8: Hidden Markov Models Machine Learning and Real-world Data

Simone Teufel and Ann Copestake

Computer Laboratory University of Cambridge

Lent 2017

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Last session: catchup 1

- Research ideas from sentiment detection
- This concludes the part about statistical classification.

(ロ) (同) (三) (三) (三) (三) (○) (○)

■ We are now moving onto sequence learning.

Markov Chains

- A Markov Chain is a stochastic process with transitions from one state to another in a state space.
- Models sequential problems your current situation depends on what happened in the past
- States are fully observable and discrete; transitions are labelled with transition probabilities.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Markov Chains

- Once we observe a sequence of states, we can calculate a probability for a sequences of states we have been in.
- Important assumption: the probability distribution of the next state depends only on the current state

not on the sequence of events that preceded it.

This model is appropriate in a number of applications, where states can be unambiguously observed.

(日) (日) (日) (日) (日) (日) (日)

- The famous A9 Algorithm, based on character n-grams
- A nice application based on it Dasher, developed at Cambridge by David McKay

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A harder problem

- But sometimes the observations are ambiguous with respect to their underlying causes
- In these cases, there is no 1:1 mapping between observations and states.
- A number of states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- The states themselves are "hidden" from us.
- We only have access to the observations.
- We now have to *infer* the sequence of states that correspond to a sequence of observations.

Example where states are hidden

- Imagine a fraudulous croupier in a casino where customers bet on dice outcomes.
- She has two dice a fair one and a loaded one.
- The fair one has the normal distribution of outcomes $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution.
- She secretly switches between the two dice.
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.

(日) (日) (日) (日) (日) (日) (日)

Hidden Markov Model; States and Observations

$$\textbf{S}_{e} = \{\textbf{s}_{1}, \ldots, \textbf{s}_{N}\}$$

- a set of N emitting states,
- *s*₀ a special start state,
- s_f a special end state.
- $K = \{k_1, \dots, k_m\}$ an output alphabet of *M* observations (vocabulary).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Hidden Markov Model; State and Observation Sequence

$$O = o_1 \dots o_T$$
 a sequence of *T* observations, each one drawn from *K*.

 $X = X_1 \dots X_T$ a sequence of T states, each one drawn from S_e .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A: a state transition probability matrix of size $(N+1) \times (N+1)$.

$$A = \begin{bmatrix} a_{01} & a_{02} & a_{03} & \dots & a_{0N} & - \\ a_{11} & a_{12} & a_{13} & \dots & a_{1N} & a_{1f} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2N} & a_{2f} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ a_{N1} & a_{N2} & a_{N3} & \dots & a_{NN} & a_{Nf} \end{bmatrix}$$

 a_{ij} is the probability of moving from state s_i to state s_j :

$$egin{aligned} a_{ij} &= \mathcal{P}(X_t = s_j | X_{t-1} = s_i) \ & orall_i \sum_{j=1}^N a_{ij} = 1 \end{aligned}$$

A: a state transition probability matrix of size $(N+1) \times (N+1)$.

 a_{ij} is the probability of moving from state s_i to state s_j :

$$egin{aligned} a_{ij} &= \mathcal{P}(X_t = s_j | X_{t-1} = s_i) \ & orall_i \sum_{j=1}^N a_{ij} = 1 \end{aligned}$$

Start state s_0 and end state s_f

- Not associated with observations
- a_{0i} describe transition probabilities out of the start state into state s_i
- *a_{if}* describe transition probabilities into the end state
- Transitions into start state (a_{i0}) and out of end state (a_{fi}) undefined.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Hidden Markov Model; Emission Probabilities

B: an emission probability matrix of size $N \times M$.

$$B = \begin{bmatrix} b_1(k_1) & b_2(k_1) & b_3(k_1) & \dots & b_N(k_1) \\ b_1(k_2) & b_2(k_2) & b_3(k_2) & \dots & b_N(k_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_1(k_M) & b_2(k_M) & b_3(k_M) & \dots & b_N(k_M) \end{bmatrix}$$

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

An HMM is defined by its parameters $\mu = (A, B)$.

A Time-elapsed view of an HMM

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへ⊙

A state-centric view of an HMM

▲□▶▲□▶▲□▶▲□▶ □ のへで

The dice HMM

- There are two states (fair and loaded)
- Distribution of observations differs between the states

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Markov assumptions

Output Independence: sequence of *T* observations. Each depends only on current state, not on history

 $P(O_t|X_1...X_t,...,X_T,O_1,...,O_t,...,O_T) = P(O_t|X_t)$

2 Limited Horizon: Transitions depend only on current state:

$$P(X_t|X_1...X_{t-1}) = P(X_t|X_{t-1})$$

- This is a first order HMM.
- In general, transitions in an HMM of order *n* depend on the past *n* states.

Tasks with HMMs

Problem 1 (Labelled Learning)

- Given a parallel observation and state sequence O and X, learn the HMM parameters A and B. \rightarrow today
- Problem 2 (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B.

Problem 3 (Likelihood)

- Given an HMM μ = (A, B) and an observation sequence O, determine the likelihood P(O|μ).
- Problem 4 (Decoding)
 - Given an observation sequence *O* and an HMM $\mu = (A, B)$, discover the best hidden state sequence $X \rightarrow \text{Task 8}$

Your Task today

Task 7:

- Your implementation performs labelled HMM learning, i.e. it has
 - Input: dual tape of state and observation (dice outcome) sequences X and O.

• Output: HMM parameters *A*, *B*.

- As usual, the data is split into training, validation, test portions.
- Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.

Parameter estimation of HMM parameters A, B

<i>s</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	X 7	<i>X</i> 8	<i>X</i> 9	<i>X</i> ₁₀	<i>X</i> ₁₁	<i>X</i> ₁₂
	<i>O</i> ₁	<i>O</i> ₂	O_3	<i>O</i> ₄	<i>O</i> 5	O_6	<i>O</i> ₇	<i>O</i> 8	<i>O</i> 9	<i>O</i> ₁₀	<i>O</i> ₁₁	

Transition matrix A consists of transition probabilities a_{ii}

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim rac{count(X_t = s_i, X_{t+1} = s_j)}{count(X_t = s_i)}$$

Emission matrix B consists of emission probabilities b_i(k_j)

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim rac{count(O_t = k_j, X_t = s_i)}{count(X_t = s_i)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Add-one smoothed versions of these

Literature

- Manning and Schutze (2000). Foundations of Statistical Natural Language Processing, MIT Press. Chapters 9.1, 9.2.
 - We use state-emission HMM instead of arc-emission HMM
 - We avoid initial state probability vector π by using explicit start state s₀ and incorporating the corresponding probabilities into transition matrix A.
- (Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))

(日) (日) (日) (日) (日) (日) (日)