

a few, very long, CPU bursts

3 . 11

CPU IO BURST CYCLE

Observe that most processes execute for at most a few milliseconds before blocking

We need multiprogramming to obtain decent overall CPU utilisation

4 . 1

PROCESS MANAGEMENT

Process Concept
Process Lifecycle
Process Management

Process Control Blocks
Context Switching
Threads

Inter-Process Communication

4 . 2

PROCESS CONTROL BLOCK

OS maintains information about every process in a

data structure called a process control block (PCB). The

Process Context (highlighted) is the machine

environment during the time the process is actively

using the CPU:

Program counter

General purpose registers

Processor status register

[Caches, TLBs, Page tables, ...]

CONTEXT SWITCHING
To switch between processes, the OS must:

Save the context of the currently

executing process (if any), and

Restore the context of that being

resumed.

Note this is wasted time — no useful work is

carried out while switching

Time taken depends on hardware support

From nothing, to

Save/load multiple registers to/from

memory, to

Complete hardware "task switch"

4 . 34 . 4

THREADS

A thread represents an individual execution context

Threads are managed by a scheduler that determines which thread to run

Each thread has an associated Thread Control Block (TCB) with metadata about the

thread: saved context (registers, including stack pointer), scheduler info, etc.

Context switches occur when the OS saves the state of one thread and restores the

state of another. If between threads in different processes, process state also

switches

Threads visible to the OS are kernel threads — may execute in kernel or address

user space

5 . 1

INTER-PROCESS

COMMUNICATION

Process Concept
Process Lifecycle
Process Management
Inter-Process Communication

Requirements
Concept
Mechanisms

5 . 2

REQUIREMENTS
For meaningful communication to take place, two or more parties have to exchange

information according to a protocol:

Data transferred must be in a commonly-understood format (syntax)

Data transferred must have mutually-agreed meaning (semantics)
Data must be transferred according to mutually understood rules

(synchronisation)

In computer communications, the parties in question come in a range of forms,

typically:

Threads

Processes

Hosts

Ignore problems of discovery, identification, errors, etc. for now

5 . 3

INTER-PROCESS COMMUNICATION

In the context of this course, we are concerned with Inter-Process Communication
(IPC)

What it says on the tin — communication between processes on the same host

Key point — it is possible to share memory between those processes

Given the protection boundaries imposed by the OS, by design, the OS must be

involved in any communication between processes

Otherwise it would be tantamount to allowing one process to write over

another's address space

We'll focus on POSIX mechanisms

5 . 4

INTER-THREAD COMMUNICATION
It is a common requirement for two running threads to need to communicate

E.g., to coordinate around access to a shared variable

If coordination is not implemented, then all sorts of problems can occur. Range of
mechanisms to manage this:

Mutexes
Semaphores
Monitors
Lock-Free Data Structures
...

Not discussed here!

You'll get into the details next year in Concurrent and Distributed Systems
(Particularly the first half, on Concurrency)

5 . 5

INTER-HOST COMMUNICATION
Passing data between different hosts:

Traditionally different physical hosts
Nowadays often virtual hosts

Key distinction is that there is now no shared memory, so some form of transmission
medium must be used — networking

Also not discussed here!

In some sense it is "harder" than IPC because real networks are inherently:
Unreliable: data can be lost
Asynchronous: even if data is not lost, no guarantees can be given about
when it arrived

You'll see a lot more of this next year in Computer Networking

5 . 6

CONCEPT

For IPC to be a thing, first you need multiple processes

Initially created by running processes from a shell

Subsequently may be created by those processes, ad infinitum

(...until your machine dies from your fork bomb...)

Basic process mechanisms: fork(2) followed by execve(2) and/or wait(2)

Will look at that plus several other common POSIX mechanisms

5 . 7

FORK(2), WAIT(2)
Simply put, fork(2) allows a process to clone itself:

Parent process creates child process

Child receives copy-on-write (COW) snapshot of parent's address space

Parent typically then either:

Detaches from child — hands responsibility back to init process

Waits for child — calling wait(2), parent blocks until child exits

5 . 8

SIGNALS
Simple asynchronous notifications on another process

A range of signals (28 at my last count), defined as numbers
Mapped to standard #defines, a few of which have standard mappings to
numbers

Among the more common ones:

SIGHUP: hangup the terminal (1)
SIGINT: terminal interrupt (2)
SIGKILL: terminate the process [cannot be caught or ignored] (9)
SIGTERM: terminate process (15)
SIGSEGV: segmentation fault — process made an invalid memory reference
SIGUSR1/2: two user signals [system defined numbers]

Use sigaction(2) to specify what function the signalled process should invoke
on receipt of a given signal

5 . 9

PIPES

Simplest form of IPC: pipe(2) returns a pair of file descriptors

(fd[0], fd[1]) are the (read, write) fds

Coupled with fork(2), can now communicate between processes:

Invoke pipe(2) to get read/write fds
fork(2) to create child process
Parent and child then both have read/write fds available, and can communicate

5 . 10

NAMED PIPES / FIFOS

The same as pipe(2) — except that it has a name, and isn't just an array of two

fds

This means that the two parties can coordinate without needing to be in a

parent/child relationship

All they need is to share the (path)name of the FIFO

Then simply treat as a file:

open(2)

read(2)

write(2)

open(2) will block by default, until some other process opens the FIFO for reading

Can set non-blocking via O_NDELAY

5 . 11

SHARED MEMORY SEGMENTS
What it says on the tin — obtain a segment of memory that is shared between two
(or more) processes

shmget(2) to get a segment
shmat(2) to attach to it

Then read and write simply via pointers — need to impose concurrency control to
avoid collisions though

Finally:

shmdt(2) to detach
shmctl(2) to destroy once you know no-one still using it

5 . 12

FILES
Locking can be mandatory (enforced) or advisory (cooperative)

Advisory is more widely available
fcntl(2) sets, tests and clears the lock status
Processes can then coordinate over access to files
read(2), write(2), seek(2) to interact and navigate

Memory Mapped Files present a simpler — and often more efficient — API

mmap(2) "maps" a file into memory so you interact with it via a pointer
Still need to lock or use some other concurrency control mechanism

5 . 13

UNIX DOMAIN SOCKETS

Sockets are commonly used in network programming — but there is (effectively) a
shared memory version for use between local processes, having the same API:

socket(2) creates a socket, using AF_UNIX
bind(2) attaches the socket to a file
The interact as with any socket

accept(2), listen(2), recv(2), send(2)
sendto(2), recvfrom(2)

Finally, socketpair(2) uses sockets to create a full-duplex pipe

Can read/write from both ends

6

SUMMARY
Process Concept

Relationship to a Program
What is a Process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

Inter-Process Communication
Requirements
Concept
Mechanisms

