3: Statistical Properties of Language Machine Learning and Real-world Data

Simone Teufel and Ann Copestake

Computer Laboratory University of Cambridge

Lent 2017

Last session: Naive Bayes Classifier

- You built a smoothed and an unsmoothed NB classifier.
- You evaluated them in terms of accuracy.
- The unsmoothed classifier mostly produced equal probabilites = 0.
- In the smoothed version, this problem has been alleviated.
- Why are there so many zero frequencies, and why does smoothing work?

Statistical Properties of Language I

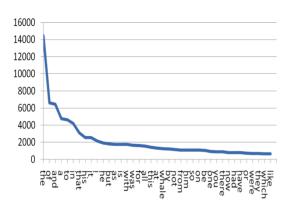
- How many frequent vs. infrequent terms should we expect in a collection?
- Zipf's law states that there is a direct inverse relationship between a word's frequency rank and the absolute value of that frequency.
- This is an instance of a Power Law.
- The law is astonishingly simple . . .
- ...given how complex the sentence-internal constraints between some of the words concerned are.

Statistical Properties of Language II

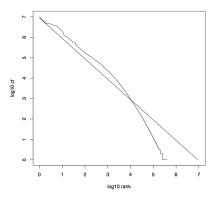
- Heaps' law concerns the relationship between all items of a language and unique items of a language.
- There is an exponential relationship between the two.
- This is also surprising because one might expect saturation.
- Surely at some point all words of a language have been "used up"?

Frequencies of words

Zipf's law:


There is a direct inverse relationship between a word's frequency rank and the absolute value of that frequency.

$$f_{w} pprox rac{k}{r_{w}{}^{lpha}}$$


- \bullet f_w : frequency of word w
- r_w : frequency rank of word w
- \blacksquare α , k: constants (language-dependent)
 - lacksquare α around 1 for English, 1.3 for German
- Zipf's Law means that in language, there are a few very frequent terms and very many very rare terms.

Zipf's Law

Zipf's Law in log-log space

(Reuters dataset)

Top 10 most frequent words in some large language samples:

Top 10 most frequent words in some large language samples:

English

```
1 the
        61,847
2 of
        29,391
3 and
        26,817
        21,626
4 a
     18,214
5 in
6 to
     16,284
        10,875
7 it
       9,982
8 is
        9,343
9 to
         9.236
10 was
```

BNC, 100Mw

Top 10 most frequent words in some large language samples:

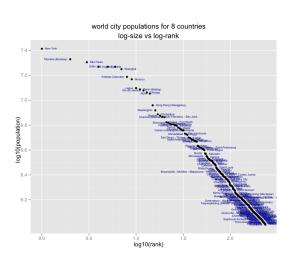
Eng	llish	German			
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is 9 to 10 was	61,847 29,391 26,817 21,626 18,214 16,284 10,875 9,982 9,343 9,236	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das 9 mit 10 sich	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589 1,878,243 1,680,106		
BNC, 100Mw		"Deutso Wortscl 500Mw			

Top 10 most frequent words in some large language samples:

English		Ge	erman	Spanish		
1 the 2 of 3 and 4 a 5 in 6 to 7 it 8 is 9 to	61,847 29,391 26,817 21,626 18,214 16,284 10,875 9,982 9,343 9,236	1 der 2 die 3 und 4 in 5 den 6 von 7 zu 8 das 9 mit 10 sich	7,377,879 7,036,092 4,813,169 3,768,565 2,717,150 2,250,642 1,992,268 1,983,589 1,878,243 1,680,106	1 que 2 de 3 no 4 a 5 la 6 el 7 es 8 y 9 en	32,894 32,116 29,897 22,313 21,127 18,112 16,620 15,743 15,303 14,010	
BNC, 100Mw	,	"Deutso Wortsch	hatz",	subtitle 27.4Mv	-,	

Top 10 most frequent words in some large language samples:

English		German		Spanish		Italian	
1 the	61,847	1 der	7,377,879	1 que	32,894	1 non	25,757
2 of	29,391	2 die	7,036,092	2 de	32,116	2 di	22,868
3 and	26,817	з und	4,813,169	3 no	29,897	з che	22,738
4 a	21,626	4 in	3,768,565	4 a	22,313	4 è	18,624
5 in	18,214	5 den	2,717,150	5 la	21,127	5 e	17,600
6 to	16,284	6 von	2,250,642	6 el	18,112	6 la	16,404
7 it	10,875	7 ZU	1,992,268	7 es	16,620	7 i l	14,765
8 is	9,982	8 das	1,983,589	8 y	15,743	8 un	14,460
9 to	9,343	9 mit	1,878,243	9 en	15,303	9 a	13,915
10 was	9,236	10 sich	1,680,106	10 lo	14,010	10 per	10,501
BNC,		"Deutso	cher	subtitle	s,	subtitle	es,
100Mw		Wortscl 500Mw	*	27.4Mv	V	5.6Mw	

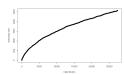

Top 10 most frequent words in some large language samples:

English		German		Spanish		Italian		Dutch	
1 the	61,847	1 der	7,377,879	1 que	32,894	1 non	25,757	1 de	4,770
2 of	29,391	2 die	7,036,092	2 de	32,116	2 di	22,868	2 en	2,709
3 and	26,817	з und	4,813,169	3 no	29,897	з che	22,738	3 het/'t	2,469
4 a	21,626	4 in	3,768,565	4 a	22,313	4 è	18,624	4 van	2,259
5 in	18,214	5 den	2,717,150	5 la	21,127	5 e	17,600	5 ik	1,999
6 to	16,284	6 von	2,250,642	6 el	18,112	6 la	16,404	6 te	1,935
7 it	10,875	7 zu	1,992,268	7 es	16,620	7 i l	14,765	7 dat	1,875
8 is	9,982	8 das	1,983,589	8 y	15,743	8 un	14,460	8 die	1,807
9 to	9,343	9 mit	1,878,243	9 en	15,303	9 a	13,915	9 in	1,639
10 was	9,236	10 sich	1,680,106	10 lo	14,010	10 per	10,501	10 een	1,637
BNC,	, "Deutscher		subtitles,		subtitles,		subtitles,		
100Mw	Mw Wortschatz", 500Mw		27.4Mw		5.6Mw		800Kw		

Other collections (allegedly) obeying power laws

- Sizes of settlements
- Frequency of access to web pages
- Income distributions amongst top earning 3% individuals
- Korean family names
- Size of earth quakes
- Word senses per word
- Notes in musical performances
-

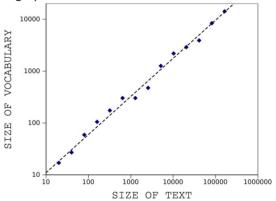
World city populations


Vocabulary size

Heaps' Law:

The following relationship exists between the size of a vocabulary and the size of text that gave rise to it:

$$u_n = kn^{\beta}$$


- \blacksquare u_n : number of types (unique items); vocabulary size
- n: number of tokens; text size
- \blacksquare β , k: constants (language-dependent)
 - \blacksquare β normally around $\frac{1}{2}$
 - 30 ≤ *k* ≤ 100

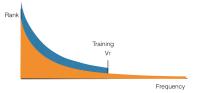
Heaps' Law

■ In log-log space:

■ Reasons for infinite vocabulary growth?

Consequences for our experiment

- Zipf's law and Heaps' law taken together explain why smoothing is necessary and effective:
 - MLE overestimates the likelihood for seen words.
 - Smoothing redistributes some of this probability mass.


The real situation

Most of the probability mass is in the long tail.

The situation according to MLE

$$\hat{P}_{MLE}(w_i|c) = \frac{count(w_i, c)}{\sum_{w \in V_T} count(w, c)}$$

- With MLE, only seen words can get a frequency estimate.
- Probability mass is still 1.
- Therefore, the probability of seen words is a (big) overestimate.

What smoothing does

$$\hat{P}_{S}(w_i|c) = rac{count(w_i,c) + 1}{(\sum_{w \in V_{TT}} count(w,c)) + |V_{TT}|}$$

Rank

Training Training+Test VTT

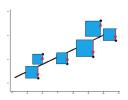
VTT

Frequency

- Smoothing redistributes the probability mass towards the real situation.
- It takes some portion away from the MLE overestimate for seen words.
- It redistributes this portion to a certain, finite number of unseen words (in our case, as a uniform distribution).

What smoothing does

$$\hat{P}_{S}(w_{i}|c) = \frac{count(w_{i}, c) + 1}{(\sum_{w \in V_{TT}} count(w, c)) + |V_{TT}|}$$



- Smoothing takes some portion away from the MLE overestimate for seen words.
- It redistributes this portion to a certain, finite number of unseen words (in our case, as a uniform distribution).
- As a result, the real situation is approximated more closely.

Your first task today

- Plot frequeny vs frequency rank for larger dataset (i.e., visually verify Zipf's Law)
- **E**stimate parameters k, α for Zipf's Law
- Use least-squares algorithm for doing so.
- Is α really 1 for English?
 - There is much scientific discussion of this question.

Your second task today

■ Plot type/token ratio for IMDB dataset (verify Heaps' Law)

Ticking today

■ Task 2 – NB Classifier

Literature

- Introduction to Information Retrieval, Christopher C. Manning, Prabhakar Raghavan, Hinrich Schutze, Cambridge University Press, 2008. Section 5.1, pages 79-82.
- (Please note that α = 1 is assumed in the Zipf Law formula on page 82.)