Modern Intermediate Representations (IR)

L25: Modern Compiler Design



Reusable IR

Modern compilers are made from loosely coupled components
Front ends produce IR

Middle ‘ends’ transform IR (optimisation / analysis /
instrumentation)

Back ends generate native code (object code or assembly)



Structure of a Modern Compiler

Source Code

\. Token Stream
; Parser Actions
\I ntermediate Representation

Intermediate Representation

Executable Code



Structure of a Modern Compiler

Source Code
As with any other piece of
software using libraries simpli-

\. Token Stream fies development.
; Parser Actions
\I ntermediate Representation

Intermediate Representation

Executable Code



Optimisation Passes

Modular, transform IR (Analysis passes just inspect IR)
Can be run multiple times, in different orders
May not always produce improvements in the wrong order!

Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

e Stack makes interpreting, naive compilation easier
o Register makes various optimisations easier
e Which ones?



Common Subexpression Elimination

Source language

. Register IR

L

a =

(b+c) * (b+c);

.

rl =
r2 =
r3 =
r4 =
r5 =
r6 =
r7 =

load b
load c
rli + r2
load b
load c¢
r4 + rb
r3 *x r6

store a r6

S




Common Subexpression Elimination

Source language

. Register IR

= -

(b+c) * (b+c);

rl = load b
r2 = load c
r3 = rl1 + r2
r4—=Jeoadb
r5 = load c
r6 = rl + rb
r7 = r3 * r6

store a r7
N\

S




Common Subexpression Elimination

Source language

. Register IR

(b+c) * (b+c);

= -

rl = load b
r2 = load c
r3 = rl1 + r2
r4—=Jeoadb
rb5—=Tlead—<
r6 = rl + r2
r7 = r3 * r6
store a 17

.

S




Common Subexpression Elimination: Register IR

Source language:

La = (b+c) * (b+c);

ri load b
r2 = load c
r3 = rl + r2

r7 = r3 *x r3
store a r7

S




Common Subexpression

Source language:

Elimination: Stack IR

La = (b+c) * (b+c);

load b
load c¢
add
load b
load c
add

mul
store a

S




Common Subexpression Elimination: Stack IR

Source language:

La = (b+c) * (b+c);

load b
load c¢
add

dup

mul
store a




Problems with CSE and Stack IR

e Entire operation must happen at once (no incremental
algorithm)

e Finding identical subtrees is possible, reusing results is harder

e If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

Source code is hierarchical (contains structured flow control,
scoped values)

Assembly is flat (all flow control is by jumps)

Intermediate representations are supposed to be somewhere
between the two

Think about how a for loop, while loop, and if statement
with a backwards goto might be represented.



Hierarchical IR

Easy to express high-level constructs

Preserves program semantics

Preserves high-level semantics (variable lifetime, exceptions)
clearly

Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

Easy to map to the back end
Simple for optimisations to process

Must carry scope information in ad-hoc ways (e.g. LLVM IR
has intrinsics to explicitly manage lifetimes for stack
allocations)

Examples: LLVM IR, CGIR, PTX



Q”eStions?

«or Fr o«

Q>




