The Network Stack (2)

L41 Lecture 6
Dr Robert N. M. Watson
27 January 2017

Reminder: Last time

Rapid tour across hardware and software:

* Networking and the sockets API

* Network-stack design principles: 1980s and today
* Memory flow across hardware and software

* Network-stack construction and work flows

* Recent network-stack research

L41 Lecture 6 — The Network Stack (2)

1/27/17

This time: The Network Stack (2)

* The Transmission Control Protocol (TCP)
* The TCP state machine
* TCP congestion control
* TCP implementations and performance
* The evolving TCP stack
* Labs4 +5o0n TCP

* Wrapping up the L41 lecture series

L41 Lecture 6 — The Network Stack (2)

The Transmission Control Protocl (TCP)

* V. Cerf, K. Dalal, and C.
Sunshine, Transmission
Control Protocol (version
1), INWG General Note
#72, December 1974.

* In practice: J. Postel, Ed.,
Transmission Control
Protocol: Protocol
Specification, RFC 793,
September, 1981.

L41 Lecture 6 — The Network Stack (2)

1/27/17

TCP principles and properties

Node A Node B
CLOSED LoSED
TT——sw
SYN SENT A

«—— SYN/ACK—
—_
ACK —

SYN RCVD

«— DATA/ACK—
=
ACK —

T DATA/ACK —,
T DATA/ACK —,

—
«— ACK

———FIN/ A
FIN WAIT-1 KCK,/‘

<« AC CLOSE WAIT
FIN WAIT-2 K—

«— FIN/AC

ek LAST ACK
TIME WAIT I

CLOSED

CLOSED

* Network may delay, (reorder),
drop, corrupt packets

* TCP: Reliable, ordered, stream
transport protocol over IP

* Three-way handshake:
SYN / SYN-ACK / ACK (mostly!)

* Sequence numbers ACK'd

* Round-Trip Time (RTT)
measured to time out loss

* Data retransmitted on loss

* Flow control via advertised
window size in ACKs

* Congestion control (‘fairness’)
detects congestion via loss

L41 Lecture 6 — The Network Stack (2)

TCP congestion control and avoidance

Figure 4: Startup behavior of TCP with Slow-start

na

/

0 120 10 180

Iy
.
BN

Packat Sequence Number (KB)
0

o
~

2
~

Sand Time (soc)

‘Same conditions as the previous figure (same time of day, same Suns, same network path,
same buffer and window sizes), except the machines were running the 4.3*TCP with slow-
start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start
s the effective bandwidth of this part of the trace is 16 KBps — two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is
20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., f this
trace had run a minute, the effective bandwidth would have been 19 KBps. The effective
bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

* 1986 Internet CC collapse
* 32Kbps - 40bps

* Van Jacobson, SIGCOMM 1988
* Don’t send more data than the
network can handle!
* Conservation of packets via
ACK clocking

* Exponential retransmit timer,
slow start, aggressive receiver
ACK, and dynamic window
sizing on congestion

« ECN (RFC 3168), ABC (RFC
3465), Compound (Tan, et al,

INFOCOM 2006), Cubic (Rhee
and Xu, ACM OSR 2008)

L41 Lecture 6 — The Network Stack (2)

1/27/17

Sequence numbers

TCP time/sequence graphs

* Extracted from TCP packet
traces (e.g., via tcpdump)

L. Advertised

receive \

window

. Bytes in
- | flight

* Visualize windows,
congestion response,

|\\ buffering, RTT, etc:

TCP * X: Time

segments

‘ \ * Y: Sequence number
N

TCP * We can extract this data

ACKs

from the network stack
directly using Dtrace

Time

* Allows correlation/plotting
with respect to other
variables / events

L41 Lecture 6 — The Network Stack (2)

Evolving BSD/FreeBSD TCP implementation
Year Verson [Featwre |

1983 4.2BSD

1986 4.3BSD

1999 FreeBSD 3.1
2000 FreeBSD 4.2
2001 FreeBSD 4.4
2002 FreeBSD 4.5
2003 FreeBSD 5.0-5.1
2004 FreeBSD 5.2-5.3
2008 FreeBSD 6.3
2008 FreeBSD 7.0
2009 FreeBSD 7.1
2009 FreeBSD 8.0
2012 FreeBSD 9.0

BSD sockets, TCP/IP implementation
VJ/Karels congestion control
sendfile(2)

TCP accept filters

TCP ISN randomisation

TCP SYN cache/cookies

IPv6, TCP TIMEWAIT state reduction

TCP host cache, SACK, fine-grained locking
TCP LRO, TSO

T/TCP removed, socket-buffer autosizing
Read-write locking, full TCP offload (TOE)
TCP ECN

Pluggable TCP congestion control, connection groups

* Which changes have protocol-visible effects vs. only code?

L41 Lecture 6 — The Network Stack (2)

1/27/17

Lect. 5 - Send/receive paths in the network stack

Application

System call layer

Socket layer

TCP layer

IP layer

Link layer

Device driver

ether_input()

soreceive() sosend()
[sbappend() [sbappend()
tcp_reass() tcp_send()
tep_input() tep_output()
| ip_input() | | ip_output() |

ether_output()

L41 Lecture 6 — The Network Stack (2)

Data structures — sockets, control blocks

Socket and
Socket Buffers

socket

Internet Protocol
Control Blocks

TCP Protocol
Control Blocks

inpcb

List/hash entries
IP/port 4-tuple
IP options
Flow/RSS state

Protocol

Description

L41 Lecture 6 — The Network Stack (2)

inp_ppcb —

tcpcb

tcptw

1/27/17

% of connections completed

Denial of Service (DoS) — state minimisation

* Yahoo!, Amazon, CNN
taken down by SYN floods

- | oo in February 2000
:“ ~o#ez | D.Borman: TCP SYN cache
| 1 —minimise state for new

i connections

| |+ D. Bernstein: SYN cookies —
; | eliminate state entirely — at
| a cost

S | *J. Lemon: TCP TIMEWAIT
, | ‘ reduction — minimise state
’ e coonts * during close

Figure 3: Time needed to connect() to remote system. ° J' Lemon: TCP TIMEWAIT
recYcIe — release state
early under load

60

L41 Lecture 6 — The Network Stack (2)

TCP connection lookup tables

Global connection 4-tuple hash table

inpcbinfo | inpcbhead |
rwlock
inpcb list | inpcb | | inpcb | | inpcb |

inpcb hash table
UMA zone inpcb

“next port” fields
port hash table

* Global list of connections for monitoring (e.g., netstat)
* Connections are installed in a global hash table for lookup
* Separate (similar) hash table for port-number allocations

* Tables protected by global read-write lock as reads dominate
* New packets are more frequent than new connections

L41 Lecture 6 — The Network Stack (2)

1/27/17

Lect. 5 - Work dispatch: input path

Kernel Userspace

Linker layer -
Device + driver P TCP + Socket Socket Application

8 (8 |8 |88 PR
AN N N, W o e

Receive, Interpret and Validate Validate Look Reassemble Kernel copies Data stream
. . checksum, checksum, stri 00K UPp segments,
validate strips link strip IP , Strip socket deliver to out mbufs + to
checksum layer header P TCP header clusters application
header socket

netisr 1 1 1 Il
dispatch " ithread ' netisr software ithread ' user thread

Direct 1 I
dispatch ' ithread ! user thread

* Deferred dispatch: ithread - netisr thread - user thread

* Direct dispatch: ithread - user thread
* Pros: reduced latency, better cache locality, drop early on overload
* Cons: reduced parallelism and work placement opportunities

L41 Lecture 6 — The Network Stack (2)

An Evaluation of Network Stack Parallelization

Strategies in Modern Operating Systems
Paul Willmann, Scott Rixner, and Alan L. Cox, USENIX ATC, 2006

* Network bandwidth growth >
CPU frequency growth

* Locking overhead (space,
contention) substantial

W * Getting ‘speedup’ is hard!
@"%> 7 * Evaluate different strategies for
- TCP processing parallelisation

* Message-based parallelism

* Connection-based parallelism
(threads)

* Connection-based parallelism (locks)

1P Output

Output

* reduces overhead
* increases parallelism

L41 Lecture 6 — The Network Stack (2)

* Coalescing locks over connections:

1/27/17

FreeBSD connection groups, RSS

inpcbinfo inpcbgroup inpcbgroup
rwlock mutex mutex
inpcb list 1]]]
inpcb hash table ‘ inpcb ‘ ‘ inpcb ‘ ‘ inpcb ‘ ‘ inpcb ‘
UMA zone
“next port” fields inpcb
port hash table N J J
inpcbgroup table — Groups aligned with NIC RSS buckets;
gobal widcards | S O roubs saepes o partulr s,

* Connection groups blend MsgP and ConnP-L models
* PCBs assigned to group based on 4-tuple hash
* Lookup requires group lock, not global lock
* Global lock retained for 4—tuple reservation (e.g., setup, teardown)

* Problem: have to look at TCP headers (cache lines) to place work!
* Microsoft: NIC Receive-Side Scaling (RSS)

* Multi-queue NICs deliver packets to queues using hash of 4-tuple

* Align connection groups with RSS buckets / interrupt routing
L41 Lecture 6 — The Network Stack (2)

Userspace processes receiving bulk TCP

87654321 87654321

87654321

Performance: dispatch model and locking

Varying dispatch strategy — bandwidth

‘ * 2010 8-core x86

3 —single
a multicore server
B » TCP LRO disabled
O (maximise PPS)
2 - single_link_proto
. . * Configurations:
PR 1 queue (no dispatch),
I 1 thread on 1 core
T=mr - 1 queue (SW dispatch),
E 8 threads on 8 cores
R 8 queues (HW dispatch),
e 8 threads on 8 cores

Net bandwidth in Gb/s

L41 Lecture 6 — The Network Stack (2)

1/27/17

1/27/17

Architectural = micro-architectural + I/O optimisation

* Hardware, software, protocol co-design causes change to
optimisation approach over time:

* Counting instructions - counting cache misses
* Reducing lock contention -> cache-line contention
* Adding locking -> identifying new parallelism

* Work ordering, classification, and distribution
* Vertically integrated distribution and affinity

NIC offload of further protocol layers, crypto
DMA/cache interactions

* Convergence of networking and storage technologies?

L41 Lecture 6 — The Network Stack (2)

Labs 4 + 5: TCP

* From abstract to concrete understanding of TCP
* Use tools such as tcpdump and DUMMYNET
* Explore effects of latency on TCP performance

* Lab 4 — TCP state machine and latency
* Measure the TCP state machine in practice
* Start looking at TCP latency vs. bandwidth (DUMMYNET)
* At what transfer sizes are different latencies masked?

* Lab 5 — TCP congestion control
* Draw time-sequence-number diagrams
* Explore OS buffering strategies
* Explore slow-start vs. steady state as latency changes
* Explore OS and microarchitectural performance interactions

L41 Lecture 6 — The Network Stack (2)

L41 lecture wrap-up

* Goal: Deeper understanding of OS design and
implementation
* Evolving architectural and microarchitectural foundations
Evolving OS design principles
Evolving tradeoffs in OS design
Case study: The process model
Case study: Network-stack abstractions
* Quick explorations of past and current research

* Goal: Gain practical experience analysing OS
behaviour

* Goal: Develop scientific analysis and writing skills
* Feel free to get in touch to learn more!

L41 Lecture 6 — The Network Stack (2)

1/27/17

10

