
Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Part II

Support vector machines

General methodology

Copyright c© Sean Holden 2002-17.

1

The maximum margin classifier

Suggestion: why not drop all this probability nonsense and just do this:

x2

x1

γ

γ

Draw the boundary as far away from the examples as possible.

The distance γ is the margin, and this is the maximum margin classifier.

2

The maximum margin classifier

If you completed the exercises for AI I then you’ll know that linear classifiers have
a very simple geometry. For

f (x) = wTx + b

x2

x1

x′

|f(x′)|
||w||

f(x) = 0

w

|b|
||w||

For x′ on one side of the line f (x) = 0 we have f (x′) > 0 and on the other
side f (x′) < 0.

3

The maximum margin classifier

Problems:

• Given the usual training data s, can we now find a training algorithm for ob-
taining the weights?

• What happens when the data is not linearly separable?

To derive the necessary training algorithm we need to know something about
constrained optimization.

We can address the second issue with a simple modification. This leads to the
Support Vector Machine (SVM).

Despite being decidedly “non-Bayesian” the SVM is currently a gold-standard:

Do we need hundreds of classifiers to solve real world classification problems,
Fernández-Delgardo at al., Journal of Machine Learning Research 2014.

4

Constrained optimization

You are familiar with maximizing and minimizing a function f (x). This is uncon-
strained optimization.

We want to extend this:

1. Minimize a function f (x) with the constraint that g(x) = 0.

2. Minimize a function f (x) with the constraints that g(x) = 0 and h(x) ≥ 0.

Ultimately we will need to be able to solve problems of the form: find xopt

such that

xopt = argmin
x

f (x)

under the constraints

gi(x) = 0 for i = 1, 2, . . . , n

and

hj(x) ≥ 0 for j = 1, 2, . . . ,m.

5

Constrained optimization

For example:

f(x, y) and constraint g(x, y) = 0

-5 0 5

x

-6

-4

-2

0

2

4

6

y

-10 0 10

-25

-20

-15

-10

-5

0

5

f(x, y) along g(x, y) = 0

Minimize the function

f (x, y) = −
(
2x + y2 + xy

)
subject to the constraint

g(x, y) = x + 2y − 1 = 0.

6

Constrained optimization

Step 1: introduce the Lagrange multiplier λ and form the Langrangian

L(x, y, λ) = f (x, y)− λg(x, y)

Necessary condition: it can be shown that if (x′, y′) is a solution then ∃λ′ such
that

∂L(x′, y′, λ′)

∂x
= 0

∂L(x′, y′, λ′)

∂y
= 0

So for our example we need

2 + y + λ = 0

2y + x + 2λ = 0

x + 2y − 1 = 0

where the last is just the constraint.

7

Constrained optimization

Step 2: solving these equations tells us that the solution is at:

f(x, y) and constraint g(x, y) = 0

-5 0 5

x

-6

-4

-2

0

2

4

6

y

-10 0 10

-25

-20

-15

-10

-5

0

5

f(x, y) along g(x, y) = 0

(x, y) = (4,−3
2
)

With multiple constraints we follow the same approach, with a Lagrange multi-
plier for each constraint.

8

Constrained optimization

How about the full problem? Find

xopt = argmin
x

f (x) such that gi(x) = 0 for i = 1, 2, . . . , n

hj(x) ≥ 0 for j = 1, 2, . . . ,m

The Lagrangian is now

L(x,λ,α) = f (x)−
n∑
i=1

λigi(x)−
m∑
j=1

αjhj(x)

and the relevant necessary conditions are more numerous.

9

Constrained optimization

The necessary conditions now require that when x′ is a solution ∃λ′,α′ such that

1.
∂L(x′,λ′,α′)

∂x
= 0.

2. The equality and inequality constraints are satisfied at x′.

3. α′ ≥ 0.

4. α′jhj(x
′) = 0 for j = 1, . . . ,m.

These are called the Karush-Kuhn-Tucker (KKT) conditions.

The KKT conditions tell us some important things about the solution.

We will only need to address this problem when the constraints are all inequalities.

10

Constrained optimization

What we’ve seem so far is called the primal problem.

There is also a dual version of the problem. Simplifying a little by dropping the
equality constraints.

1. The dual objective function is

L̃(α) = inf
x
L(x,α).

2. The dual optimization problem is

max
α

L̃(α) such that α ≥ 0.

Sometimes it is easier to work by solving the dual problem and this allows us to
obtain actual learning algorithms.

We won’t be looking in detail at methods for solving such problems, only the
minimum needed to see how SVMs work.

For the full story see Numerical Optimization, Jorge Nocedal and Stephen J.
Wright, Second Edition, Springer 2006.

11

The maximum margin classifier

It turns out that with SVMs we get particular benefits when using the kernel trick.

So we work, as before, in the extended space, but now with:

fw,w0(x) = w0 + wTΦ(x)

hw,w0(x) = sgn (fw,w0(x))

where

sgn(z) =

{
+1 if z > 0

−1 otherwise.

Note the following:

1. Things are easier for SVMs if we use labels {+1,−1} for the two classes.
(Previously we used {0, 1}.)

2. It also turns out to be easier if we keep w0 separate rather than rolling it into
w.

3. We now classify using a “hard” threshold sgn, rather than the “soft” thresh-
old σ.

12

The maximum margin classifier

Consider the geometry again. Step 1:

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

1. We’re classifying using the sign of
the function

fw,w0(x) = w0 + wTΦ(x).

2. The distance from any point Φ(x′) in
the extended space to the line is

|fw,w0(x
′)|

||w||
.

13

The maximum margin classifier

Step 2:

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

• But we also want the examples to
fall on the correct side of the line ac-
cording to their label.

• Noting that for any labelled example
(xi, yi) the quantity yifw,w0(xi) will
be positive if the resulting classifica-
tion is correct. . .

• . . . the aim is to solve:

(w, wo) = argmax
w,w0

[
min
i

yifw,w0(xi)

||w||

]
.

14

The maximum margin classifier

YUK!!!

(With bells on. . .)

15

The maximum margin classifier

Solution, version 1: convert to a constrained optimization. For any c ∈ R

fw,w0(x) = 0⇐⇒ w0 + wTΦ(x) = 0

⇐⇒ cw0 + cwTΦ(x) = 0.

That means you can fix ||w|| to be anything you like! (Actually, fix ||w||2 to
avoid a square root.)

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

Version 1:

(w, wo, γ) = argmax
w,w0,γ

γ

subject to the constraints

yifw,w0(xi) ≥ γ, i = 1, 2, . . . ,m

||w||2 = 1.

16

The maximum margin classifier

Solution, version 2: still, convert to a constrained optimization, but instead of
fixing ||w||:

Fix min{yifw,w0(xi)} to be anything you like!

φ2(x)

φ1(x)

Φ(x′)

γ

|fw,w0 (x
′)|

||w||

fw,w0(x) = 0

w

|w0|
||w||

Version 2:

(w, wo) = argmin
w,w0

1

2
||w||2

subject to the constraints

yifw,w0(xi) ≥ 1, i = 1, 2, . . . ,m.

(This works because maximizing γ now corresponds to minimizing ||w||.)

17

The maximum margin classifier

We’ll use the second formulation. (You can work through the first as an exercise.)

The constrained optimization problem is:

Minimize 1
2||w||

2

such that

yifw,w0(xi) ≥ 1 for i = 1, . . . ,m .

Referring back, this means the Lagrangian is

L(w, w0,α) =
1

2
||w||2 −

m∑
i=1

αi (yifw,w0(xi)− 1)

and a necessary condition for a solution is that

∂L(w, w0,α)

∂w
= 0

∂L(w, w0,α)

∂w0
= 0.

18

The maximum margin classifier

Working these out is easy:

∂L(w, w0,α)

∂w
=

∂

∂w

(
1

2
||w||2 −

m∑
i=1

αi (yifw,w0(xi)− 1)

)

= w −
m∑
i=1

αiyi
∂

∂w

(
wTΦ(xi) + w0

)
= w −

m∑
i=1

αiyiΦ(xi)

and

∂L(w, w0,α)

∂w0
= − ∂

∂w0

(
m∑
i=1

αiyifw,w0(xi)

)

= − ∂

∂w0

(
m∑
i=1

αiyi
(
wTΦ(xi) + w0

))

= −
m∑
i=1

αiyi.

19

The maximum margin classifier

Equating those to 0 and adding the KKT conditions tells us several things:

1. The weight vector can be expressed as

w =

m∑
i=1

αiyiΦ(xi)

with α ≥ 0. This is important: we’ll return to it in a moment.

2. There is a constraint that
m∑
i=1

αiyi = 0.

This will be needed for working out the dual Lagrangian.

3. For each example
αi[yifw,w0(xi)− 1] = 0.

20

The maximum margin classifier

The fact that for each example

αi[yifw,w0(xi)− 1] = 0

means that:

Either yifw,w0(xi) = 1 or αi = 0.

This means that examples fall into two groups.

1. Those for which yifw,w0(xi) = 1.
As the contraint used to maxmize the margin was yifw,w0(xi) ≥ 1 these are the
examples that are closest to the boundary.
They are called support vectors and they can have non-zero weights.

2. Those for which yifw,w0(xi) 6= 1.
These are non-support vectors and in this case it must be that αi = 0.

21

The maximum margin classifier

Support vectors:

x2

x1

1. Circled examples: support vectors with αi > 0.

2. Other examples: have αi = 0.

22

The maximum margin classifier

Remember that

w =

m∑
i=1

αiyiΦ(xi).

so the weight vector w only depends on the support vectors.

ALSO: the dual parameters α can be used as an alternative set of weights. The
overall classifier is

hw,w0(x) = sgn
(
w0 + wTΦ(x)

)
= sgn

(
w0 +

m∑
i=1

αiyiΦ
T (xi)Φ(x)

)

= sgn

(
w0 +

m∑
i=1

αiyiK(xi,x)

)
where K(xi,x) = ΦT (xi)Φ(x) is called the kernel.

23

The maximum margin classifier

Remember where this process started:

The kernel is computing
K(x,x′) = ΦT (x)Φ(x′)

=

k∑
i=1

φi(x)φi(x
′)

This is generally called an inner product.

24

The maximum margin classifier

If it’s a hard problem then you’ll probably want lots of basis functions so k is BIG:

hw,w0(x) = sgn
(
w0 + wTΦ(x)

)
= sgn

(
w0 +

k∑
i=1

wiφi(x)

)

= sgn

(
w0 +

m∑
i=1

αiyiΦ
T (xi)Φ(x)

)

= sgn

(
w0 +

m∑
i=1

αiyiK(xi,x)

)
What if K(x,x′) is easy to compute even if k is HUGE? (In particular k >> m.)

1. We get a definite computational advantage by using the dual version with
weights α.

2. Mercer’s theorem tells us exactly when a function K has a corresponding set
of basis functions {φi}.

25

The maximum margin classifier

Designing good kernels K is a subject in itself.

Luckily for the majority of the time you will tend to see one of the following:

1. Polynomial:
Kc,d(x,x

′) = (c + xTx′)d

where c and d are parameters.

2. Radial basis function (RBF):

Kσ2(x,x
′) = exp

(
− 1

2σ2
||x− x′||2

)
where σ2 is a parameter.

The last is particularly prominent. Interestingly, the corresponding set of basis
functions is infinite. (So we get an improvement in computational complexity
from infinite to linear in the number of examples!)

26

Maximum margin classifier: the dual version

Collecting together some of the results up to now:

1. The Lagrangian is

L(w, w0,α) =
1

2
||w||2 −

∑
i

αi(yifw,w0(xi)− 1).

2. The weight vector is
w =

∑
i

αiyiΦ(xi).

3. The KKT conditions require ∑
i

αiyi = 0.

It’s easy to show (this is an exercise) that the dual optimization problem is to
maximize

L̃(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjK(xi,xj)

such that α ≥ 0.

27

Support Vector Machines

There is one thing still missing:

Problem: so far we’ve only covered the linearly separable case.

Even though that means linearly separable in the extended space it’s still not
enough.

By dealing with this we get the Support Vector Machine (SVM).

x2

x1

28

Support Vector Machines

Fortunately a small modification allows us to let some examples be misclassified.

x2

x1

fw,w0(x
′) ≥ 1− ξi

|fw,w0 (x
′)|

||w||

We introduce the slack variables ξi, one for each example.

Although fw,w0(x
′) < 0 we have fw,w0(x

′) ≥ 1 − ξi and we try to force ξi to be
small.

29

Support Vector Machines

The constrained optimization problem was:

argminw,w0

1
2||w||

2 such that yifw,w0(xi) ≥ 1 for i = 1, . . . ,m.

The constrained optimization problem is now modified to:

argmin
w,w0,ξ

1

2
||w||2︸ ︷︷ ︸

Maximize the margin

+ C

m∑
i=1

ξi︸ ︷︷ ︸
Control misclassification

such that

yifw,w0(xi) ≥ 1− ξi and ξi > 0 for i = 1, . . . ,m.

There is a further new parameter C that controls the trade-off between maximizing
the margin and controlling misclassification.

30

Support Vector Machines

Once again, the theory of constrained optimization can be employed:

1. We get the same insights into the solution of the problem, and the same con-
clusions.

2. The development is exactly analogous to what we’ve just seen.

However as is often the case it is not straightforward to move all the way to having
a functioning training algorithm.

For this some attention to good numerical computing is required. See:

Fast training of support vector machine using sequential minimal
optimization, J. C. Platt, Advances in Kernel Methods, MIT Press 1999.

31

Support Vector Machines

32

Supervised learning in practice

We now look at several issues that need to be considered when applying machine
learning algorithms in practice:

• We often have more examples from some classes than from others.

• The obvious measure of performance is not always the best.

• Much as we’d love to have an optimal method for finding hyperparameters,
we don’t have one, and it’s unlikely that we ever will.

• We need to exercise care if we want to claim that one approach is superior
to another.

This part of the course has an unusually large number of Commandments.

That’s because so many people get so much of it wrong!.

33

Supervised learning

As usual, we want to design a classifier.

hθ(x)
x

Classifier
LabelAttribute vector

It should take an attribute vector

xT =
[
x1 x2 · · · xn

]
and label it.

We now denote a classifier by hθ(x) where θT =
(

w p
)

denotes any weights w
and (hyper)parameters p.

To keep the discussion and notation simple we assume a classification problem
with two classes labelled +1 (positive examples) and −1 (negative examples).

34

Supervised learning

Previously, the learning algorithm was a box labelled L.

hθ = L(s)

x
hθ(x)

Training sequence

Label

s

Learner
L

Classifier
Attribute vector

and tears
Blood, sweat

Unfortunately that turns out not to be enough, so a new box has been added.

35

Machine Learning Commandments

We’ve already come across the Commandment:

Thou shalt try a simple method. Preferably many simple methods.

Now we will add:

Thou shalt use an appropriate measure of performance.

36

Measuring performance

How do you assess the performance of your classifier?

1. That is, after training, how do you know how well you’ve done?

2. In general, the only way to do this is to divide your examples into a smaller
training set s of m examples and a test set s′ of m′ examples.

Original s

s s′

s′m′sm s′1s3s2s1

The GOLDEN RULE: data used to assess performance must NEVER have
been seen during training.

This might seem obvious, but it was a major flaw in a lot of early work.

37

Measuring performance

How do we choose m and m′? Trial and error!

Assume the training is complete, and we have a classifier hθ obtained using only
s. How do we use s′ to assess our method’s performance?

The obvious way is to see how many examples in s′ the classifier classifies cor-
rectly:

êrs′(hθ) =
1

m′

m′∑
i=1

I [hθ(x′i) 6= y′i]

where
s′ =

[
(x′1, y

′
1) (x′2, y

′
2) · · · (x′m′, y

′
m′)
]T

and

I [z] =
{
1 if z = true
0 if z = false .

This is just an estimate of the probability of error and is often called the accuracy.

38

Unbalanced data

Unfortunately it is often the case that we have unbalanced data and this can make
such a measure misleading. For example:

If the data is naturally such that almost all examples are negative (medical
diagnosis for instance) then simply classifying everything as negative gives a

high performance using this measure.

We need more subtle measures.

For a classifier h and any set s of sizem containingm+ positive examples andm−

negative examples...

39

Unbalanced data

Define

1. The true positives

P+ = {(x,+1) ∈ s|h(x) = +1}, and p+ = |P+|

2. The false positives

P− = {(x,−1) ∈ s|h(x) = +1}, and p− = |P−|

3. The true negatives

N+ = {(x,−1) ∈ s|h(x) = −1}, and n+ = |N+|

4. The false negatives

N− = {(x,+1) ∈ s|h(x) = −1}, and n− = |N−|

Thus êrs(h) = (p+ + n+)/m.

This allows us to define more discriminating measures of performance.

40

Performance measures

Some standard performance measures:

1. Precision p+

p++p− .

2. Recall p+

p++n− .

3. Sensitivity p+

p++n− .

4. Specificity n+

n++p− .

5. False positive rate p−

p−+n+ .

6. Positive predictive value p+

p++p− .

7. Negative predictive value n+

n++n− .

8. False discovery rate p−

p−+p+ .

In addition, plotting sensitivity (true positive rate) against the false positive rate
while a parameter is varied gives the receiver operating characteristic (ROC)
curve.

41

Performance measures

The following specifically take account of unbalanced data:

1. Matthews Correlation Coefficient (MCC)

MCC =
p+n+ − p−n−√

(p+ + p−)(n+ + n−)(p+ + n−)(n+ + p−)

2. F1 score
F1 =

2× precision× recall
precision + recall

When data is unbalanced these are preferred over the accuracy.

42

Machine Learning Commandments

Thou shalt not use default parameters.

Thou shalt not use parameters chosen by an unprincipled formula.

Thou shalt not avoid this issue by clicking on ‘Learn’ and hoping it works.

Thou shalt either choose them carefully or integrate them out.

43

Bad hyperparameters give bad performance

44

Bad hyperparameters give bad performance

45

Validation and crossvalidation

The next question: how do we choose hyperparameters?

Answer: try different values and see which values give the best (estimated)
performance.

There is however a problem:

If I use my test set s′ to find good hyperparameters, then I can’t use it to get a
final measure of performance. (See the Golden Rule above.)

Solution 1: make a further division of the complete set of examples to obtain a
third, validation set:

v

vm′′v1

Original s

s s′

s′1s1 s2 s3 sm s′m′

46

Validation and crossvalidation

Now, to choose the value of a hyperparameter p:

For some range of values p1, p2, . . . , pn

1. Run the training algorithm using training data s and with the hyperparameter
set to pi.

2. Assess the resulting hθ by computing a suitable measure (for example accu-
racy, MCC or F1) using v.

Finally, select the hθ with maximum estimated performance and assess its actual
performance using s′.

47

Validation and crossvalidation

This was originally used in a similar way when deciding the best point at which
to stop training a neural network.

Stop training here

Estimated error on v

Estimated error on s

E
st

im
at

ed
er

ro
r

Time

The figure shows the typical scenario.

48

Crossvalidation

The method of crossvalidation takes this a step further.

We our complete set into training set s and testing set s′ as before.

But now instead of further subdividing s just once we divide it into n folds s(i)

each having m/n examples.

Original s

s

s′s(n)

s′m′

s(2)s(1)

s′1

Typically n = 10 although other values are also used, for example if n = m we
have leave-one-out cross-validation.

49

Crossvalidation

Let s−i denote the set obtained from s by removing s(i).

Let êrs(i)(h) denote any suitable error measure, such as accuracy, MCC or F1,
computed for h using fold i.

Let Ls−i,p be the classifier obtained by running learning algorithm L on examples
s−i using hyperparameters p.

Then,
1

n

n∑
i=1

êrs(i)(Ls−i,p)

is the n-fold crossvalidation error estimate.

So for example, let s
(i)
j denote the jth example in the ith fold. Then using accuracy

as the error estimate we have

1

m

n∑
i=1

m/n∑
j=1

I
[
Ls−i,p(x

(i)
j) 6= y

(i)
j

]

50

Crossvalidation

Two further points:

1. What if the data are unbalanced? Stratified crossvalidation chooses folds such
that the proportion of positive examples in each fold matches that in s.

2. Hyperparameter choice can be done just as above, using a basic search.

What happens however if we have multiple hyperparameters?

1. We can search over all combinations of values for specified ranges of each
parameter.

2. This is the standard method in choosing parameters for support vector ma-
chines (SVMs).

3. With SVMs it is generally limited to the case of only two hyperparameters.

4. Larger numbers quickly become infeasible.

51

Crossvalidation

This is what we get for an SVM applied to the two spirals:

0

15

0.2

0.4

10 0

0.6

Using crossvalidation to optimize the hyperparameters C and σ
2.

log2 C

0.8

5 -5

log2 σ
2

1

0 -10

-5 -15

52

Machine Learning Commandments

Thou shalt provide evidence before claiming that thy method is the best.

The shalt take extra notice of this Commandment if thou considers thyself a
True And Pure Bayesian.

53

Comparing classifiers

Imagine I have compared the Bloggs Classificator 2000 and the CleverCorp Dis-
criminotron and found that:

1. Bloggs Classificator 2000 has estimated accuracy 0.981 on the test set.

2. CleverCorp Discriminotron has estimated accuracy 0.982 on the test set.

Can I claim that the CleverCorp Discriminotron is the better classifier?

Answer:

NO! NO! NO! NO! NO! NO! NO! NO! NO!!!!!!!!!!!!!!

54

Comparing classifiers

NO!!!!!!!

Note for next year: include photo of grumpy-looking cat.

55

Assessing a single classifier

From Mathematical Methods for Computer Science:

The Central Limit Theorem: If we have independent identically distributed (iid)
random variables X1, X2, . . . , Xn with mean

E [X] = µ

and standard deviation
E
[
(X − µ)2

]
= σ2

then as n→∞
X̂n − µ
σ/
√
n
→ N(0, 1)

where

X̂n =
1

n

n∑
i=1

Xi.

56

Assessing a single classifier

We have tables of values zp such that if x ∼ N(0, 1) then

Pr (−zp ≤ x ≤ zp) > p.

Rearranging this using the equation from the previous slide we have that with
probability p

µ ∈

[
X̂n ± zp

√
σ2

n

]
.

We don’t know σ2 but it can be estimated using

σ2 ' 1

n− 1

n∑
i=1

(
Xi − X̂n

)2
.

Alternatively, when X takes only values 0 or 1

σ2 = E
[
(X − µ)2

]
= E

[
X2
]
− µ2 = µ(1− µ) ' X̂n(1− X̂n).

57

Assessing a single classifier

The actual probability of error for a classifier h is

er(h) = E [I [h(x) 6= y]]

and we are estimating er(h) using the accuracy

êrs(h) =
1

m

m∑
i=1

I [h(xi) 6= yi]

for a test set s.

We can find a confidence interval for this estimate using precisely the derivation
above, simply by noting that the Xi are the random variables

Xi = I [h(xi) 6= yi] .

58

Assessing a single classifier

Typically we are interested in a 95% confidence interval, for which zp = 1.96.

Thus, when m > 30 (so that the central limit theorem applies) we know that, with
probability 0.95

er(h) = êrs(h)± 1.96

√
êrs(h)(1− êrs(h)))

m
.

Example: I have 100 test examples and my classifier makes 18 errors. With prob-
ability 0.95 I know that

er(h) = 0.18± 1.96

√
0.18(1− 0.18)

100
= 0.18± 0.075.

This should perhaps raise an alarm regarding our suggested comparison of clas-
sifiers above.

59

Assessing a single classifier

There is an important distinction to be made here:

1. The mean of X is µ and the variance of X is σ2.

2. We can also ask about the mean and variance of X̂n.

3. The mean of X̂n is

E
[
X̂n

]
= E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi]

= µ.

4. It is left as an exercise to show that the variance of X̂n is

σ2
X̂n

=
σ2

n
.

60

Comparing classifiers

We are using the values zp such that if x ∼ N(0, 1) then

Pr(−zp ≤ x ≤ zp) > p.

There is an alternative way to think about this.

1. Say we have a random variable Y with variance σ2Y and mean µY .

2. The random variable Y − µY has variance σ2Y and mean 0.

3. It is a straightforward exercise to show that dividing a random variable having
variance σ2 by σ gives us a new random variable with variance 1.

4. Thus the random variable Y−µY
σY

has mean 0 and variance 1.

So: with probability p
Y = µY ± zpσY
µY = Y ± zpσY .

Compare this with what we saw earlier. You need to be careful to keep track of
whether you are considering the mean and variance of a single RV or a sum of
RVs.

61

Comparing classifiers

Now say I have classifiers h1 (Bloggs Classificator 2000) and h2 (CleverCorp
Discriminotron) and I want to know something about the quantity

d = er(h1)− er(h2).

I estimate d using
d̂ = êrs1(h1)− êrs2(h2)

where s1 and s2 are two independent test sets.

Notice:

1. The estimate of d is a sum of random variables, and we can apply the central
limit theorem.

2. The estimate is unbiased

E [êrs1(h1)− êrs2(h2)] = d.

62

Comparing classifiers

Also notice:

1. The two parts of the estimate êrs1(h1) and êrs2(h2) are each sums of random
variables and we can apply the central limit theorem to each.

2. The variance of the estimate is the sum of the variances of êrs1(h1) and êrs2(h2).

3. Adding Gaussians gives another Gaussian.

4. We can calculate a confidence interval for our estimate.

With probability 0.95

d = d̂± 1.96

√
êrs1(h1)(1− êrs1(h1))

m1
+

êrs2(h2)(1− êrs2(h2))
m2

.

In fact, if we are using a split into training set s and test set s′ we can generally
obtain h1 and h2 using s and use the estimate

d̂ = êrs′(h1)− êrs′(h2).

63

Comparing classifiers—hypothesis testing

This still doesn’t tell us directly about whether one classifier is better than an-
other—whether h1 is better than h2.

What we actually want to know is whether

d = er(h1)− er(h2) > 0.

Say we’ve measured D̂ = d̂. Then:

• Imagine the actual value of d is 0.

• Recall that the mean of D̂ is d.

• So larger measured values d̂ are less likely, even though some random varia-
tion is inevitable.

• If it is highly unlikely that when d = 0 a measured value of d̂ would be ob-
served, then we can be confident that d > 0.

• Thus we are interested in
Pr(D̂ > d + d̂).

This is known as a one-sided bound.
64

One-sided bounds

Given the two-sided bound

Pr(−zε ≤ x ≤ zε) = 1− ε

we actually need to know the one-sided bound

Pr(x ≤ zε).

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

Pr(−z ≤ x ≤ z) = 1−ε

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

p
(x
)

Pr(−∞ ≤ x ≤ z) = 1−ε/2

Clearly, if our random variable is Gaussian then Pr(x ≤ zε) = 1− ε/2.

65

Comparing algorithms: paired t-tests

We now know how to compare hypotheses h1 and h2.

But we still haven’t properly addressed the comparison of algorithms.

• Remember, a learning algorithm L maps training data s to hypothesis h.

• So we really want to know about the quantity

d = Es∈Sm [er(L1(s))− er(L2(s))] .

• This is the expected difference between the actual errors of the two different
algorithms L1 and L2 .

Unfortunately, we have only one set of data s available and we can only estimate
errors er(h)—we don’t have access to the actual quantities.

We can however use the idea of crossvalidation.

66

Comparing algorithms: paired t-tests

Recall, we subdivide s into n folds s(i) each having m/n examples

s

s(n)s(2)s(1)

and denote by s−i the set obtained from s by removing s(i). Then

1

n

n∑
i=1

êrs(i)(L(s−i))

is the n-fold crossvalidation error estimate. Now we estimate d using

d̂ =
1

n

n∑
i=1

[
êrs(i)(L1(s−i))− êrs(i)(L2(s−i))

]
.

67

Comparing algorithms: paired t-tests

As usual, there is a statistical test allowing us to assess how likely this estimate is
to mislead us.

We will not consider the derivation in detail. With probability p

d ∈
[
d̂± tp,n−1σd̂

]
.

This is analogous to the equations seen above, however:

• The parameter tp,n−1 is analogous to zp.

• The parameter tp,n−1 is related to the area under the Student’s t-distribution
whereas zp is related to the area under the normal distribution.

• The relevant estimate of standard deviation is

σd̂ =

√√√√ 1

n(n− 1)

n∑
i=1

(
di − d̂

)2
where

di = êrs(i)(L1(s−i))− êrs(i)(L2(s−i)).

68

