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Last session: catchup 1

Research ideas from sentiment detection
This concludes the part about statistical classification.
We are now moving onto sequence learning.



Markov Chains

A Markov Chain is a stochastic process with transitions
from one state to another in a state space.
Models sequential problems – your current situation
depends on what happened in the past
States are fully observable and discrete; transitions are
labelled with transition probabilities.



Markov Chains

Once we observe a sequence of states, we can calculate a
probability for a sequences of states we have been in.
Important assumption: the probability distribution of the
next state depends only on the current state

not on the sequence of events that preceded it.

This model is appropriate in a number of applications,
where states can be unambiguously observed.



Example: Predictive texting

The famous A9 Algorithm, based on character n-grams
A nice application based on it – Dasher, developed at
Cambridge by David McKay



A harder problem

But sometimes the observations are ambiguous with
respect to their underlying causes
In these cases, there is no 1:1 mapping between
observations and states.
A number of states can be associated with a particular
observation, but the association of states and observations
is governed by statistical behaviour.
The states themselves are “hidden” from us.
We only have access to the observations.
We now have to infer the sequence of states that
correspond to a sequence of observations.



Example where states are hidden

Imagine a fraudulous croupier in a casino where
customers bet on dice outcomes.
She has two dice – a fair one and a loaded one.
The fair one has the normal distribution of outcomes –
P(O) = 1

6 for each number 1 to 6.
The loaded one has a different distribution.
She secretly switches between the two dice.
You don’t know which dice is currently in use. You can only
observe the numbers that are thrown.



Hidden Markov Model; States and Observations

Se = {s1, . . . , sN} a set of N emitting states,
s0 a special start state,
sf a special end state.

K = {k1, . . . km} an output alphabet of M observations
(vocabulary).



Hidden Markov Model; State and Observation
Sequence

O = o1 . . . oT a sequence of T observations, each
one drawn from K .

X = X1 . . .XT a sequence of T states, each one
drawn from Se.



Hidden Markov Model; State Transition Probabilities

A: a state transition probability matrix of size (N+1)×(N+1).

A =



a01 a02 a03 . . . a0N −
a11 a12 a13 . . . a1N a1f
a21 a22 a23 . . . a2N a2f
. . . . .
. . . . .
. . . . .

aN1 aN2 aN3 . . . aNN aNf


aij is the probability of moving from state si to state sj :

aij = P(Xt = sj |Xt−1 = si)

∀i

N∑
j=1

aij = 1
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Start state s0 and end state sf

Not associated with observations
a0i describe transition probabilities out of the start state
into state si

aif describe transition probabilities into the end state
Transitions into start state (ai0) and out of end state (afi )
undefined.



Hidden Markov Model; Emission Probabilities

B: an emission probability matrix of size N ×M.

B =


b1(k1) b2(k1) b3(k1) . . . bN(k1)
b1(k2) b2(k2) b3(k2) . . . bN(k2)

. . . .

. . . .

. . . .
b1(kM) b2(kM) b3(kM) . . . bN(kM)



bi(kj) is the probability of emitting vocabulary item kj from state si :

bi(kj) = P(Ot = kj |Xt = si)

An HMM is defined by its parameters µ = (A,B).



A Time-elapsed view of an HMM



A state-centric view of an HMM



The dice HMM

There are two states (fair and loaded)
Distribution of observations differs between the states



Markov assumptions

1 Output Independence: sequence of T observations.
Each depends only on current state, not on history

P(Ot |X1...Xt , ...,XT ,O1, ...,Ot , ...,OT ) = P(Ot |Xt)

2 Limited Horizon: Transitions depend only on current
state:

P(Xt |X1...Xt−1) = P(Xt |Xt−1)

This is a first order HMM.
In general, transitions in an HMM of order n depend on the
past n states.



Tasks with HMMs

Problem 1 (Labelled Learning)
Given a parallel observation and state sequence O and X ,
learn the HMM parameters A and B. → today

Problem 2 (Unlabelled Learning)
Given an observation sequence O (and only the set of
emitting states Se), learn the HMM parameters A and B.

Problem 3 (Likelihood)
Given an HMM µ = (A,B) and an observation sequence O,
determine the likelihood P(O|µ).

Problem 4 (Decoding)
Given an observation sequence O and an HMM µ = (A,B),
discover the best hidden state sequence X . → Task 8



Your Task today

Task 7:
Your implementation performs labelled HMM learning, i.e.
it has

Input: dual tape of state and observation (dice outcome)
sequences X and O.

s0 F F F F L L L F F F F L L L L F F sF
1 3 4 5 6 6 5 1 2 3 1 4 3 5 4 1 2

Output: HMM parameters A, B.

As usual, the data is split into training, validation, test
portions.
Note: you will in a later task use your code for an HMM
with more than two states. Either plan ahead now or
modify your code later.



Parameter estimation of HMM parameters A, B

s0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

Transition matrix A consists of transition probabilities aij

aij = P(Xt+1 = sj |Xt = si) ∼
count(Xt = si ,Xt+1 = sj)

count(Xt = si)

Emission matrix B consists of emission probabilities bi(kj)

bi(kj) = P(Ot = kj |Xt = si) ∼
count(Ot = kj ,Xt = si)

count(Xt = si)

Add-one smoothed versions of these



Literature

Manning and Schutze (2000). Foundations of Statistical
Natural Language Processing, MIT Press. Chapters 9.1,
9.2.

We use state-emission HMM instead of arc-emission HMM
We avoid initial state probability vector π by using explicit
start state s0 and incorporating the corresponding
probabilities into transition matrix A.

(Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful,
notation!))


