
L41: Lab 2 - IPC

Dr Robert N. M. Watson and Dr Graeme Jenkinson

22 November 2016

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 1 / 11



Introduction

L41: Lab 2 - Kernel implications of IPC

I A quick note on vm_fault()

I Learn about (and trace) POSIX IPC
I Explore buffering and scheduler interactions
I Measure the probe effect

I This is the first of two labs contributing to Lab Report 2:
I Lab 2 takes an OS-centric approach
I Lab 3 takes a microarchitecture-centric approach

I Use data from both to write the lab report

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 2 / 11



Introduction

Recall: A (kernel) programmer model for VM

Machine-independent virtual memory (VM) Machine-dependant physical map (PMAP)

page

Read/write, 
grows down, 
anonymous 

objectSt
ac

k

Read/write, 
anonymous 

objectH
ea

p
Li

br
ar

y Read/copy-on-
write, named 

object

C
od

e Read/copy-on-
write, named 

object

“vmspace”,
“vm_map”

“vm_map_entry”

anonymous
swap-backed

VM object

vnode
VM object

page

“vm_object”

shadow 
anonymous

swap-backed
VM object

page
page

“vm_page”

swap pager

page
page

swap pager

vnode pager

“vm_pager”

vnode
“/bin/dd”

page
page

pte

data

data

data

code

codepage-table
directory

page-table
entry

superpage
data

pte

pde

pte
pte
pte

pte
pte

pte

physical
map

pde

pde

“pmap”

physical
memory

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 3 / 11



Introduction

The Mach VM fault handler (vm_fault)
I Key goal of the Mach VM system: be as lazy as possible

I Fill pages (with file data, zeroes, COW) on demand
I Map pages into address spaces on demand
I Flush TLB as infrequently as possible

I Any work avoided means reduced CPU cycles and less disk I/O
I Avoid as much work as possible when creating a mapping

(e.g., mmap(), execve())

I Instead, do on-demand in the MMU trap handler, vm_fault()
I Machine-independent function drives almost all VM work
I Input: faulting virtual address, output mapped page or signal
I Look up object to find cached page; if none, invoke pager
I May trigger behaviour such as zero filling or copy-on-write

I A good thing to probe with DTrace to understand VM traps

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 4 / 11



Introduction

The benchmark
[guest@beaglebone ~/ipc] ./ipc-static
ipc-static [-Bqsv] [-b buffersize] [-i pipe|local] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes

Optional flags:
-B Run in bare mode: no preparatory activities
-i pipe|local Select pipe or socket for IPC (default: pipe)
-q Just run the benchmark, don’t print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify a buffer size (default: 131072)
-t totalsize Specify total I/O size (default: 16777216)

I Simple, bespoke IPC benchmark: pipes and sockets
I Statically or dynamically linked
I Adjust user and kernel buffer sizes
I Various output modes

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 5 / 11



Introduction

The benchmark (2)

I Three operational modes:
1thread IPC within a single thread of a single process
2thread IPC between two threads of a single process

2proc IPC between two threads in two processes
I Adjust IPC parameters:

-i pipe Use pipe() IPC
-i local Use socketpair() IPC
-b size Set user IPC buffer size
-t size Set total size across all IPCs

-s Also set in-kernel buffer size for sockets
-B Suppress quiescence (whole-program tracing)

I Output flags:
-q Suppress all output (whole-program tracing)
-v Verbose output (interactive testing)

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 6 / 11



Introduction

The benchmark (3)

[guest@beaglebone ~/ipc]$ ./ipc-static -v -i pipe 1thread
Benchmark configuration:

buffersize: 131072
totalsize: 16777216
blockcount: 128
mode: 1thread
ipctype: pipe
time: 0.033753791

485397.29 KBytes/sec

I Use verbose output
I Use pipe IPC
I Run benchmark in a single thread
I Use default buffersize of 128K, totalsize of 16M

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 7 / 11



Introduction

Exploratory questions – baseline performance

1. How do the various benchmark configurations perform?
2. How do return values from read() and write() vary?
3. How does setting the socket-buffer size impact performance?
4. How much time do pipes vs. sockets spend in system calls?
5. How do context-switch rates vary across configurations?

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 8 / 11



Introduction

Laboratory 2 - Jupyter template

1. Updated SD card with Jupyter template for lab 2.
2. Updated template uses the benchmark‘s throughput measure.
3. Can use DTrace, matplotlib and pandas exactly as in lab1.
4. Note: can open lab1 and lab2 templates simultaneously.

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 9 / 11



Introduction

Experimental questions for the lab report

The full lab-report assignment will be distributed during the next lab.

These questions are intended to help you gather data that you will
need for that lab report:

I How does changing the buffer size affect IPC performance – and
why? For sockets, consider both with, and without, the -s flag.

I Is using multiple threads faster or slower than using multiple
processes?

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 10 / 11



Introduction

This lab session

Use this session to continue to build experience:

I Build and use the IPC benchmark
I Use DTrace to analyse distributions of system calls, system-call

execution times, and system-call arguments and return values
I Use Jupyter/Python to analyse benchmark results

Do ask us if you have any questions or need help

Dr Robert N. M. Watson and Dr Graeme Jenkinson L41: Lab 2 - IPC 22 November 2016 11 / 11


	Introduction

