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Last session: Zipf’s Law and Heaps’ Law

Heaps’ Law means that we will systematically always
encounter unknown words in new texts.
Zipf’s Law means that the number of low frequency words
is large –“long tail”
Smoothing works by

lowering the MLE estimate for seen events
redistributing this probability to unseen events (e.g. for
words in long tail we might encounter during our
experiment).



Observed system improvement

This produced a better system.
Or at least, you observed higher accuracies.
Today: we use a statistical test to gather evidence that one
system is really better than another system.



Variation in the data

Documents are different (writing style, length, type of
words used, . . . )
Some documents will make it easier for your system to
score well, some will make it easier for the other system.
Maybe you were just lucky and all documents in the test
set are in your favour?

This could be the case if you don’t have enough data.
This could be the case if the difference in accuracy is small.

Maybe both systems perform equally well in reality?



Statistical Significance Testing

Null Hypothesis: two result sets come from the same
distribution

System 1 is (really) equally good as System 2.

First, choose a significance level (p), e.g., p = 0.01.
We then try to reject the null hypothesis with at least
probability 1− p (99% in this case)
That means showing that the observed result is very
unlikely to have occurred by chance.



Reporting significance

If we successfully pass the significance test, and only then,
we can report:

“The difference between System A and System B
is significant at p ≤ 0.01.”

Any other statements based on raw accuracy differences
alone are strictly speaking meaningless.



Sign Test (nonparametric, paired)

The sign test uses a binary event model.
Here, n events (corresponding to n documents).
Events have binary outcomes:

Positive: System 1 beats System 2 on this document
(PLUS times).
Negative: System 2 beats System 1 on this document
(MINUS times).
(Tie: System 1 and System 2 do equally well on this
document; NULL times)

Call the probability of a positive outcome q (here q = 0.5)
Binary distribution allows us to calculate the probability
that, say, at least 1247 out of 2000 such binary events are
positive.
Which equals the probability that at most 753 out of 2000
are negative.



Binomial Distribution B(N,q)

Probability of observing X = k negative events out of n:

Pq(X = k |n) =
(

n
k

)
qk (1− q)n−k

At most k negative events:

Pq(X ≤ k |n) =
k∑

i=0

(
n
i

)
q i(1− q)n−i



Binary Event Model and Statistical Tests

If the probability of observing our events under Null
Hypothesis is very small (smaller than our pre-selected
significance level p, e.g. 1%), we can safely reject the Null
hypothesis.
The P(X ≤ k) we just calculated directly gives us the
significance level p we are after.
This means there is only a 1% chance that System 1 and
System 2 were not different.
Well, almost. . .



Two-Tailed vs. One-Tailed Tests

So far we received P(X ≤ k) as answer to the question:
What is the probability of getting at most 753 negative out
of 2000 trials? [One-tailed test]

But maybe the question should be
What is the probability of getting a result that is as extreme
as the one I observed (or even more extreme)? [Two-tailed
test]

The answer to this question is 2P(X ≤ k) (because
B(n,0.5) is symmetric).



Use the two-tailed test

Why is it safer to use the second question?
Because the first question makes the assumption that our
chosen system is better.

Therefore – always use the two-tailed test.



Treatment of Ties

When comparing two systems in classification tasks, it is
common for a large number of ties (“Null” events) to occur.
Simply disregarding the ties is not an option.
Here we will treat ties by adding 0.5 events to the positive
and 0.5 events to the negative side (and round up at the
end):

k = MINUS + dNULL
2
e



Error bars

Error bars are another way of communicating statistical
significance.
Error bars show the range of values that might also have
been observed under our experimental conditions (instead
of the really observed ones), with a given probability.
95% error bars are common.
We can read off the error bars of two systems whether they
are significantly different.



Your first task today

Implement the above-introduced test for statistical
significance, so that you can compare two systems.



Your second task today

Create more (potentially better) systems to use the
significance test on.
Modify the lexicon-based simple classifier by weighting
terms with stronger sentiment more.
The pretester will accept a system where strong indicators
have weight 2.

You can also empirically find out the optimal weight.
We call this process parameter setting.
Use the training corpus to set your parameters, then test on
the 200 documents as before.



Parameter setting – NB Smoothing

Formula for smoothing with a constant ω:

P̂(wi |c) =
count(wi , c) + ω

(
∑

w∈V count(w , c)) + ω|V |

We used add-one smoothing in Task 2 (ω = 1).
Using the training corpus, we can optimise the smoothing
parameter ω.
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