
Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Part VI

In a nutshell. . .

Unsupervised learning

Reinforcement learning

Copyright c© Sean Holden 2002-17.

1

Unsupervised learning

Can we find regularity in data without the aid of labels?

-5 0 5

-6

-4

-2

0

2

4

6

-5 0 5

-6

-4

-2

0

2

4

6

Is this one cluster? Or three? Or some other number?
2

The K-means algorithm

The example on the last slide was obtained using the classicalK-means algorithm.

Given a set {xi} of m points, guess that there are K clusters. Here K = 3.

Chose at random K centre points cj for the clusters. Then iterate as follows:

1. Divide {xi} into K clusters, so each point is associated with the closest
centre:

xi ∈ Cj ⇐⇒ ∀k ||xi − cj|| ≤ ||xi − ck||.
Call these clusters C1, . . . , CK.

2. Update the cluster centres to be the average of the associated points:

cj =
1

|Cj|
∑

xi∈Cj
xi.

3

The K-means algorithm

-5 0 5

-5

0

5

Actual data for 3 clusters

-5 0 5

-5

0

5

1 iteration

-5 0 5

-5

0

5

2 iterations

-5 0 5

-5

0

5

3 iterations

4

Clustering as maximum-likelihood

The modern approach is once again probabilistic.

Data from K clusters can be modelled probabilistically as

p(x|θ) =
K∑

k=1

πkp(x|µk,Σk)

where θ = {π,µ1,Σ1, . . . ,µK,ΣK} and typically p(x|µ,Σ) = N (µ,Σ).

5

Clustering as maximum-likelihood

This leads to a log-likelihood for m points of

log p(X|θ) = log

m∏

i=1

p(xi|θ)

=

n∑

i=1

log p(xi|θ)

=

n∑

i=1

log

K∑

k=1

πkp(xi|µk,Σk).

This tends to be hard to maximise directly to choose θ. (You can find stationary
points but they depend on one-another.)

6

Clustering as maximum-likelihood

We can however introduce some latent variables.

m

zi

xi

π

µ Σ

For each xi introduce the latent variable zi where

zTi =
[
z
(1)
i · · · z(K)

i

]

and

z
(j)
i =

{
1 if xi was generated by cluster j
0 otherwise.

7

Clustering as maximum-likelihood

Having introduced the zi we can use the marginalization trick and write

log p(X|θ) = log
∑

Z

p(X,Z|θ)

= log
∑

Z

p(X|Z,θ)p(Z|θ)

where the final step has given us probabilities that are reasonably tractable.

Why is this?

First, if I know which cluster generated xi then its probability is just that for the
corresponding Gaussian

p(xi|zi,θ) =
K∏

k=1

[p(xi|µk,Σk)]
z
(k)
i

and similarly

p(zi|θ) =
K∏

k=1

[πk]
z
(k)
i .

8

Clustering as maximum-likelihood

In other words, if you treat the zi as observed rather than latent

m

zi

xi

π

µ Σ

then you can write

p(xi, zi|θ) =
K∏

k=1

[p(xi|µk,Σk)πk]
z
(k)
i .

log p(X,Z|θ) = log

m∏

i=1

p(xi, zi|θ)

= log

m∏

i=1

K∏

k=1

[p(xi|µk,Σk)πk]
z
(k)
i .

9

Clustering as maximum-likelihood

Consequently

log p(X,Z|θ) =
m∑

i=1

K∑

k=1

z
(k)
i (log p(xi|µk,Σk) + log πk) .

What have we achieved so far?

1. We want to maximize the log-likelihood log p(X|θ) but this is intractable.

2. We introduce some latent variables Z.

3. That gives us a tractable log-likelihood log p(X,Z|θ).

But how do we link them together?

10

The EM algorithm

The Expectation Maximization (EM) algorithm provides a general way of maxi-
mizing likelihood for problems like this.

Here we apply it to unsupervised learning, but it can also be applied to learning
Hidden Markov Models (HMMs) and many other things

Let q(Z) be any distribution on the latent variables. Write

∑

Z

q(Z) log
p(X,Z|θ)
q(Z)

=
∑

Z

q(Z) log
p(Z|X,θ)p(X|θ)

q(Z)

=
∑

Z

q(Z)

(
log

p(Z|X,θ)
q(Z)

+ log p(X|θ)
)

= −DKL[q(Z)||p(Z|X,θ)] +
∑

Z

q(Z) log p(X|θ)

= −DKL[q(Z)||p(Z|X,θ)] + log p(X|θ).

DKL is the Kullback-Leibler (KL) distance.

11

The Kullback-Leibler (KL) distance

The Kullback-Leibler (KL) distance measures the distance between two probabil-
ity distributions. For discrete distributions p and q it is

DKL[p||q] =
∑

x

p(x) log
p(x)

q(x)
.

It has the important properties that:

1. It is non-negative
DKL(p||q) ≥ 0.

2. It is 0 precisely when the distributions are equal

DKL[p||q] = 0 if and only if p = q.

12

The EM algorithm

If we also define
L[q,θ] =

∑

Z

q(Z) log
p(X,Z|θ)
q(Z)

then we can re-arrange the last expression to get

log p(X|θ) = L[q,θ] +DKL[q||p]
and we know that DKL[q||p] ≥ 0 so that gives us an upper bound

L[q,θ] ≤ log p(X|θ).

The EM algorithm works as follows:

• We iteratively maximize L[q,θ].

• We do this by alternately maximizing with respect to q and θ while keeping
the other fixed.

• Maximizing with respect to q is the E step.

• Maximizing with respect to θ is the M step.

13

The EM algorithm

Let’s look at the two steps separately.

Say we have θt at time t in the iteration.

For the E step, we have θt fixed and

log p(X|θt) = L[q,θt] +DKL[q||p]
so this is easy!

1. As θt is fixed, so is log p(X|θt).
2. So to maximize L[q,θt] we must minimize DKL[q||p].
3. And we know that DKL[q||p] is minimized and equal to 0 when q = p.

So in the E step we just choose

q(Z) = p(Z|X,θt).

14

The EM algorithm

The M step is a little more involved, but we end up with

γ
(k)
i =

πkp(xi|µk,Σk)∑K
k=1 πkp(xi|µk,Σk)

and

θt+1 = argmax
θ

m∑

i=1

K∑

k=1

γ
(k)
i (log p(xi|µk,Σk) + log πk)

and this maximization is tractable. (Though you will need a Langrange multi-
plier. . .)

15

The EM algorithm

The EM algorithm for a mixture model summarized:

• We want to find θ to maximize log p(X|θ). But that’s not tractable.

• So we introduce an arbitrary distribution q and obtain a lower bound

L(q,θ) ≤ log p(X|θ).

• We maximize the lower bound iteratively in two steps:

1. E step: keep θ fixed and maximize with respect to q. This always results in
q(Z) = p(Z|X,θ).

2. M step: keep q fixed and maximize with respect to θ.

• For the mixture model the M step is

θt+1 = argmax
θ

m∑

i=1

K∑

k=1

γ
(k)
i (log p(xi|µk,Σk) + log πk) .

16

Reinforcement learning and HMMs

Hidden Markov Models are appropriate when our agent models the world as fol-
lows

S0

Prior Pr (S0)

S1 S2 · · · St−1 St · · ·
Pr (St|St−1)

E1 E2 Et−1 Et

Pr (Et|St)

and only wants to infer information about the state of the world on the basis of
observing the available evidence.

This might be criticised as un-necessarily restricted, although it is very effective
for the right kind of problem.

17

Reinforcement learning and supervised learning

Supervised learners learn from specifically labelled chunks of information:

...

x ???

(x1, 1)

(x2, 1)

(x3, 0)

This might also be criticised as un-necessarily restricted: there are other ways to
learn.

18

Reinforcement learning: the basic case

Modelling the world in a more realistic way:

· · ·S0 S1 S2 S3

In any state:
Perform an action a to move to a new state. (There may be many possibilities.)
Receive a reward r depending on the start state and action.

The agent can perform actions in order to change the world’s state.

If the agent performs an action in a particular state, then it gains a corresponding
reward.

19

Deterministic Markov Decision Processes

Formally, we have a set of states

S = {s1, s2, . . . , sn}
and in each state we can perform one of a set of actions

A = {a1, a2, . . . , am}.
We also have a function

S : S × A→ S

such that S(s, a) is the new state resulting from performing action a in state s, and
a function

R : S × A→ R
such thatR(s, a) is the reward obtained by executing action a in state s.

20

Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of considerable importance:

The agent does not have access to the functions S andR.

It therefore has to learn a policy, which is a function

p : S → A

such that p(s) provides the action a that should be executed in state s.

What might the agent use as its criterion for learning a policy?

21

Measuring the quality of a policy

Say we start in a state at time t, denoted st, and we follow a policy p. At each
future step in time we get a reward. Denote the rewards rt, rt+1, . . . and so on.

A common measure of the quality of a policy p is the discounted cumulative
reward

V p(st) =

∞∑

i=0

εirt+i

= rt + εrt+1 + ε2rt+2 + · · ·

where 0 ≤ ε ≤ 1 is a constant, which defines a trade-off for how much we value
immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we should like our agent to
prefer rewards gained quickly.

22

Two important issues

Note that in this kind of problem we need to address two particularly relevant
issues:

• The temporal credit assignment problem: that is, how do we decide which
specific actions are important in obtaining a reward?

• The exploration/exploitation problem. How do we decide between exploit-
ing the knowledge we already have, and exploring the environment in order
to possibly obtain new (and more useful) knowledge?

We will see later how to deal with these.

23

The optimal policy

Ultimately, our learner’s aim is to learn the optimal policy

popt(s) = argmax
p

V p(s)

for some initial state s. Define the optimal discounted cumulative reward Vopt(s) =
V popt(s). How might we go about learning the optimal policy?

The only information we have during learning is the individual rewards obtained
from the environment.

We could try to learn Vopt(s) directly, so that states can be compared:

Consider s as better than s′ if Vopt(s) > Vopt(s
′).

However we actually want to compare actions, not states. Learning Vopt(s) might
help as

popt(s) = argmax
a

[R(s, a) + εVopt(S(s, a))]

but only if we know S andR.

As we are interested in the case where these functions are not known, we need
something slightly different.

24

The Q function

The trick is to define the following function:

Q(s, a) = R(s, a) + εVopt(S(s, a)).
This function specifies the discounted cumulative reward obtained if you do action
a in state s and then follow the optimal policy.

As

popt(s) = argmax
a
Q(s, a)

then provided one can learn Q it is not necessary to have knowledge of S and
R to obtain the optimal policy.

25

The Q function

Note also that
Vopt(s) = max

α
Q(s, α)

and so
Q(s, a) = R(s, a) + εmax

α
Q(S(s, a), α)

which suggests a simple learning algorithm.

Let Q′ be our learner’s estimate of what the exact Q function is.

That is, in the current scenario Q′ is a table containing the estimated values of
Q(s, a) for all pairs (s, a).

26

Q-learning

Start with all entries in Q′ set to 0. (In fact random entries will do.)

Repeat the following:

1. Look at the current state s and choose an action a. (We will see how to do this
in a moment.)

2. Do the action a and obtain some rewardR(s, a).
3. Observe the new state S(s, a).
4. Perform the update

Q′(s, a) = R(s, a) + εmax
α
Q′(S(s, a), α).

Note that this can be done in episodes. For example, in learning to play games,
we can play multiple games, each being a single episode.

The procedure converges under some simple conditions.

27

Choosing actions to perform

We have not yet answered the question of how to choose actions to perform during
learning.

One approach is to choose actions based on our current estimate Q′. For instance

action chosen in current state s = argmax
a

Q′(s, a).

However we have already noted the trade-off between exploration and exploita-
tion. It makes more sense to:

• Explore during the early stages of training.

• Exploit during the later stages of training.

(This also turns out to be sensible to guarantee convergence.)

28

Choosing actions to perform

One way in which to choose actions that incorporates these requirements is to
introduce a constant λ and choose actions probabilistically according to

Pr (action a|state s) =
λQ
′(s,a)

∑
a λ

Q′(s,a) .

Note that:

• If λ is small this promotes exploration.

• If λ is large this promotes exploitation.

We can vary λ as training progresses.

There are two further simple ways in which the process can be improved:

1. If training is episodic, we can store the rewards obtained during an episode
and update backwards at the end.
This allows better updating at the expense of requiring more memory.

2. We can remember information about rewards and occasionally re-use it by
re-training.

29

Nondeterministic MDPs

The Q-learning algorithm generalises easily to a more realistic situation, where
the outcomes of actions are probabilistic.

Instead of the functions S andR we have probability distributions

Pr (new state|current state, action)

and
Pr (reward|current state, action) .

and we now use S(s, a) andR(s, a) to denote the corresponding random variables.

We now have

V p = E

(∞∑

i=0

εirt+i

)

and the best policy popt maximises V p.

30

Q-learning for nondeterministic MDPs

We now have

Q(s, a) = E(R(s, a)) + ε
∑

σ

Pr (σ|s, a)V opt(σ)

= E(R(s, a)) + ε
∑

σ

Pr (σ|s, a)max
α
Q(σ, α)

and the rule for learning becomes

Q′n+1 = (1− θn+1)Q
′
n(s, a) + θn+1

[
R(s, a) + max

α
Q′n(S(s, a), α)

]

with

θn+1 =
1

1 + vn+1(s, a)

where vn+1(s, a) is the number of times the pair s and a has been visited so far.

31

Alternative representation for the Q′ table

But there’s always a catch...

We have to store the table for Q′:

• Even for quite straightforward problems it is HUGE!!! - certainly big enough
that it can’t be stored.

• A standard approach to this problem is, for example, to represent it as a neural
network.

• One way might be to make s and a the inputs to the network and train it to
produce Q′(s, a) as its output.

This, of course, introduces its own problems, although it has been used very suc-
cessfully in practice.

32

