
Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Copyright c© Sean Holden 2002-17.

1

Artificial Intelligence: what have we seen so far?

What did we learn in Artificial Intelligence I?

1. We used logic for knowledge representation and reasoning. However we saw
that logic can have drawbacks:

(a) Laziness: it is not feasible to assemble a set of rules that is sufficiently
exhaustive. If we could, it would not be feasible to apply them.

(b) Theoretical ignorance: insufficient knowledge exists to allow us to write
the rules.

(c) Practical ignorance: even if the rules have been obtained there may be
insufficient information to apply them.

Instead of considering truth or falsity, deal with degrees of belief .

Probability theory is the perfect tool for application here.

Probability theory allows us to summarise the uncertainty due to laziness and
ignorance.

2

Artificial Intelligence: what have we seen so far?

What did we learn in Artificial Intelligence I?

2. We looked at how to choose a sequence of actions to achieve a goal using
search, adversarial search (game-playing), logical inference (situation calcu-
lus), and planning.

• All these approaches suffer in the same way as inference.
• So all benefit from considering uncertainty.
• All implicitly deal with time. How is this possible under uncertainty?
• All tend to be trying to reach goals, but these may also be uncertain.

Utility theory is used to assign preferences.

Decision theory combines probability theory and utility theory.

A rational agent should act in order to maximise expected utility as time
passes.

3

Artificial Intelligence: what have we seen so far?

What did we learn in Artificial Intelligence I?

3. We saw some basic ways of learning from examples.

• Again, there was no real mention of uncertainty.
• Learning from labelled examples is only one kind of learning.
• We did not consider how learning might be applied to the other tasks in AI,

such as planning.

We need to look at other ways of learning.

We need to introduce uncertainty into learning.

We need to consider wider applications of learning.

4

Artificial Intelligence: what are we going to learn now?

What are we going to learn now?

In moving from logic to probability:

• We replace the knowledge base by a probability distribution that represents
our beliefs about the world.

• We replace the task of logical inference with the task of computing conditional
probabilities.

Both of these changes turn out to be considerably more complex than they sound.

Bayesian networks and Markov random fields allow us to represent
probability distributions.

Various algorithms can be used to perform efficient inference.

5

General knowledge representation and inference: the BIG PICTURE

The current approach to uncertainty in AI can be summed up in a few sentences:

Everything of interest in the world is a random variable. The probabilities asso-
ciated with RVs summarize our uncertainty.

The world: V = {V1, V2, . . . , Vn}

If the n RVs V = {V1, V2, . . . , Vn} represent everything of interest, then our
knowledge base is the joint distribution

Pr (V) = Pr (V1, V2, . . . , Vn)

6

General knowledge representation and inference: the BIG PICTURE

Say we have observed the values of a subset O = {O1, O2, . . . , Om} of m RVs.

In other words, we know that (O1 = o1, O2 = o2, . . . , Om = om).

Also, say we are interested in some subset Q of query variables.

The world: V = {V1, V2, . . . , Vn}

Q
ue

ry

Q
=
{Q

1
, Q

2
, .
. .
, Q

n
}

O
bserved

o
=
o
1 , o

2 , . . . , o
m }

Then inference corresponds to computing a conditional distribution

Pr (Q|o1, o2, . . . , om)

7

General knowledge representation and inference: the BIG PICTURE

The latent variables L are all the RVs not in the sets Q or O.

The world: V = {V1, V2, . . . , Vn}

Q
ue

ry

Q
=
{Q

1
, Q

2
, .
. .
, Q

n
}

O
bserved

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . .}

To compute a conditional distribution from a knowledge base Pr (V) we have to
sum over the latent variables

Pr (Q|o1, o2, . . . , om) =
∑

L

Pr (Q,L|o1, o2, . . . , om)

=
1

Z

∑

L

Pr (Q,L, o1, o2, . . . , om)︸ ︷︷ ︸
Knowledge base

8

General knowledge representation and inference: the BIG PICTURE

Bayes’ theorem tells us how to update an inference when new information is avail-
able.

The world: V = {V1, V2, . . . , Vn}

Q
ue

ry

Q
=
{Q

1
, Q

2
, .
. .
, Q

n
}

O
bserved

o
=
o
1 , o

2 , . . . , o
m }

Latent variables
L = {L1, L2, . . .}

For example, if we now receive a new observation O′ = o′ then

Pr (Q|o′, o1, o2, . . . , om)︸ ︷︷ ︸
After O′ observed

=
1

Z
Pr (o′|Q, o1, o2, . . . , om)Pr (Q|o1, o2, . . . , om)︸ ︷︷ ︸

Before O′ observed

9

General knowledge representation and inference: the BIG PICTURE

Simple eh?

HAH!!! No chance...

Even if all your RVs are just Boolean:

• For n RVs knowing the knowledge base Pr (V) means storing 2n numbers.

• So it looks as though storage is O(2n).

• You need to establish 2n numbers to work with.

• Look at the summations. If there are n latent variables then it appears that time
complexity is also O(2n).

• In reality we might well have n > 1000, and of course it’s even worse if
variables are non-Boolean.

And it really is this hard. The problem in general is #P-complete.

Even getting an approximate solution is provably intractible.

10

General knowledge representation and inference: the BIG PICTURE

How can we get around this?

1. You can be clever about representing Pr (V) to avoid storing all O(2n) num-
bers.

2. You can take that a step further and exploit the structure of Pr (V) in specific
scenarios to get good time-complexity.

3. You can do approximate inference.

We’ll be looking at all three. . .

11

Artificial Intelligence: what are we going to learn now?

What are we going to learn now?

By addressing AI using Bayesian Inference in this way, in addition to general
methods for making inferences:

• We get rigorous methods for supervised learning.

• We get one of the most unreasonably effective ideas in computer science: the
hidden Markov model.

• We get methods for unsupervised learning.

Bayesian supervised learning provides a (potentially) optimal method for
supervised learning.

Hidden Markov models allow us to infer (probabilistically) the state of the
world as time passes.

Mixture models form the basis of probabilistic methods for unsupervised
learning.

12

Artificial Intelligence: what are we going to learn now?

Putting it all together. . .

Ideally we want an agent to be able to:

• Explore the world to see how it works.

• Use the resulting knowledge to form a plan of how to act in the future.

• Achieve both, even when the world is uncertain.

In essence reinforcement learning algorithms allow us to do this.

In practice they often employ supervised learners as a subsystem.

13

Books

Books recommended for the course:

I suggest you make use of the recommended text for Artificial Intelligence I:

Artificial Intelligence: A Modern Approach. Stuart Russell and Peter Norvig,
3rd Edition, Pearson, 2010.

and supplement it with one of the following:

1. Pattern Recognition and Machine Learning. Christopher M. Bishop, Springer,
2006.

2. Machine Learning: A Probabilistic Perspective. Kevin P. Murphy, The MIT
Press, 2012.

The latter is more comprehensive and goes beyond this course.

Further recommended books, covering specific areas in greater detail, can be
found on the course web site.

14

What have we done so far?

We’re going to begin with a review of the material on supervised learning from
Artificial Intelligence I.

Cuteness

Furryness

Evil Robot hates kittens, and consequently wants to build a kitten detector.

He thinks he can do this by measuring cuteness and furryness.

15

What have we done so far?

Provided he has some examples labelled as kitten or not kitten. . .

Cuteness

Furryness

. . . this seems sufficient to find a region that identifies kittens.

16

What have we done so far?

Of course, when put into practice. . .

Cuteness

Furryness

. . . some non-kittens will be labelled as kittens.

17

What have we done so far?

And conversely. . .

Cuteness

Furryness

. . . some kittens will be labelled as non-kittens.

18

Kinds of learning: supervised learning

Supervised learning:

We have m vectors x1,x2, . . . ,xm each in Rn.

We have corresponding labels {y1, y2, . . . , ym} each in a set Y .

We wish to find a hypothesis h : Rn → Y that can be used to predict y from x.

This may itself be defined by a vector w of weights.

To make the latter point clear the hypothesis will be written hw(x).

If it can do this well it generalizes.

• If Y = R or some other set such that the output can be regarded as continuous
then we’re doing regression.

• If Y has a finite number K of categories, so Y = {c1, c2, . . . , cK} then we are
doing classification.

• In the case of classification, we might alternatively treat Y as a random vari-
able (RV), and find a hypothesis hw : Rn → [0, 1] of the form

hw(x) = Pr (Y = ci|x) .

19

What have we done so far?

Supervised learning is essentially curve fitting:

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

Target and data

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 2

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 3

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 7

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 10

The key issue is to choose the correct degree of complexity.

20

What have we done so far?

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

Target and data

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 2

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 3

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 7

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 10

The training data is s =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]
.

Fit a polynomial

hw(x) = w0 + w1x + w2x
2 + · · · + wdx

d

by choosing the weights wi to minimize

E(w) =
1

2

m∑

i=1

(yi − hw(xi))
2.

The degree d sets how complex the fitted function can be.

21

What have we done so far?

Real problems tend to have more than 1 input.

We can solve problems like this using a perceptron:

∑n
i=0wixi σ

a
z = σ(a) = hw(x)

x0 = 1

w0

x1
w1

x2
w2

xn

wn

The trick is the same: select the weights wi to minimize some measure of
error E(w) on some training examples.

22

What have we done so far?

If we use a very simple function σ(x) = x then we’re back to polynomials with
d = 1 and now

E(w) =
1

2

m∑

i=1

(yi −wTxi)
2

If we can find the gradient ∂E(w)
∂w of E(w) then we can minimize the error using

gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

23

What have we done so far?

Gradient descent: the simplest possible method for minimizing such functions:

-200

20

0

200

20

f
(x
)

400

x2

0

x1

0

-20 -20

λ = 0.1

-20 0 20

x1

-20

-10

0

10

20

x
2

λ = 0.6

-20 0 20

x1

-20

-10

0

10

20

x
2

λ = 0.8

-20 0 20

x1

-20

-10

0

10

20

x
2

λ = 0.9

-20 0 20

x1

-20

-10

0

10

20

x
2

λ = 1.0

-20 0 20

x1

-20

-10

0

10

20

x
2

Take small steps downhill until you reach the minimum.

But remember: there might be many minima.

Some minima might be local and some global.

The step size matters.

24

What have we done so far?

For a perceptron with σ(x) = (x) this is easy:

∂E(w)

∂wj
=

1

2

∂

∂wj

(
m∑

i=1

(yi −wTxi)
2

)

=

m∑

i=1

(
(yi −wTxi)

∂

∂wj

(
−wTxi

))

= −
m∑

i=1

(
yi −wTxi

)
x
(j)
i

where x
(j)
i is the jth element of xi. So:

∂E(w)

∂w
= −

m∑

i=1

(yi −wTxi)xi

25

The multilayer perceptron

Real problems tend also to be nonlinear.

We can combine perceptrons to make a multilayer perceptron:

Here, each node is a perceptron and each edge has a weight attached.

26

The multilayer perceptron

• The network computes a function hw(x).

• The trick remains the same: minimize an error E(w).

• We do that by gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

• This can be achieved using backpropagation.

• Backpropagation is just a method for computing ∂E(w)/∂w.

27

Backpropagation

I want to emphasize the last three statements:

Backpropagation is just a method for computing ∂E(w)/∂w.

It’s needed because we’re doing gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

In supervised learning, you can get quite a long way using a multilayer perceptron.

If you understand backpropagation, you already know the key idea needed for
stuff involving the word ‘deep’.

But this is a long way from being the full story.

28

Kinds of learning: unsupervised learning

What if we have no labels?

Unsupervised learning: we have m vectors x1,x2, . . . ,xm each in Rn . . .

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

. . . and we want to find some regularity.

29

Kinds of learning: semi-supervised learning

Semi-supervised learning: we have the same labelled data as for supervised learn-
ing, but. . .

. . . in addition a further m′ input vectors x′1, . . . ,x
′
m′.

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Labelled data only

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Labelled and unlabelled data

We want to use the extra information to improve the hypothesis obtained.

30

Kinds of learning: reinforcement learning

What if we want to learn from rewards rather than labels?

Reinforcement learning works as follows.

1. We are in a state and can perform an action.

2. When an action is performed we move to a new state and receive a reward.
(Possibly zero or negative.)

3. New states and rewards can be uncertain.

4. We have no knowledge in advance of how actions affect either the new state
or the reward.

5. We want to learn a policy. This tells us what action to perform in any state.

6. We want to learn a policy that in some sense maximizes reward obtained over
time.

Note that this can be regarded as a form of planning.

31

Matrix notation

We denote by Rn the set of n-dimensional vectors of reals, and by the set Rm×n

the set of m (rows) by n (columns) matrices of reals.

Vectors are denoted using lower-case bold and matrices in upper-case bold.

It is conventional to assume that vectors are column vectors and to denote the
transpose using superscripted T . So for x ∈ Rn we write

xT =
[
x1 x2 · · · xn

]

and for X ∈ Rm×n we write

X =




x11 x12 · · · x1n
x21 x22 · · · x2n

...
xm1 xm2 · · · xmn




Denote by Xi? and X?j the ith row and jth column of X respectively.

32

Matrix notation

If we have m vectors x1,x2, . . . ,xm then the jth element of the ith vector is x
(j)
i .

We may also form the matrix

X =




xT1
xT2...
xTm


 =




x
(1)
1 x

(2)
1 · · · x

(n)
1

x
(1)
2 x

(2)
2 · · · x

(n)
2...

x
(1)
m x

(2)
m · · · x

(n)
m




Similarly we can write
XT =

[
x1 x2 · · · xm

]

The identity matrix is as usual

I =




1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1




The inverse of X is X−1 and its determinant is |X|.

33

General notation

An RV can take on one of a set of values. For example, X is an RV with values
{x1, x2, . . . , xn}.
By convention random variables (RVs) are denoted using upper-case and their
values using lower-case.

The probability that X takes a specific value x ∈ {x1, x2, . . . , xn} is Pr (X = x).
This will generally be abbreviated to just Pr (x)

Sometimes we need to sum over all possible values. We write this using the usual
notation. So for example the expected value of X is

E [X] =
∑

x∈X
xPr (x) =

∑

X

XPr (X) .

We extend this to vector-valued RVs in the obvious way.

So for example we might define an RV X taking values in Rn and refer to a specific
value x ∈ Rn.

(But remember: asking about something like Pr (X = x) now makes little sense
if x ∈ Rn.)

34

General notation for supervised learning

• Inputs are in n dimensions and are denoted by

xT =
[
x1 x2 · · · xn

]

Each element xi is a feature.

• A training sequence has m elements. The m inputs are x1, . . . ,xm and can be
collected into the matrix

X =




xT1
xT2...
xTm




• The labels in the training sequence are denoted by

yT =
[
y1 y2 · · · ym

]

with each yi in a set Y depending on the type of problem.

35

General notation for supervised learning

• For regression problems we have Y = R.

• For classification problems with two classes we have Y = B.

• For two classes it is sometimes convenient to use labels {+1,−1} and some-
times {0, 1}. We shall therefore denote these sets by B and rely on the context.

• For classification problems with K > 2 classes we have Y = {c1, . . . , cK}.

Inputs and labels are collected together and written

sT =
[
(x1, y1) (x2, y2) . . . (xm, ym)

]
.

This is the training sequence.

36

Machine Learning and Bayesian Inference

Major subject number one:

Making learning probabilistic.

It will turn out that in order to talk about optimal methods for machine
learning we’ll have to put it into a probabilistic context.

As a bonus, this leads to a much better understanding of what happens when
we choose weights by minimizing an error function.

And it turns out that choosing weights in this way is suboptimal. . .

. . . although, intriguingly, that’s not a reason not to do it.

37

Probabilistic models for generating data

I’m going to start with a very simple, but very informative approach.

Typically, we can think of individual examples as being generated according to
some distribution p(X, Y).

We generally make the simplifying assumption that examples are independent and
identically distributed (iid). Thus the training data

sT =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]

represents m iid samples from the relevant distribution.

As the examples are iid we can write

p(s) =
m∏

i=1

p(xi, yi).

38

Example: simple regression

Here’s how I generated the regression data for the initial examples:

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

Target and data

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 2

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 3

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 7

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 10

We have spoken of an unknown underlying function f used to generate the data.
In fact, this is the hypothesis hw that we want to identify by choosing w.

I chose hw to be a polynomial with parameters w — this is the dashed blue
line.

So in fact the unknown function is hw(x), emphasizing that w determines a
specific function f .

Remember: you don’t know what w is: you need to identify it by analysing s.

39

The Normal Distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

p
(x
)

Gaussian, d = 1, mean and variance (0, 1), (1, 0.5) and (−3, 5).

In 1 dimension N (µ, σ2) is

p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)

with mean µ and variance σ2.

40

Example: simple regression

To make s:

For the ith example:

1. I sampled xi according to the uniform density on [0, 3]. So there is a distribution
p(x).

2. I computed the value hw(xi).

3. I sampled εi ∼ N (0, σ2) with σ2 = 0.1 and formed yi = hw(xi) + εi.

Combining steps 2 and 3 gives you p(yi|xi,w).

p(yi|xi,w) = N (hw(xi), σ
2)

=
1√
2πσ2

exp

(
− 1

2σ2
(yi − hw(xi))

2

)
.

41

The likelihood function

The quantity p(yi|xi,w) is important: it is known as the likelihood.

You will sometimes see it re-arranged and written as the likelihood function

L(w|xi, yi) = p(yi|xi,w).

Note that its form depends on how you model the data. There are different likeli-
hood functions depending on what assumptions you make.

Now let’s image w is fixed (but hidden!) from the outset and extend the
likelihood to the whole data set s. . .

42

The likelihood function

The likelihood for the full data set is:

p(s|w) =

m∏

i=1

p(xi, yi|w)

=

m∏

i=1

p(yi|xi,w)p(xi|w)

=

m∏

i=1

p(yi|xi,w)p(xi)

The last step involves the reasonable assumption that xi itself never depends on
w.

43

Maximizing likelihood

This expression, roughly translated, tells us how probable the data s would be if
a particular vector w had been used to generate it.

This immediately suggests a way of choosing w:

Choose

wopt = argmax
w

p(s|w).

This is called (surprise surprise) a maximum likelihood algorithm.

How would we solve this maximization problem?

44

Maximizing likelihood

This is surprisingly easy:

wopt = argmax
w

p(s|w)

= argmax
w

(
m∏

i=1

p(yi|xi,w)p(xi)

)

= argmax
w

(
m∑

i=1

log p(yi|xi,w) +

m∑

i=1

log p(xi)

)

= argmax
w

m∑

i=1

log p(yi|xi,w)

We’ve used three standard tricks:

1. To maximize something you can alternatively maximize its logarithm.

2. Logarithms turn products into sums.

3. You can drop parts of the expression that don’t depend on the variable you’re
maximizing over

45

Maximizing likelihood

Then:

wopt = argmax
w

[
m∑

i=1

log
1√
2πσ2

− 1

2σ2

m∑

i=1

(
1

2σ2
(yi − hw(xi))

2

)]

= argmin
w

1

2

m∑

i=1

(yi − hw(xi))
2

So we’ve just shown that:

To choose w by maximizing likelihood. . .

. . . we minimize the sum of squared errors.

Result!

46

Maximizing likelihood

It’s worth reflecting on that for a moment:

• Originally, we plucked

E(w) =

m∑

i=1

(yi − hw(xi))
2

pretty much out of thin air because it seemed to make sense.

• We’ve just shown that hidden inside it is an assumption: that noise in the data
is Gaussian.

• We’ve also uncovered a second assumption: that maximizing the likelihood is
the right thing to do.

Of course, assumptions such as these are open to question. . .

47

Maximizing the posterior

For example, what if we don’t regard w as being fixed in advance but instead
make it an RV as well?

That means we need a distribution p(w), generally known as the prior on w. How
about our old friend the normal? In d dimensions w ∼ N (µ,Σ) looks like

0

0.05

5

0.1

0.15

5

p
(x
)

0.2

Gaussian, d = 2, µT = [0 0], Σ =

[

1 0
0 1

]

x2

0.25

0

x1

0.3

0

-5 -5

0

0.05

5

0.1

0.15

5

p
(x
)

0.2

Gaussian, d = 2, µT = [2.5 1], Σ =

[

0.5 1.1
1.1 3

]

x2

0.25

0

x1

0.3

0

-5 -5

p(w) =
1√

|Σ|(2π)d
exp

(
−1
2
(w − µ)TΣ−1(w − µ)

)

with mean vector µ and covariance matrix Σ.

48

Maximizing the posterior

This suggests another natural algorithm for choosing a good w, called the maxi-
mum a posteriori (MAP) algorithm. Let’s choose w ∼ N (0, λ−1I) so

p(w) =
1√

λ−d(2π)d
exp

(
−λ
2
wTw

)

Then

wopt = argmax
w

p(w|s)

= argmax
w

p(s|w)p(w)

p(s)

= argmax
w

[log p(s|w) + log p(w)]

The maximization of log p(s|w) proceeds as before, and we end up with

wopt = argmin
w

[
1

2

m∑

i=1

(
(yi − hw(xi))

2
)
+
λ

2
||w||2

]
.

49

Maximizing the posterior

This appears in the literature under names such as weight decay.

• It was often proposed, again on the basis that it seemed sensible, as a sensible-
looking way of controlling the complexity of hw.

• The idea was to use λ to achieve this.

• We’ll be seeing later how to do this.

Once again, we can now see that it hides certain assumptions.

In addition to the assumptions made by maximum likelihood:

• We are assuming that some kinds of w are more likely than others.

• We are assuming that the distribution governing this is Gaussian.

And again, these assumptions may or may not be appropriate.

50

The likelihood for classification problems

For regression problems just adding noise to the labels seems reasonable:

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

Target and data

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 2

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 3

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 7

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

d = 10

The likelihood p(y|x,w) is in fact a density and can take any value in R as long
as the density is non-negative and integrates to 1.

(Think of the Gaussian as usual. . .).

But what about for classification problems?

51

The likelihood for classification problems

For simplicity, let’s just consider two-class classification with labels in {0, 1}.
For a classification problem the likelihood is now a distribution Pr (Y |x,w). It
has two non-negative values, and

Pr (Y = 1|x,w) = 1− Pr (Y = 0|x,w) .

So you can’t just add noise to the underlying hw.

Fix: define the likelihood as

Pr (Y = 1|x,w) = σθ(hw(x))

and use something like

σθ(z) =
1

1 + exp(−θz)
to impose the above property.

52

The likelihood for classification problems

-5 -4 -3 -2 -1 0 1 2 3 4 5

z

0

0.2

0.4

0.6

0.8

1

σ
θ
(z
)

Sigmoid function for values of θ from 1 to 5

-0.5 0 0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0

0.5

1

Target and data for probabilistic classification

53

The likelihood for classification problems

-2

10

-1.5

-1

105

-0.5

8

P
r(
x
is
in

C
1
)

6

0

Logistic σθ(z) applied to the output of a linear function

Input x2

40

0.5

2

Input x1

0

1

-2
-5

-4
-6

-8
-10 -10

54

The likelihood for classification problems

So: if we’re given a training sequence s, what is the probability that it was gener-
ated using some w?

For an example (x, y)

Pr (Y |x,w) =

{
σθ(hw(x)) if Y = 1

1− σθ(hw(x)) if Y = 0

Consequently when Y has a known value we can write

Pr (Y |x,w) = [σθ(hw(x))]
Y [1− σθ(hw(x))]

(1−Y)

If we assume that the examples are iid then the probability of seeing the labels in
a training sequence s is straightforward.

55

The likelihood for classification problems

The likelihood is now

p(s|w) =

m∏

i=1

p(yi|xi,w)p(xi)

=

m∏

i=1

[σθ(hw(xi))]
yi [1− σθ(hw(xi))]

(1−yi) p(xi)

where the first line comes straight from an earlier slide.

Note that:

• Whereas previously we had the noise variance σ2 we now have the parameter
θ. Both serve a similar purpose.

• From this expression we can directly derive maximum-likelihood and MAP
learning algorithms for classifiers.

56

The next step...

We have so far concentrated throughout our coverage of machine learning on
choosing a single hypothesis.

Are we asking the right question though?

Ultimately, we want to generalise.

This means finding a hypothesis that works well for previously unseen
examples.

That means we have to define what good generalization is and ask what
method might do it the best.

Is it reasonable to expect a single hypothesis to provide the optimal answer?

We need to look at what the optimal solution to this kind of problem might be...

57

Bayesian decision theory

What is the optimal approach to this problem?

Put another way: how should we make decisions in such a way that the outcome
obtained is, on average, the best possible? Say we have:

• Attribute vectors x ∈ Rd.

• A set of K classes {c1, . . . , cK}.
• A set of L actions {α1, . . . , αL}.

There is essentially nothing new here.

The actions can be thought of as saying ‘assign x to class c1’ and so on. We may
have further actions, for example the action ‘I don’t know how to classify x’.

There is also a loss λij associated with taking action ai when the class is in
fact cj.

Sometimes we will need to write λ(ai, cj) for λij.

58

Bayesian decision theory

The ability to specifiy losses in this way can be important, For example:

• In learning to diagnose cancer we might always assign a loss of 0 when the
action is ‘say the patient has cancer’, assuming the patient does in fact have
cancer.

• A loss of 0 is also appropriate if we take action ‘say the patient is healthy’
when the patient actually is healthy.

• The subtlety appears when our action is wrong. We should probably assign a
bigger penalty (higher loss) if we tell a patient they are heathy when they’re
sick, than if we tell a patient they’re sick when they’re healthy.

Having extra actions can also be useful.

Also, sometimes we want the system to defer to a human.

59

Bayesian decision theory

Say we can further model the world as follows:

• Classes have probabilities Pr (C) of occurring.

• There are probability densities p(X|C) for seeing X when the class is C.

So now we have a slightly different, though equivalent way of modelling how
labelled examples are generated: nature chooses classes at random using Pr (C)
and selects a vector using p(X|C).

p(X, C) = p(X|C)Pr (C)︸ ︷︷ ︸
current model

= Pr (C|X) p(X)︸ ︷︷ ︸
previous model

As usual Bayes rule tells us that

Pr (C|X) =
1

Z
p(X|C)Pr (C)

where

Z = p(X) =

K∑

i=1

p(X|ci)Pr (ci) .

60

Bayesian decision theory

Say nature shows us x and we take action ai.

If we always take action ai when we see x then the average loss on seeing x is

R(ai|x) = Ec∼p(C|x) [λij|x] =
K∑

j=1

λijPr (cj|x) .

The quantity R(ai|x) is called the conditional risk.

Note that this particular x is fixed.

61

Bayesian decision theory

Now say we have a decision rule D : Rd → {a1, . . . , aL} telling us what action to
take on seeing any x ∈ Rd.

The average loss, or risk, is

R = E(x,c)∼p(X,C) [λ(D(x), c)]

= Ex∼p(X)

[
Ec∼Pr(C|x) [λ(D(x), c)|x]

]

= Ex∼p(x) [R(D(x)|x)]
=

∫
R(D(x)|x)p(x)dx.

Here we have used the standard result from probability theory that

E [E [X|Y]] = E [X] .

(See the supplementary notes for a proof.)

62

Bayesian decision theory

Clearly the risk is minimised by the following decision rule:

Given any x ∈ Rd: D(x) outputs the action ai that minimises R(ai|x)
This D provides us with the minimum possible risk, or Bayes risk R?.

The rule specified is called the Bayes decision rule.

63

Example: minimum error rate classification

In supervised learning our aim is often to work in such a way that we minimise the
probability of making an error when predicting the label for a previously unseen
example.

What loss should we consider in these circumstances?

From basic probability theory, we know that for any event E

Pr (E) = E [I [E]]

where I [] denotes the indicator function

I [E] =

{
1 if E happens
0 otherwise

.

(See the supplementary notes for a proof.)

64

Example: minimum error rate classification

So if we are addressing a supervised learning problem with

• K classes {c1, . . . , cK}.
• L = K corresponding actions {a1, . . . , aK}
• We interpret action ai as meaning ‘the input is in class ci’.

• The loss is defined as

λij =

{
1 if i 6= j

0 otherwise

then. . .

The risk R is

R = E(x,c)∼p(X,C) [λ(D(x), C)]

= Pr (D(x) chooses the wrong class)

so the Bayes decision rule minimises the probability of error.

65

Example: minimum error rate classification

What is the Bayes decision rule in this case?

R(ai|x) =
K∑

j=1

λijPr (cj|x))

=
∑

i 6=j
Pr (cj|x))

= 1− Pr (ci|x)
so D(x) should be the class that maximises Pr (C|x).

THE IMPORTANT SUMMARY: Given a new x to classify, choosing the class
that maximises Pr (C|x) is the best strategy if your aim is to minimize the

probability of error.

66

Bayesian supervised learning

But what about the training sequence s?

Shouldn’t the Bayes optimal classifier depend on that as well?

• Yes, it should if there is uncertainty about the mechanism used to generate the
data.

• (All of the above assumes that the mechanism is fixed, so seeing examples has
no effect on the optimal classifer.)

• In our case we don’t know what underlying h was used. There is a prior p(h).

• If you carry through the above derivation letting the conditional risk be condi-
tional on both x and s then you find that. . .

• . . . to minimize error probability you should maximize Pr (C|x, s).

You should now work through the related exercise.

67

Bayesian supervised learning

But the uncertain underlying hypothesis h used to assign classes still doesn’t ap-
pear!

Well, we want to maximize Pr (C|x, s):

Pr (C|x, s) =
∑

h

Pr (C, h|x, s)

=
∑

h

Pr (C|h,x, s)Pr (h|x, s)

=
∑

h

Pr (C|h,x)︸ ︷︷ ︸
Likelihood

Pr (h|s)︸ ︷︷ ︸
Posterior

.

Here we have re-introduced h using marginalisation.

68

Bayesian supervised learning

So our classification should be

C = argmax
C∈{c1,...,cK}

∑

h

Pr (C|h,x))Pr (h|s)

Of course, when dealing with hypotheses defined by weights w the sum becomes
an integral

C = argmax
C∈{c1,...,cK}

∫

RW
Pr (C|w,x)Pr (w|s) dw

where W is the number of weights. The key point:

• You can also write these equations in the form

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

• We are not choosing a single h.

• We are averaging the predictions of all possible functions h.

• In doing this we are weighting according to how probable they are.

69

A word of caution

We know the optimal classifier, so we’ve solved supervised learning right?

WRONG!!!

In practice, solving

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

is intractible in all but the simplest of cases.

Thou shalt beware Bayesians bearing gifts.

They may well be too good to be true. . .

70

Machine Learning and Bayesian Inference

Major subject number two:

The road to Support Vector Machines (SVMs).

It is worth remembering that not all state-of-the-art machine learning is inherently
probabilistic.

There is good reason for this: you can almost never actually compute

C = argmax
C∈{c1,...,cK}

Eh∼Pr(h|s) [Pr (C|h,x)]

So before we go any further, let’s see how far it’s possible to get using only
linear methods.

This is generally a good idea.

Why? Because linear methods are EASY!

71

The problem with linear classifiers

Purely linear classifiers or regressors are great for some problems but awful for
others:

-1 -0.5 0 0.5 1 1.5 2

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

Linearly separable data

-1 -0.5 0 0.5 1 1.5 2

x1

-1

-0.5

0

0.5

1

1.5

2

x
2

Simple, but not linearly separable, data

This example actually killed neural network research for many years.

72

The kernel trick

One way of getting around this problem is to employ the kernel trick:

-0.5

1.5

0

1 1.5

0.5

x
1
x
2

Data from second graph, now more linearly seperable

1

1

x2

0.5

x1

1.5

0.5
0

0

-0.5 -0.5

Map the data into a bigger space and hope it’s more separable there.

Here, we’ve added one new dimension by introducing a new feature equal to x1x2.

73

The kernel trick

Here is a linear hypothesis learned to separate the two classes in the new space.

This was obtained using the Iterative Recursive Least Squares (IRLS) algorithm.

We’ll be deriving this in a moment. . .

74

Linear classifiers

We’ve already seen the linear classifier

hw(x) = σ

(
w0 +

n∑

i=1

wixi

)

Or hw(x) = σ(wTx) if we add an extra element having constant value 1 to x.

Make it nonlinear by introducing basis functions φi:

ΦT (x) =
[
φ1(x) φ2(x) · · · φk(x)

]

hw(x) = σ

(
w0 +

k∑

i=1

wiφi(x)

)

or assuming there’s a basis function φ(x) = 1

hw(x) = σ(wTΦ(x)).

75

Linear regression

We’ve already seen linear regression. We use σ(x) = x and we have training data

sT =
[
(x1, y1) (x2, y2) · · · (xm, ym)

]
.

I want to minimize

E(w) =
1

2

m∑

i=1

(yi − h(xi,w))2.

Last year we would have found the gradient of E(w) and used gradient descent

wt+1 = wt − λ
∂E(w)

∂w

∣∣∣∣
wt

.

But for linear regression there is an easier way. We can directly solve the
equation

∂E(w)

∂w
= 0.

76

Calculus with matrices

It is much easier to handle this kind of calculation in matrix/vector format than by
writing it out in full.

For example, if a and x are both vectors in Rn we can verify that

∂aTx

∂x
=
[
∂aTx
∂x1

∂aTx
∂x2
· · · ∂aTx

∂xn

]T
= a

because for each element xj

∂aTx

∂xj
=

∂

∂xj
(a1x1 + a2x2 + · · · + anxn) = aj

You should verify for yourself that most standard manipulations involving
derivatives carry over directly.

Exercise: Show that if A ∈ Rn×n is symmetric then

∂xTAx

∂x
= 2Ax

77

Linear regression

Write

Φ =




ΦT (x1)

ΦT (x2)
...

ΦT (xm)




so

E(w) =
1

2
(y −Φw)T (y −Φw)

=
1

2

(
yTy − 2yTΦw + wTΦTΦw

)

and
∂E(w)

∂w
= ΦTΦw −ΦTy

78

Linear regression

So the optimum solution is obtained by solving

ΦTΦw = ΦTy

giving

wopt = (ΦTΦ)−1ΦTy

This is the maximum likelihood solution to the problem, assuming noise is Gaus-
sian.

Recall that we can also consider the maximum a posteriori (MAP) solution. . .

79

Linear regression: the MAP solution

We saw earlier that to get the MAP solution we minimize the error

E(w) =
1

2

m∑

i=1

(
(yi − hw(xi))

2
)
+
λ

2
||w||2.

It is an exercise to show that the solution is:

wopt = (ΦTΦ + λI)−1ΦTy

This is regularized linear regression or ridge regression.

80

Linear regression: the MAP solution

This can make a huge difference.

Revisiting our earlier simple example and training using different values for λ:

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

Target and data

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

λ = 0

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

λ = 0.1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

λ = 1

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

λ = 10

0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

λ = 100

How can we choose λ? We’ll address this a little later. . .

81

Iterative re-weighted least squares

What about if we’re classifying rather than doing regression?

We now need to use a non-linear σ, typically the sigmoid function, so

hw(x) = σθ(w
TΦ(x)).

We saw earlier that to get the maximum likelihood solution we should maximize
the likelihood

p(s|w) =

m∏

i=1

[
σθ(w

TΦ(xi))
]yi [1− σθ(wTΦ(xi))

](1−yi) p(xi).

Assuming you’ve been completing the exercises you now know that this
corresponds to minimizing the error

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.

82

Iterative re-weighted least squares

Introducing the extra nonlinearity means we can no longer minimize

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.

just by computing a derivative and solving. (Sad, but I suggest you get used to it!)

We need to go back to an iterative solution: this time using the Newton-Raphson
method.

Given a function f : R→ R, to find where f (x) = 0 iterate as

xt+1 = xt −
f (xt)

f ′(xt)
.

Obviously, to find a minimum we can iterate as

xt+1 = xt −
f ′(xt)

f ′′(xt)
.

This works for 1 dimension. How about many dimensions?

83

Iterative re-weighted least squares

The Newton-Raphson method generalizes easily to functions of a vector:

To minimize E : Rn → R iterate as follows:

wt+1 = wt −H−1(wt)
∂E(w)

∂w

∣∣∣∣
wt

.

Here the Hessian is the matrix of second derivatives of E(w)

Hij(w) =
∂2E(w)

∂wi∂wj
.

All we need to do now is to work out the derivatives. . .

84

Iterative re-weighted least squares

E(w) = −
[

m∑

i=1

yi log σθ(w
TΦ(xi)) + (1− yi) log(1− σθ(wTΦ(xi)))

]
.

Simplifying slightly we use θ = 1 and define zi = σ(wTΦ(xi)). So

∂E(w)

∂wk
= −

[
m∑

i=1

yi
1

zi

∂zi
∂wk

+ (1− yi)
−1

1− zi
∂zi
∂wk

]

=

m∑

i=1

∂zi
∂wk

(
1− yi
1− zi

− yi
zi

)

=

m∑

i=1

∂zi
∂wk

zi − yi
zi(1− zi)

.

85

Iterative re-weighted least squares

So
∂E(w)

∂wk
=

m∑

i=1

∂zi
∂wk

zi − yi
zi(1− zi)

.

Thus using the fact that
σ′(.) = σ(.)(1− σ(.))

we have
∂zi
∂wk

=
∂

∂wk
σ(wTΦ(xi)) = zi(1− zi)φk(xi)

and therefore

∂E(w)

∂w
= ΦT (z− y).

86

Iterative re-weighted least squares

It is an exercise to show that

Hij(w) =

m∑

i=1

zi(1− zi)φk(xi)φj(xi)

and therefore

H(w) = ΦTZΦ

where Z is a diagonal matrix with diagonal elements zi(1− zi).
This gives us the iterative re-weighted least squares algorithm (IRLS)

wt+1 = wt −
[
ΦTZΦ

]−1
ΦT (z− y).

87

Iterative re-weighted least squares

88

