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1 The Bayesian approach to neural networks

1. Slide 19. Show that
∇∇1

2
||w||2 = I.

2. Slide 22. Show that
Z = (2π)W/2|A|−1/2 exp(−S(wMAP)).

3. For the next question we’re going to need something known variously as the matrix inversion
lemma, the Woodbury formula and the Sherman-Morrison formula, depending on the precise
form used. In order to derive this we’ll first need to know how to derive the formulae stated on
slide 48 for inverting a block matrix.

(a) We want to invert the block matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(1)

to get

Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
. (2)

Show that

Λ11 = (Σ11 −Σ12Σ
−1
22 Σ21)

−1

Λ12 = −Σ−111 Σ12Λ22

Λ21 = −Σ−122 Σ21Λ11

Λ22 = (Σ22 −Σ21Σ
−1
11 Σ12)

−1

(Hint: write ΣΣ−1 = I and solve the resulting equations. Note that these are different to
the ones on slide 48, but you can re-arrange one version into the other.)

(b) Now do the same thing again, this time solving Σ−1Σ = I. Show that

Λ12 = −Λ11Σ12Σ
−1
22

Λ21 = −Λ22Σ21Σ
−1
11 .

(c) The two expressions for Λ21 must be equal. Equate them to show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−121 Σ22(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 .
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Now write Σ−121 Σ22 as

Σ−121 Σ22 = Σ−121 (Σ22 −Σ21Σ
−1
11 Σ12) + Σ−111 Σ12

and show that

(Σ11 −Σ12Σ
−1
22 Σ21)

−1 = Σ−111 + Σ−111 Σ12(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 .

This is the full version of the formula. Note that it is a method for updating an existing
inverse: provided we know the inverse of Σ11, it tells us how to update that inverse when
−Σ12Σ

−1
22 Σ21 is added to Σ11. We have to be able to calculate a different inverse, but

crucially the new inverse might be much simpler to calculate. We shall see the extreme
version of this in the last part of the question.

(d) Use the special case where y and z are vectors and

Σ =

[
X −y
zT 1

]
to show that

(X + yzT )−1 = X−1 − X−1yzTX−1

1 + zTX−1y
.

This is what we’ll actually need in the next question.

4. Use the standard Gaussian integral to derive the final equation for Bayesian regression

p(Y |y;x,X) =
1√
2πσ2Y

exp

(
−(Y − hwMAP(x))

2

2σ2Y

)

where
σ2Y =

1

β
+ gTA−1g

given on slide 24. You might want to break this into steps:

(a) Write down the integral that needs to be evaluated. How does this compare to the standard
integral result presented in the lectures? Can you make an immediate simplification?
(Hint: the integral is over the whole of the space RW where W is the number of weights.
What happens to the value of an integral over all of R in 1 dimension if you just shift the
integrand a bit to the left? If you can’t see a simplification at this point you should still be
able to complete the question, but it might be more complex.)

(b) Use the integral identity from the lectures to evaluate the integral.

(c) Does the expression you now have for p(Y |y;x,X) look familiar? You should find that it
looks like a Gaussian density. Extract expressions for the mean and variance.

(d) Use the matrix inversion lemma derived above to simplify the expression for the variance
to give the final result presented in the lectures.
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5. This question asks you to produce a version of the graph on slide 26, using the Metropolis
algorithm. Any programming language is fine, although Matlab is probably the most straight-
forward.

The data is simple artificial data for a one-input regression problem. Use the target function

f(x) = x3 − 1

2
x2 − 7

2
x+ 2

and generate 30 examples in each of two clusters, one uniform in [−2.− 1] and one uniform in
[0, 1]. Then label these examples

yi = f(xi) + n

where n is Gaussian noise of variance 0.1. You should have something like this:
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Let w be the weight vector and W the total number of weights in w. You should use the prior
and likelihood from the lectures, so

p(w) =

(
2π

α

)−W/2

exp
(
−α
2
||w||2

)
and

p(y|w;X) =

(
2π

β

)−m/2

exp

(
−β
2

m∑
i=1

(yi − hw(xi))2
)

where m is the number of examples and hw(x) is the function computed by a suitable neural
network with weights w. Note that we are assuming that hyperparameters α and β are known;
the values used to produce the lecture material were α = 1 and β = 10.

Complete the following steps:

(a) Write the code required to compute the prior and likelihood functions.

(b) Implement a multilayer perceptron with a single hidden layer, a basic feedforward struc-
ture as illustrated in the AI I lectures, and a single output node. The network should use
sigmoid activation functions for the hidden units and a linear activation function for its
output. (The lecture material was produced using 5 hidden units.)
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(c) Starting with a weight vector chosen at random, use the Metropolis algorithm to sample
the posterior distribution p(w|y;X). You should generate a sequence w1,w2, . . . ,wN of
N weight vectors. The lecture material used N = 500, 000. However, note that you will
probably find some degree of experimentation is required here, and it may be a good idea
to start with a much smaller N while you explore parameter settings.
For example, you may find that an initial starting value for w1 is inappropriate, and you
will find that the algorithm behaves differently for different step sizes taken when updating
wi to wi+1—try varying it and seeing how the proportion of steps accepted is affected.
(The lecture material was produced using a step variance of 0.25.)

(d) Plot the function hwi(x) computed by the neural network for a few of the weight vectors
obtained. You may see a surprising amount of variation in areas where there was no
training data. (To see this it helps to take vectors from different areas in the sequence.)
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(e) It takes a while for the Markov chain to settle in. Discard an initial chunk of the vectors
generated. Using the remaining M , calculate the mean and variance of the corresponding
functions using

mean(x) =
1

M

∑
i

hwi(x)

and a similar expression to estimate the variance. Plot the mean function along with error
bars at ±2σ2Y .
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Typical behaviour of the Bayesian solution
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2 Gaussian processes

1. Slide 44: Show that when Gaussian noise is added as described

p(y) = N (0,K + σ2I).

2. Slide 45, note 2: what difference is made by the inclusion or otherwise of σ2 in k?

3. Slide 49: provide the derivation for the final result

p(y′|y) = N (kTL−1y, k − kTL−1k).

3 Old exam questions

There are at present no old exam questions relevant to this section of the course.
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