1/25/17

The Network Stack (1)

L41 Lecture 5
Dr Robert N. M. Watson
25 January 2017

Reminder: where we left off last term

* Long, long ago, but in a galaxy not so far away:
* Lecture 3: The Process Model (1)
* Lecture 4: The Process Model (2)

* Lab 2: IPC buffer size and the probe effect
¢ Lab 3: Micro-architectural effects of IPC

* Explored several implied (and rejected) hypotheses:
* Larger I0/IPC buffer sizes amortise system-call overhead
* A purely architectural (SW) review dominates
* The probe effect doesn’t matter in real-world workloads

L41 Lecture 5 — The Network Stack (1)

1/25/17

This time: Introduction to Network Stacks

Rapid tour across hardware and software:

* Networking and the sockets API

* Network-stack design principles: 1980s vs. today
* Memory flow across hardware and software

* Network-stack construction and work flows

* Recent network-stack research

L41 Lecture 5 — The Network Stack (1)

Networking: A key OS function (1)

* Communication between computer systems
* Local-Area Networks (LANSs)
* Wide-Area Networks (WANs)

* A network stack provides:
* Sockets APl and extensions

* Interoperable, feature-rich, high-performance protocol
implementations (e.g., IPv4, IPv6, ICMP, UDP, TCP, SCTP, ...)

Security functions (e.g., cryptographic tunneling, firewalls...)
* Device drivers for Network Interface Cards (NICs)

* Monitoring and management interfaces (BPF, ioct1)
Plethora of support libraries (e.g., DNS)

L41 Lecture 5 — The Network Stack (1)

Networking: A key OS function (2)

* Dramatic changes over 30 years:

1980s: Early packet-switched networks, UDP+TCP/IP, Ethernet

1990s: Large-scale migration to IP; Ethernet VLANs

2000s: 1-Gigabit, then 10-Gigabit Ethernet; 802.11; GSM data
2010s: Large-scale deployment of IPv6; 40/100-Gbps Ethernet

... billions—>trillians of devices?

* Vanishing technologies
* UUCP, IPX/SPX, ATM, token ring, SLIP, ...

L41 Lecture 5 — The Network Stack (1)

The Berkeley Sockets APl (1983)

close()
read()
write()

accept()
bind()
connect()
getsockopt()
listen()
recv()
select()
send ()
setsockopt ()
socket ()

* The Design and Implementation of the
4.3BSD Operating System

(but APIs/code first appeared in 4.2BSD)

Now universal TCP/IP (POSIX, Windows)

Kernel-resident network stack serves
networking applications via system calls

Reuses file-descriptor abstraction

Same API for local and distributed IPC
Simple, synchronous, copying semantics
Blocking/non-blocking 1/0, select ()

Multi-protocol (e.g., IPv4, IPv6, ISO, ...)

TCP-focused but not TCP-specific
Cross-protocal abstractions and libraries
Protocol-specific implementations
“Portable” applications

L41 Lecture 5 — The Network Stack (1)

1/25/17

BSD network-stack principles (1980s-1990s)

Multi-protocol, packet-oriented network research framework:

* Object-oriented: multiple protocols, socket types, but one API

* Protocol-independent: streams vs. datagrams, sockets, socket buffers,
socket addresses, network interfaces, routing table, packets

* Protocol-specific: connection lists, address/routing specialization,
routing, transport protocol itself — encapsulation, decapsulation, etc.

* Packet-oriented:

* Packets and packet queueing as fundamental primitives

* If there is a failure (overload, corruption), drop the packet

* Work hard to maintain packet source ordering

 Differentiate ‘receive’ from ‘deliver’ and ‘send’ from ‘transmit’

* Heavy focus on TCP functionality and performance

* Middle-node (forwarding), not just edge-node (I/0), functionality

* High-performance packet capture: Berkeley Packet Filter (BPF)

L41 Lecture 5 — The Network Stack (1)

FreeBSD network-stack principles (1990s-2010s)

All of the 1980s features and also ...

* Hardware:
* Multi-processor scalability
* NIC offload features (checksums, TSO/LRO, full TCP)
* Multi-queue network cards with load balancing/flow direction
* Performance to 10s or 100s of Gigabit/s
* Wireless networking
* Protocols:
e Dual IPv4/IPv6
* Security/privacy: firewalls, IPSec, ...
* Software model:
* Flexible memory model integrates with VM for zero-copy

* Network-stack virtualisation
* Userspace networking via netmap

L41 Lecture 5 — The Network Stack (1)

1/25/17

Memory flow in hardware

CPU CPU
3 432K' L1 Cache 13 L1 Cache PCI
-4 cycles 7 | 8
|
256K, B
8-12 cycles L2 Cache _-\ o
|
32.42052§|m|es Last-Level Cache (LLC) V
DRAM I -
up to 256-290 DRAM o .“
cycles

* Key idea: follow the memory
* Historically, memory copying avoided due to instruction count
* Today, memory copying avoided due to cache footprint

* Recent Intel CPUs push and pull DMA via the LLC (“DDIO”)
* If we differentiate ‘send’ and ‘transmit’, is this a good idea?
» ...it depends on the latency between DMA and processing.

L41 Lecture 5 — The Network Stack (1)

Memory flow in software

User process recv() send()
‘copyout() copyin()
\ J
AY C
Socket/protocol - / oo Socket/protocol
deliver A free() network alloc() send
Kernel b memory 5
allocator
NIC. ooo ‘E‘.’: = & NI.C
receive /7 alloc() free() \ transmit
LY Vi

* Socket APl implies one software-driven copy to/from user memory
* Historically, zero-copy VM tricks for socket API ineffective

* Network buffers cycle through the slab allocator
* Receive: allocate in NIC driver, free in socket layer
* Transmit: allocate in socket layer, free in NIC driver

* DMA performs second copy; can affect cache/memory bandwidth
* NB: what if packet-buffer working set is larger than the cache?

L41 Lecture 5 — The Network Stack (1)

1/25/17

1/25/17

The mbuf abstraction

Ve mbuf packet queue

N
socket [; struct mbuf
buffer . - o
mbuf header mbuf mbuf |
; <
netier data M/ g
packet header S buffer- -
queue S 3
o cache 2
P ¢ g\ | page E
TCP i data | external
reassembly / s storage i mout
queue 2 || current 5
£ data E‘ current
/ data
network |/ pad
interface 4 ¢
queue

* Unit of work allocation and distribution throughout the stack

* mbuf chains represent in-flight packets, streams, etc.
* Operations: alloc, free, prepend, append, truncate, enqueue, dequeue
* Internal or external data buffer (e.g., VM page)
* Reflects bi-modal packet-size distribution (e.g., TCP ACKs vs data)

* Similar structures in other OSes —e.g., skbuff in Linux

L41 Lecture 5 — The Network Stack (1)

Send/receive paths in the network stack

Application | recv() send() |
—T —T
] L) L
1 I 1 I
| — | —
System call layer | recv() | | send() |
I soreceive() sosend()
Socket layer EE@ I sbappend() | | sbappend() | EE@
[] [1
(s =] tcp_reass() tep_send()
TGP layer | tcp_input() tcp_output()
[] [1
IP layer | ip_input() | | ip_output() |
[] [1
Link layer | ether_input() | | ether_output() |
peeeamer “ “ aee

L41 Lecture 5 — The Network Stack (1)

Forwarding path in the network stack

IP layer

Link layer

Device driver

| ip_forward() |
—1
=1 [

| ip_input() | ip_output() |
L [

| ether_input() | ether_output() |

L41 Lecture 5 — The Network Stack (1)

(=) =]

Work dispatch: input path

Device

8
WL

Kernel

Userspace

Linker layer
+ driver

§
N

§
i

TCP + Socket

i

Socket

(|
[

Application

Receive, Interpret and Validate Validate Look u Reassemble Kernel copies Data stream
: R checksum, checksum, strip P segments, to
validate strips link strip IP TP hoad socket deliver to out mbufs + |
eader application
checksum layer header header socket clusters pp|
netisr
dispatch ithread netisr software ithread user thread
Direct
dispatch ithread user thread

* Deferred dispatch: ithread - netisr thread - user thread

* Direct dispatch: ithread = user thread
* Pros: reduced latency, better cache locality, drop early on overload
* Cons: reduced parallelism and work placement opportunities

L41 Lecture 5 — The Network Stack (1)

1/25/17

Work dispatch: output path

Userspace Kernel

A Link layer + .
Application Socket TCP P driver Device

== 588 E (e |
e, B EE . 0 AC

Data stream Kernel copies in TCP segmentation, IP header Ethernet frame

from data to mbufs + header encapsulation, encapsul- encapsulation, Checksum
application clusters checksum ation, insert in + transmit
checksum descriptor ring
e >l
user thread f———
ithread

* Fewer deferred dispatch opportunities implemented
* (Deferred dispatch on device-driver handoff in new i fl1ib KPIs)

¢ Gradual shift of work from software to hardware
* Checksum calculation, segmentation, ...

L41 Lecture 5 — The Network Stack (1)

Work dispatch: TOE input path

_ - o

Driver +
socket layer

=1 B B 1|
NONE N0 N

Device Application

Receive, validate Interpret and . . Look up Kernel copies Data stream
ethernet, IP, TCP strips link ﬁ:‘a"dg: S:";paggp and deliver H:easrsneer:ge out mbufs + to
checksums layer header to socket 9 clusters application
I e '
! ithread "' userthread |

Move majority of TCP processing
through socket deliver to hardware

» Kernel provides socket buffers and resource allocation
* Remainder, including state, retransmissions, etc., in NIC

* But: two network stacks? Less flexible/updateable structure?
* Better with an explicit HW/SW architecture — e.g., Microsoft Chimney

L41 Lecture 5 — The Network Stack (1)

1/25/17

Netmap: a novel framework for fast packet I/0
Luigi Rizzo, USENIX ATC 2012 (best paper).

* Map NIC buffers directly
e i e o into user process memory
e =) |+ Zero copy to/from
application

= r * System calls initiate DMA,
\E) block for NIC events

* Packets can be reinjected
into normal stack

* Ships in FreeBSD; patch
Kermel | driver available for Linux

—— Userspace network stack
can be specialised to task

(e.g., packet forwarding)

Hardware Operating system

User process ‘ Protocol

L41 Lecture 5 — The Network Stack (1)

Network stack specialisation for performance
[lias Marinos, Robert N. M. Watson, Mark Handley, SIGCOMM 2014.

* 30 years since the network-

60 T T T T T T T T T
R 00500 BE—G—8 stack design developed
£ =)
Sl B * Massive changes in
% 3 o F architecture, micro-
Pl o architecture, memory...
g s 2 -, * Optimising compilers

RIS L e e i * Cache-centered CPUs

4 8 16 24 32 64 128 256 512 756 1024 ° Multiprocessing NUMA
File size (KB) ’

* DMA, multiqueue
* 10 Gigabit/s Ethernet

* Performance lost to
‘gsenerality’ throughout stack

* Revisit fundamentals through
clean-slate stack
1 5 16 24 52 64 128 256 512 76 1024 * Orders- Of—magnltude
File size (KB) performance galns

100

80

60

CPU utilization (%)

L41 Lecture 5 — The Network Stack (1)

1/25/17

Next time: Socket buffers and TCP

September 1981 Transnission Control Protocol
ci

* McKusick, et al: Chapter 14
(Transport-Layer Protocols)

* Transmission Control
Protocol (TCP)

* TCP implementation
* Buffers and input processing
* Parallelism and performance
* DoS resistance

* The final two labs

| rev ACK of FIN | rev ACK of FIN |
| I

——————— x Vo e x v

| TIME WAIT| | cLosen |

L41 Lecture 5 — The Network Stack (1)

1/25/17

10

