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Uncertainty: Probability as Degree of Belief

At the start of the course, I presented a uniform approach to knowledge represen-
tation and reasoning using probability.
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The world is represented by RVs V = {V1, V2, . . . , Vn}. These are partitioned:

1. Query variables Q = {Q1, Q2, . . . , Qq}. We want to compute a distribution
over these.

2. Observed variables O = {o1, o2, . . . , om}. We know the values of these.

3. Latent variables L = {L1, L2, . . . , Ll}. Everything else.
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General knowledge representation and inference: the BIG PICTURE

The latent variables L are all the RVs not in the sets Q or O.

The world: V = {V1, V2, . . . , Vn}

Q
ue

ry

Q
=
{Q

1
, Q

2
, .
. .
, Q

q
}

O
bserved

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . . , Ll}

To compute a conditional distribution from a knowledge base Pr (V) we have to
sum over the latent variables

Pr (Q|o1, o2, . . . , om) =
∑

L

Pr (Q,L|o1, o2, . . . , om)

=
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)︸ ︷︷ ︸
Knowledge base
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General knowledge representation and inference: the BIG PICTURE

Bayes’ theorem tells us how to update an inference when new information is avail-
able.
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For example, if we now receive a new observation O′ = o′ then

Pr (Q|o′, o1, o2, . . . , om)︸ ︷︷ ︸
After O′ observed

=
1

Z
Pr (o′|Q, o1, o2, . . . , om) Pr (Q|o1, o2, . . . , om)︸ ︷︷ ︸

Before O′ observed
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General knowledge representation and inference: the BIG PICTURE

Simple eh?

HAH!!! No chance...

Even if all your RVs are just Boolean:

• For n RVs knowing the knowledge base Pr (V) means storing 2n numbers.

• So it looks as though storage is O(2n).

• You need to establish 2n numbers to work with.

• Look at the summations. If there are n latent variables then it appears that time
complexity is also O(2n).

• In reality we might well have n > 1000, and of course it’s even worse if
variables are non-Boolean.

And it really is this hard. The problem in general is #P-complete.

Even getting an approximate solution is provably intractable.
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Bayesian Networks

Having seen that in principle, if not in practice, the full joint distribution alone
can be used to perform any inference of interest, we now examine a practical
technique.

• We introduce the Bayesian Network (BN) as a compact representation of
the full joint distribution.

• We examine the way in which a BN can be constructed.

• We examine the semantics of BNs.

• We look briefly at how inference can be performed.

• We briefly introduce the Markov random field (MRF) as an alternative
means of representing a distribution.
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Conditional probability—a brief aside. . .

A brief aside on the dangers of interpreting implication versus conditional proba-
bility:

• Pr (X = x|Y = y) = 0.1 does not mean that if Y = y is then Pr (X = x) =
0.1.

• Pr (X) is a prior probability. It applies when you haven’t seen the value of
Y .

• The notation Pr (X|Y = y) is for use when y is the entire evidence.

• Pr (X|Y = y ∧ Z = z) might be very different.

Conditional probability is not analogous to logical implication.
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Implication and conditional probability

In general, it is difficult to relate implication to conditional probability.

Pr(A→ B) = Pr(¬A ∨B)

A AB B

Pr(A|B) = Pr(A∧B)
Pr(B)

Imagine that fish are very rare, and most fish can swim.

With implication,
Pr (fish→ ¬swim) = Pr (¬fish ∨ ¬swim) = LARGE!

With conditional probability,

Pr (¬swim|fish) =
Pr (¬swim ∧ fish)

Pr (fish)
= SMALL!
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Bayesian networks: exploiting independence

One of the key reasons for the introduction of Bayesian networks is to let us exploit
independence.

The initial pay-off is that this makes it easier to represent Pr (V).

A further pay-off is that it introduces structure that can lead to more efficient
inference.

Here is a very simple example.

If I toss a coin and roll a die, the full joint distribution of outcomes requires 2×6 =
12 numbers to be specified.

H 0.014 0.028 0.042 0.057 0.071 0.086
T 0.033 0.067 0.1 0.133 0.167 0.2

Here Pr (Coin = H) = 0.3 and the die has probability i/21 for the ith outcome.
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Exploiting independence

BUT: if we assume the outcomes are independent then

Pr (Coin,Dice) = Pr (Coin) Pr (Dice)

Where Pr (Coin) has two numbers and Pr (Dice) has six.

So instead of 12 numbers we only need 8.
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Exploiting independence

A slightly more complex example:

CP ¬CP
SB ¬SB SB ¬SB

HD 0.024 0.006 0.016 0.004
¬HD 0.0019 0.0076 0.1881 0.7524

• HD = Heart disease

• CP = Chest pain

• SB = Shortness of breath

Similarly, say instead of just considering HD, SB and CP we also consider the
outcome of the Oxford versus Cambridge tiddlywinks competition TC:

TC = {Oxford,Cambridge,Draw}.
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Exploiting independence

Now

Pr (HD,SB,CP,TC) = Pr (TC|HD,SB,CP) Pr (HD,SB,CP) .

Assuming that the patient is not an extraordinarily keen fan of tiddlywinks, their
cardiac health has nothing to do with the outcome, so

Pr (TC|HD,SB,CP) = Pr (TC)

and 2× 2× 2× 3 = 24 numbers has been reduced to 3 + 8 = 11.
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Conditional independence

However although in this case we might not be able to exploit independence di-
rectly we can say that

Pr (CP,SB|HD) = Pr (CP|HD) Pr (SB|HD)

which simplifies matters.

Conditional independence: A ⊥ B|C

• A is conditionally independent of B given C, written A ⊥ B|C, if

Pr (A,B|C) = Pr (A|C) Pr (B|C) .

• If we know that C is the case then A and B are independent.

• Equivalently Pr (A|B,C) = Pr (A|C). (Prove this!)

Although CP and SB are not independent, they do not directly influence one an-
other in a patient known to have heart disease.

This is much nicer!

Pr (HD|CP,SB) ∝ Pr (CP|HD) Pr (SB|HD) Pr (HD)
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Bayesian networks

After a regrettable incident involving an inflatable gorilla, a famous College has
decided to install an alarm for the detection of roof climbers.

• The alarm is very good at detecting climbers.

• Unfortunately, it is also sometimes triggered when one of the extremely fat
geese that lives in the College lands on the roof.

• One porter’s lodge is near the alarm, and inhabited by a chap with excellent
hearing and a pathological hatred of roof climbers: he always reports an
alarm. His hearing is so good that he sometimes thinks he hears an alarm,
even when there isn’t one.

• Another porter’s lodge is a good distance away and inhabited by an old chap
with dodgy hearing who likes to listen to his collection of DEATH METAL
with the sound turned up.
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Bayesian networks
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Bayesian networks

Also called probabilistic/belief/causal networks or knowledge maps.

• Each node is a random variable (RV).

• Each node Ni has a distribution

Pr (Ni|parents(Ni))

• A Bayesian network is a directed acyclic graph.

• Roughly speaking, an arrow from N to M means N directly affects M .
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Bayesian networks

Note that:

• In the present example all RVs are discrete (in fact Boolean) and so in all cases
Pr (Ni|parents(Ni)) can be represented as a table of numbers.

• Climber and Goose have only prior probabilities.

• All RVs here are Boolean, so a node with p parents requires 2p numbers.

A BN with n nodes represents the full joint probability distribution for those nodes
as

Pr (N1 = n1, N2 = n2, . . . , Nn = nn) =

n∏

i=1

Pr (Ni = ni|parents(Ni)) .

For example

Pr (¬C,¬G,A,L1,L2) = Pr (L1|A) Pr (L2|A) Pr (A|¬C,¬G) Pr (¬C)) Pr (¬G
= 0.99× 0.6× 0.08× 0.95× 0.8.
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Semantics

In general Pr (A,B) = Pr (A|B) Pr (B) so

Pr (N1, . . . , Nn) = Pr (Nn|Nn−1, . . . , N1) Pr (Nn−1, . . . , N1) .

Repeating this gives

Pr (N1, . . . , Nn) = Pr (Nn|Nn−1, . . . , N1) Pr (Nn−1|Nn−2, . . . , N1) · · · Pr (N1)

=

n∏

i=1

Pr (Ni|Ni−1, . . . , N1) .

Now compare equations. We see that BNs make the assumption

Pr (Ni|Ni−1, . . . , N1) = Pr (Ni|parents(Ni))

for each node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.

Each Ni is conditionally independent of its predecessors given its parents .
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Semantics

• When constructing a BN we want to make sure the preceding property holds.

• This means we need to take care over ordering.

• In general causes should directly precede effects.

· · ·

Ni

parents(Ni)

Here, parents(Ni) contains all preceding nodes having a direct influence on Ni.
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Semantics

But its not quite that straightforward: what if we want to talk about nodes other
than predecessors and parents?

For example, it is possible to show:

A

P2P1

N1 N2

Any node A is conditionally independent of the Ni—its
non-descendants—given the Pi—its parents.
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Semantics

It is also possible to show:

A

M7 M6 M5

M4M8

M1 M2 M3

Any node A is conditionally independent of all other nodes given the Markov
blanket Mi—that is, its parents, its children and its childrens’ parents.
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Semantics: what’s REALLY going on here?

There is a general method for inferring exactly what conditional independences
are implied by a Bayesian network.

Let X , Y and Z be disjoint subsets of the RVs.

Consider a path p consisting of directed (in any orientation) edges from some
x ∈ X to some y ∈ Y . For example

x · · · y

The path p is said to be blocked by Z if one of three conditions holds. . .
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Semantics: what’s REALLY going on here?

Path p is blocked with respect to Z if:

1. p contains a node z ∈ Z that is tail-to-tail:

x · · · z ∈ Z y

2. p contains a node z ∈ Z that is head-to-tail:

x · · · z ∈ Z y

(Similarly if the node is tail-to-head.)

3. p contains a nodeN that is head-to-head,N /∈ Z, and none ofN ’s descendents
is in Z:

x · · · y

...
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Semantics: what’s REALLY going on here?

Finally:

1. X and Y are d-separated by Z if all paths p from some x ∈ X to some
y ∈ Y are blocked.

2. If X and Y are d-separated by Z then X ⊥ Y |Z.
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More complex nodes

How do we represent
Pr (Ni|parents(Ni))

when nodes can denote general discrete and/or continuous RVs?

• BNs containing both kinds of RV are called hybrid BNs.

• Naive discretisation of continuous RVs tends to result in both a reduction
in accuracy and large tables.

• O(2p) might still be large enough to be unwieldy.

• We can instead attempt to use standard and well-understood distributions,
such as the Gaussian.

• This will typically require only a small number of parameters to be speci-
fied.
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More complex nodes

Example: a continuous RV with one continuous and one discrete parent.

Pr (Speed of car|Throttle position,Tuned engine)

where SC and TP are continuous and TE is Boolean.

• For a specific setting of ET = true it might be the case that SC increases
with TP, but that some uncertainty is involved

Pr (SC|TP,et) = N(getTP + cet, σ
2
et).

• For an un-tuned engine we might have a similar relationship with a different
behaviour

Pr (SC|TP,¬et) = N(g¬etTP + c¬et, σ
2
¬et).

There is a set of parameters {g, c, σ} for each possible value of the discrete RV.
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More complex nodes

Example: a discrete RV with a continuous parent

Pr (Go roofclimbing|Size of fine) .

We could for example use the probit distribution

Pr (Go roofclimbing = true|size) = Φ

(
t− size

s

)

where
Φ(x) =

∫ x

−∞
N(y)dy

and N is the Gaussian density with zero mean and variance 1.
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More complex nodes
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Pr(GRC = true|size) with t = 100 and different values of s
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Basic inference

We saw earlier that the full joint distribution can be used to perform all inference
tasks:

Pr (Q|o1, o2, . . . , om) =
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)

where

• Q is the query.

• o1, o2, . . . , om are the observations.

• L are the latent variables.

• 1/Z normalises the distribution.

• The query, observations and latent variables are a partition of the set V =
{V1, V2, . . . , Vn} of all variables.
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Basic inference

As the BN fully describes the full joint distribution

Pr (Q,L, o1, o2, . . . , om) =

n∏

i=1

Pr(Vi|parents(Vi))

it can be used to perform inference in the obvious way

Pr (Q|o1, o2, . . . , om) ∝
∑

L

n∏

i=1

Pr(Vi|parents(Vi))

but this is in practice problematic for obvious reasons.

• More sophisticated algorithms aim to achieve this more efficiently.

• For complex BNs we resort to approximation techniques.
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Performing exact inference

Pr (Q,L, o1, . . . , om) has a particular form expressing conditional independences:

No: 0.8
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¬a ¬a
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N
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Y
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Lodge1 Lodge2

Pr(A|C,G)

0.98
0.08
0.96
0.2

0.60.99
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Pr(L1|A) Pr(L2|A)

Pr(A|C,G)C G

Pr(Goose)Pr(Climber)

No: 0.95
Yes: 0.05 Yes: 0.2

Pr (C,G,A, L1, L2) = Pr (C) Pr (G) Pr (A|C,G) Pr (L1|A) Pr (L2|A) .
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Performing exact inference

Consider the computation of the query Pr (C|l1, l2)

We have

Pr (C|l1, l2) ∝
∑

A

∑

G

Pr (C) Pr (G) Pr (A|C,G) Pr (l1|A) Pr (l2|A) .

Here there are 5 multiplications for each set of values that appears for summation,
and there are 4 such values.

In general this gives time complexity O(n2n) for n Boolean RVs.

The naive implementation of this approach yields the Enumerate-Joint-Ask algo-
rithm, which unfortunately requires O(2n) time and space for n Boolean RVs.

The enumeration-ask algorithm improves matters to O(2n) time and O(n) space
by performing the computation depth-first.

However matters can be improved further by avoiding duplication of computa-
tions.
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Performing exact inference

Looking more closely we see that

Pr (C|l1, l2) ∝
∑

A

∑

G

Pr (C) Pr (G) Pr (A|C,G) Pr (l1|A) Pr (l2|A)

=
1

Z
Pr (C)

∑

A

Pr (l1|A) Pr (l2|A)
∑

G

Pr (G) Pr (A|C,G)

=
1

Z
Pr (C)

∑

G

Pr (G)
∑

A

Pr (A|C,G) Pr (l1|A) Pr (l2|A) .

There is some freedom in terms of how we factorize the expression.

This is a result of introducing assumptions about conditional independence.
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Performing exact inference: variable elimination

Taking the second possibility:

Pr (C)︸ ︷︷ ︸
C

∑

G

Pr (G)︸ ︷︷ ︸
G

∑

A

Pr (A|C,G)︸ ︷︷ ︸
A

Pr (l1|A)︸ ︷︷ ︸
L1

Pr (l2|A)︸ ︷︷ ︸
L2

where C, G, A, L1, L2 denote the relevant factors.

The basic idea is to evaluate this from right to left (or in terms of the tree, bottom
up) storing results as we progress and re-using them when necessary.

Pr (l1|A) depends on the value of A. We store it as a table FL1(A). Similarly
for Pr (l2|A).

FL1(A) =

(
0.99
0.08

)
FL2(A) =

(
0.6

0.001

)

as Pr (l1|a) = 0.99, Pr (l1|¬a) = 0.08 and so on.
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Performing exact inference: variable elimination

Similarly for Pr (A|C,G), which is dependent on A, C and G

FA(A,C,G) =

A C G FA(A,C,G)
> > > 0.98
> > ⊥ 0.96
> ⊥ > 0.2
> ⊥ ⊥ 0.08
⊥ > > 0.02
⊥ > ⊥ 0.04
⊥ ⊥ > 0.8
⊥ ⊥ ⊥ 0.92

Can we write Pr (A|C,G) Pr (l1|A) Pr (l2|A) as

FA(A,C,G)FL1(A)FL2(A)

in a reasonable way?
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Performing exact inference: variable elimination

Yes, provided multiplication of factors is defined correctly. Looking at

Pr (C)
∑

G

Pr (G)
∑

A

Pr (A|C,G) Pr (l1|A) Pr (l2|A)

note that:

1. The values of the product

Pr (A|C,G) Pr (l1|A) Pr (l2|A)

in the summation over A depend on the values of C and G external to it,
and the values of A.

2. So
FA(A,C,G)FL1(A)FL2(A)

should be a table collecting values where correspondences between RVs
are maintained.

This leads to a definition for multiplication of factors best given by example.
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Performing exact inference: variable elimination

F(A,B)F(B,C) = F(A,B,C)

where

A B F(A,B) B C F(B,C) A B C F(A,B,C)
> > 0.3 > > 0.1 > > > 0.3× 0.1
> ⊥ 0.9 > ⊥ 0.8 > > ⊥ 0.3× 0.8
⊥ > 0.4 ⊥ > 0.8 > ⊥ > 0.9× 0.8
⊥ ⊥ 0.1 ⊥ ⊥ 0.3 > ⊥ ⊥ 0.9× 0.3

⊥ > > 0.4× 0.1
⊥ > ⊥ 0.4× 0.8
⊥ ⊥ > 0.1× 0.8
⊥ ⊥ ⊥ 0.1× 0.3
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Performing exact inference: variable elimination

This process gives us

FA(A,C,G)FL1(A)FL2(A) =

A C G
> > > 0.98× 0.99× 0.6
> > ⊥ 0.96× 0.99× 0.6
> ⊥ > 0.2× 0.99× 0.6
> ⊥ ⊥ 0.08× 0.99× 0.6
⊥ > > 0.02× 0.08× 0.001
⊥ > ⊥ 0.04× 0.08× 0.001
⊥ ⊥ > 0.8× 0.08× 0.001
⊥ ⊥ ⊥ 0.92× 0.08× 0.001
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Performing exact inference: variable elimination

How about

FA,L1,L2(C,G) =
∑

A

FA(A,C,G)FL1(A)FL2(A)

To denote the fact that A has been summed out we place a bar over it in the
notation.∑

A

FA(A,C,G)FL1(A)FL2(A) =FA(a, C,G)FL1(a)FL2(a)

+ FA(¬a, C,G)FL1(¬a)FL2(¬a)

where

FA(a, C,G) =

C G
> > 0.98
> ⊥ 0.96
⊥ > 0.2
⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a, C,G), FL1(¬a) and FL2(¬a).
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Performing exact inference: variable elimination

FA(a, C,G)FL1(a)FL2(a) =

C G
> > 0.98× 0.99× 0.6
> ⊥ 0.96× 0.99× 0.6
⊥ > 0.2× 0.99× 0.6
⊥ ⊥ 0.08× 0.99× 0.6

FA(¬a, C,G)FL1(¬a)FL2(¬a) =

C G
> > 0.02× 0.08× 0.001
> ⊥ 0.04× 0.08× 0.001
⊥ > 0.8× 0.08× 0.001
⊥ ⊥ 0.92× 0.08× 0.001

FA,L1,L2(C,G) =

C G
> > (0.98× 0.99× 0.6) + (0.02× 0.08× 0.001)
> ⊥ (0.96× 0.99× 0.6) + (0.04× 0.08× 0.001)
⊥ > (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)
⊥ ⊥ (0.08× 0.99× 0.6) + (0.92× 0.08× 0.001)
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Performing exact inference: variable elimination

Now, say for example we have ¬c, g. Then doing the calculation explicitly would
give
∑

A

Pr (A|¬c, g)Pr (l1|A)) Pr (l2|A)

= Pr (a|¬c, g) Pr (l1|a) Pr (l2|a) + Pr (¬a|¬c, g) Pr (l1|¬a) Pr (l2|¬a)

= (0.2× 0.99× 0.6) + (0.8× 0.08× 0.001)

which matches!

Continuing in this manner form

FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C,G)

sum out G to obtain FG,A,L1,L2(C) =
∑

GFG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)

and normalise.
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Performing exact inference: variable elimination

What’s the computational complexity now?

• For Bayesian networks with suitable structure we can perform inference in
linear time and space.

• However in the worst case it is still #P -hard.

Consequently, we may need to resort to approximate inference.
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Approximate inference for Bayesian networks

Markov chain Monte Carlo (MCMC) methods also provide a method for perform-
ing approximate inference in Bayesian networks.

Say a system can be in a state S and moves from state to state in discrete time
steps according to a probabilistic transition

Pr (S→ S′) .

Let πt(S) be the probability distribution for the state after t steps, so

πt+1(S
′) =

∑

s

Pr (s→ S′) πt(s).

If at some point we obtain πt+1(s) = πt(s) for all s then we have reached a sta-
tionary distribution π. In this case

∀s′π(s′) =
∑

s

Pr (s→ s′) π(s).

There is exactly one stationary distribution for a given Pr (S→ S′) provided the
latter obeys some simple conditions.
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Approximate inference for Bayesian networks

The condition of detailed balance

∀s, s′π(s)Pr (s→ s′) = π(s′)Pr (s′ → s)

is sufficient to provide a π that is a stationary distribution. To see this simply sum:
∑

s

π(s)Pr (s→ s′) =
∑

s

π(s′)Pr (s′ → s)

= π(s′)
∑

s

Pr (s′ → s)

︸ ︷︷ ︸
=1

= π(s′)

If all this is looking a little familiar, it’s because we now have another
excellent application for the material in Mathematical Methods for Computer

Science.

That course used the alternative term local balance.
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Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic inference

Pr (Q|o1, o2, . . . , om) ∝
∑

L

Pr (Q,L, o1, o2, . . . , om)

where

• Q is the query.

• o1, o2, . . . , om are the observations.

• L are the latent variables.

• 1/Z normalises the distribution.

• The query, observations and latent variables are a partition of the set V =
{V1, V2, . . . , Vn} of all variables.

We are going to consider obtaining samples from the distribution
Pr (Q,L|o1, o2, . . . , om).
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Approximate inference for Bayesian networks

The observations are fixed. Let the state of our system be a specific set of values
for a query variable and the latent variables

S = (S1, S2, . . . , Sl+1) = (Q,L1, L2, . . . , Ll)

and define Si to be the state vector with Si removed

Si = (S1, . . . , Si−1, Si+1, . . . , Sn+1).

To move from s to s′ we replace one of its elements, say si, with a new value
s′i sampled according to

s′i ∼ Pr (Si|si, o1, . . . , om)

This has detailed balance, and has Pr (Q,L|o1, . . . , om) as its stationary
distribution.

It is known as Gibbs sampling.
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To see that Pr (Q,L|o) is the stationary distribution we just demonstrate detailed
balance:

π(s)Pr (s→ s′) = Pr (s|o) Pr (s′i|si,o)

= Pr (si, si|o) Pr (s′i|si,o)

= Pr (si|si,o) Pr (si|o) Pr (s′i|si,o)

= Pr (si|si,o) Pr (s′i, si|o)

= Pr (s′ → s) π(s′).

As a further simplification we can exploit conditional independence.

For example, sampling from Pr (Si|si,o) may be equivalent to sampling Si condi-
tional on some smaller set.
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So:

• We successively sample the query variable and the unobserved variables, con-
ditional on the remaining variables.

• This gives us a sequence s1, s2, . . . sampled according to Pr (Q,L|o).

Finally, note that as

Pr (Q|o) =
∑

l

Pr (Q, l|o)

we can just ignore the values obtained for the unobserved variables. This
gives us q1, q2, . . . with

qi ∼ Pr (Q|o) .
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To see that the final step works, consider what happens when we estimate the
expected value of some function of Q.

E[f (Q)|o] =
∑

q

f (q)Pr (q|o)

=
∑

q

f (q)
∑

l

Pr (q, l|o)

=
∑

q

∑

l

f (q)Pr (q, l|o)

so sampling using Pr (q, l|o) and ignoring the values for l obtained works exactly
as required.
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Markov random fields (MRFs) (sometimes called undirected graphical models or
Markov networks) provide an alternative approach to representing a probability
distribution while expressing conditional independence assumptions.

We now have:

1. An undirected graph G = (N,E).

2. G has a node Ni for each RV .

3. For each maximal clique c inG there is a clique potential φc(Nc) > 0 where
Nc is the set of nodes in c.

4. The probability distribution expressed by G is

Pr (N) ∝
∏

c

φc(Nc).
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Example: 3 maximal cliques of size 2, 2 of size 3 and 1 of size 4.

φ1

φ2

φ3

φ5

φ6

φ4
N9

N1

N2

N4 N5

N6 N7

N3

N8

Pr (N1, . . . , N9) ∝ φ1(N1, N4)× φ2(N3, N6)× φ3(N7, N8)× φ4(N1, N2, N3)

× φ5(N3, N8, N9)× φ6(N4, N5, N6, N7).
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Markov random fields—conditional independence

The test for conditional independence is now simple: if X , Y and Z are disjoint
subsets of the RVs then:

1. Remove the nodes in Z and any attached edges from the graph.

2. If there are no paths from any variable in X to any variable in Y then

X ⊥ Y |Z.

Final things to note:

1. MRFs have their own algorithms for inference.

2. They are an alternative to BNs for representing a probability distribution.

3. There are trade-offs that might make a BN or MRF more or less favourable.

4. For example: potentials offer flexibility because they don’t have to represent
conditional distributions. . .

5. . . . BUT you have to normalize the distribution you’re representing.
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