13: Betweenness Centrality
Machine Learning and Real-world Data

Ann Copestake and Simone Teufel

Computer Laboratory
University of Cambridge

Lent 2017

Last session: some simple network statistics

m You measured the degree of each node and the diameter
of the network.

m Next two sessions:

m Today: finding gatekeeper nodes via betweenness
centrality.

m Monday: using betweenness centrality of edges to split
graph into cliques.

m Reading for social networks (all sessions):

m Easley and Kleinberg for background: Chapters 1, 2, 3
(especially 3.6) and first part of Chapter 20.

m Brandes algorithm: two papers by Brandes (links in
practical notes).

Intuition behind clique finding

m Certain nodes/edges are most crucial in linking densely
connected regions of the graph: informally gatekeepers.

m Cutting those edges isolates the cliques/clusters.

Figure 3-14a from Easley and Kleinberg (2010)

Intuition behind clique finding

(a) Step ! (b) Step 2
10
o @ Q@
o ©
@ @ @ ®
©)
(c) Step 3

Figure 3-16 from Easley and Kleinberg (2010)

Gatekeepers: generalising the notion of local bridge

m Last time we saw the concept of local bridge: an edge
which increased the shortest paths if cut.

Figure 3-16 from Easley and Kleinberg (2010)

m But, more generally, the nodes that are intuitively the
gatekeepers can be determined by betweenness
centrality.

Betweenness centrality

01y
el
oo v aa

https://www.linkedin.com/pulse/wtf-do-you-actually-know-who-influencers-walter-pike

m The betweenness centrality of a node V is defined as the
proportion of shortest paths between all pairs of nodes that
go through V.

m Here: the red nodes have high betweenness centrality.

m Note: Easley and Kleinberg talk about ‘flow’: misleading
because we only care about shortest paths.

Q@
Q
S
©
x
()
7]
0
)
-
c
()
()
=
—
(V)
m

Claudio Rocchini: https://commons.wikimedia.org/wiki/File:Graph_betweenness.svg

dark blue is maximum.

3

m Betweenness: red is minimum;

Betweenness centrality, formally (from Brandes 2008)

Directed graph G =< V, E >

o(s, t): number of shortest paths between nodes s and ¢

o(s, t|v): number of shortest paths between nodes s and ¢
that pass through v.

Cs(v), the betweenness centrality of v:

Co(v) = Z o(s, t|v)

s,teV U(S’ t)

If s=t,theno(s,t) =1
If vest theno(s, tlv)=0

Number of shortest paths

m o(s,t) can be calculated recursively:

o(s,t) = Z o(s,u)

uePred(t)

m Pred(t) = {u: (u,t) € E,d(s,t) =d(s,u) + 1}
predecessors of t on shortest path from s
m d(s,u): Distance between nodes s and u
m This can be done by running Breadth First search with
each node as source s once, for total complexity of
O(V(V + E)).

Pairwise dependencies

m There are a cubic number of pairwise dependencies
(s, t|v) where:

i(s, tlv) = .

m Naive algorithm uses lots of space.
m Brandes (2001) algorithm intuition: the dependencies can
be aggregated without calculating them all explicitly.

m Recursive: can calculate dependency of s on v based on
dependencies one step further away.

One-sided dependencies

Define one-sided dependencies:

3(slv) = d(s.tv)

teV

Then Brandes (2001) shows:

o(s,Vv
5(slv) = > J(W) (1 +d(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1
And:

=) 4(slv)

seV

Brandes algorithm

m lterate over all vertices s in V
m Calculate §(s|v) for all v € V in two phases:

Breadth-first search, calculating distances and shortest
path counts from s, push all vertices onto stack as they’re
visited.

Visit all vertices in reverse order (pop off stack),
aggregating dependencies according to equation.

Brandes (2008) pseudocode

h path vertexb (Brandes, 2001).

input: directed graph G = (V, E)
data: queue ¢, stack § (both initially empty}
and forallv eV
dist[v]: distance from source
Pred|v): list of predecessors on shortest paths from source
olv]: number of shortest paths from souree to v € V'
dependency of source on v € V
output: betweenness cgle] for all v € V (initialized to 0)

for s £V do

¥ single-source shortest-paths problem

¥ initialization
for w € V do Pred|w| « empty list
fort € V do dist[f] — oc; oft] — U
dist[s] — 0; s —1

| enqueue s — Q@

while Q not empty do

dequene v — @; pushv— §

foreach verter w such that (v, w) € E do

v patla dlscovcry {1 ~ w found for the first time?

| dist]v] + L
enquene w — Q
¥ path counting // — edee (v, i oo o shortess pack?
if distfw] = distfv] + 1 then
L alw] — alu] +al]

append v — Pred|u]

v lation // b
for v € V do dfu] + 0
while § nat empty do
pop w +— S
for v & Predu] do d[v] — d[2] + H (14)
if w # ¢ then eplw| — cplw] + o[w]

Step 1 - Prepare for BFS tree walk (Node A as s)

Figure 3-18 from Easley and Kleinberg (2010)

Brandes (2008) pseudocode: phase 1

while ¢} not emply do
dequene v «— ; push v — 5
foreach verter w such that (v, w) € E do
¥ path discovery // — w found for the first time?
if dist|w| = oo then
distlw] — dist|v] + 1
L enquene w — (J

¥ path counting ;/ — edge (v, 2] on & shortest path?
if dist{w| = dist[v] + 1 then
L alw] — aw| + oy

append v — Pred|uw]

Step 2 - Calculate o(s, v), the number of shortest
paths between s and v

o(s,t) = Z o(s,u)

uePred(t)

Step 2 - Calculate o(s, v), the number of shortest
paths between s and v

o(s,t)= > a(su)

u€e Pred(t)

Step 2 - Calculate o(s, v), the number of shortest
paths between s and v

o(s,ty= > o(su)

u€Pred(t)

Step 2 - Calculate o(s, v), the number of shortest
paths between s and v

o(s,)= > o(su)

u€e Pred(t)

Brandes (2008) pseudocode: phase 2

¥ acoumn lation I back-propagation of dependencies
for v € V do dlv] — 0
while 5 not empty do
pop w— 8§
for v € Pred|w] do d[v] — §v] + %}], (1 + 8Jw])
if w # s then eglw| — eglw| + dfuw]

Step 3 - Calculate i(s|v), the dependency of s on v

ssvy = S a(s,v)/a(sw).(1+ 5(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

= D ~
1(B 1(D

< %
‘&{&/

SKJJf

@o

o(slv) = Z o(s,v)/o(s, w).(1+ d(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

o(slv) = Z o(s,v)/o(s, w).(1+ d(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

6@0

5(slv) = S o(s,v)/o(s,w).(1+ 8(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

3(slv) = > o(s,v)/o(s, w).(1 + 6(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

ssly= 3 a(s,v)/o(s,w).(1 +5(s|w))
(v,w)eE
w: d(s,w)=d(s,v)+1

Step 3 - Calculate i(s|v), the dependency of s on v

Step 4 - Calculate betweenness centrality

m You saw one iteration with s = A.
m Now perform V iterations, once with each node as source.

m Sum up the 4(s|v) for each node: this gives the node’s
betweenness centrality.

Brandes (2008) pseudocode

h path vertexb (Brandes, 2001).

input: directed graph G = (V, E)
data: queue ¢, stack § (both initially empty}
and forallv eV
dist[v]: distance from source
Pred|v): list of predecessors on shortest paths from source
olv]: number of shortest paths from souree to v € V'
dependency of source on v € V
output: betweenness cgle] for all v € V (initialized to 0)

for s £V do

¥ single-source shortest-paths problem

¥ initialization
for w € V do Pred|w| « empty list
fort € V do dist[f] — oc; oft] — U
dist[s] — 0; s —1

| enqueue s — Q@

while Q not empty do

dequene v — @; pushv— §

foreach verter w such that (v, w) € E do

v patla dlscovcry {1 ~ w found for the first time?

| dist]v] + L
enquene w — Q
¥ path counting // — edee (v, i oo o shortess pack?
if distfw] = distfv] + 1 then
L alw] — alu] +al]

append v — Pred|u]

v lation // b
for v € V do dfu] + 0
while § nat empty do
pop w +— S
for v & Predu] do d[v] — d[2] + H (14)
if w # ¢ then eplw| — cplw] + o[w]

Brandes (2008): undirected graphs

m As specified, this is for directed graphs.

m But undirected graphs are easy: the algorithm works in
exactly the same way, except that each pair is considered
twice, once in each direction.

m Therefore: halve the scores at the end for undirected
graphs.

m Brandes (2008) has lots of other variants, including edge
betweenness centrality, which we’ll use on Monday.

m Task 11: Implement the Brandes algorithm for efficiently
determining the betweenness of each node.

m Ticking: Task 10 — Network statistics

Literature

m Textbook page 79-82 (does not use notation however)

m Ulrich Brandes (2001). A faster algorithm for betweenness
centrality. Journal of Mathematical Sociology. 25:163—177.

m Ulrich Brandes (2008) On variants of shortest-path
betweenness centrality and their generic computation.
Social Networks. 30 (2008), pp. 136—145

