
Interactive Formal Verification (L21)

Exercises and Marking Scheme

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Lent Term, 2017

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you can
complete in an hour. You are not required to complete these exercises; they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Note that many of these on-line ex-
amples are very simple: the assessed exercises are considerably harder. You
are strongly encouraged to attempt a variety of exercises, and perhaps to
develop your own.

The handouts for the last two practical sessions determine your final
mark (50% each). For each assessed exercise, please complete the indicated
tasks and write a brief document explaining your work. You may earn addi-
tional credit by preparing these documents using Isabelle’s theory presenta-
tion facility (See section 4.2 of the Isabelle/HOL manual). You can combine
the resulting output with a document produced using your favourite word
processing package. Please ensure that your specifications are correct (be-
cause proofs based on incorrect specifications could be worthless) and that
your Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. Excessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could
perhaps outline the strategic decisions that affected the shape of your
proof and include notes about your experience in completing it.

• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some

1

http://isabelle.in.tum.de/exercises/


apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
An exceptional write-up also gains a few marks in this category, while
untidy proofs will lose marks. Very few students will gain more than
half of these marks, but note that 85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
not permitted. Here are the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Tuesday, 21 February 2017

• 2nd exercise: Thursday, 9 March 2017

Please deliver a printed copy of each completed exercise to student adminis-
tration, and also send the corresponding theory file to lp15@cam.ac.uk. The
latter should be enclosed in a directory bearing your name.

2

lp15@cam.ac.uk


1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

3



2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between powSum_ex.sum and Sum? Prove the fol-
lowing equation, suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]

on lists in theory List.

4



3 Assessed Exercise I: Euler’s totient function

Euler’s totient function, written φ(n), denotes the number of integers 1, 2,
. . . , n that are coprime to the positive integer n. So for example φ(1) =
φ(2) = 1 and φ(3) = φ(4) = 2. The totient function is fundamental to num-
ber theory and this exercise establishes some of its elementary properties.
See Baker, A Concise Introduction to the Theory of Numbers (Cambridge
University Press, 1984), page 9. Other books on elementary number theory
will also cover this function.

Task 1 Define the totient function ϕ of type nat ⇒ nat as described above.
Note that the cardinality of a finite set can be expressed using the built-in
function card, and the two-argument predicate coprime is also available.
Greek letters can be inserted using the Symbols palette, but you may give the
function the name phi if you prefer.

Then prove the following two facts. [5 marks]

lemma phi_1: "ϕ 1 = 1"
lemma phi_2: "ϕ 2 = 1"

Task 2 The following exercise establishes an alternative characterisation of
the totient function. [10 marks]

lemma phi_altdef: "ϕ(n) = card {m. coprime m n ∧ m < n}"

Task 3 Among the other straightforward properties of the totient function
is that φ(p) = p− 1 if p is prime. [10 marks]

lemma phi_prime[simp]:
assumes "prime p" shows "ϕ p = (p-1)"

Task 4 The result above can be generalised to φ(pj) = pj − pj−1, where p is
prime and j > 0. [25 marks]

lemma phi_prime_power[simp]:
assumes "prime p" "j > 0" shows "ϕ (p ^ j) = p ^ j - p ^ (j-1)"

Hint : none of these proofs require induction. Typically they involve manip-
ulations of sets of positive integers, perhaps using equational reasoning.

5



4 Assessed Exercise II: The Binary Euclidean Al-
gorithm

The greatest common divisor of two natural numbers can be computed effi-
ciently using a binary version of Euclid’s algorithm. It eliminates common
factors of two (which in hardware can be done efficiently by shifting), and
given two odd numbers it subtracts them, producing another even number.

• The GCD of x and 0 is x.

• If the GCD of x and y is z, then the GCD of 2x and 2y is 2z.

• The GCD of 2x and y is the same as that of x and y if y is odd.

• The GCD of x and y is the same as that of x− y and y if y ≤ x.

• The GCD of x and y is the same as the GCD of y and x.

This algorithm is actually nondeterministic, in that the steps can be applied
in any order. However the result is unique because a pair of positive integers
has exactly one greatest common divisor.

Task 1 Inductively define the set BinaryGCD such that (x, y, g) ∈ BinaryGCD

means g is computed from x and y as specified by the description above.
[5 marks]

consts BinaryGCD :: "(nat × nat × nat) set"

Task 2 Show that the BinaryGCD of x and y is really the greatest common
divisor of both numbers, with respect to the divides relation. Hint: it may
help to consider whether d is even or odd. Be careful to choose the right
form of induction, and justify your choice in your write-up. [15 marks]

lemma GCD_greatest_divisor:
"(x,y,g) ∈ BinaryGCD =⇒ d dvd x =⇒ d dvd y =⇒ d dvd g"

Task 3 Prove the following statement. In the form given (assuming n to be
odd), it can be proved directly by induction. [10 marks]

lemma GCD_mult:
"(x,y,g) ∈ BinaryGCD =⇒ odd n =⇒ (n*x,n*y,n*g) ∈ BinaryGCD"

Remark : the theorem above actually holds for all n, but the simplest way
of proving it is probably to prove that BinaryGCD corresponds exactly to the
true gcd function and then to use properties of the latter.

6



Task 4 How do we know that BinaryGCD can compute a result for all values
of a and b? To prove it requires a carefully formulated induction, as shown in
the theorem statement below. We need course-of-values induction (expressed
by the theorem less_induct), which allows us to assume the induction for-
mula for everything smaller than n. (Why doesn’t standard induction work
here?)

Hint: the algorithm is complete even if the steps GCDEven and GCDOdd are
deleted. They merely improve performance, so your proof can ignore them.
You will still need to consider various cases corresponding to the remaining
steps of the algorithm. [20 marks]

lemma GCD_defined_aux: "a+b ≤ n =⇒ ∃ g. (a, b, g) ∈ BinaryGCD"

Armed with this lemma, the completeness statement is trivial.

7



theorem GCD_defined: "∃ g. (a, b, g) ∈ BinaryGCD"

8


	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Euler's totient function
	Assessed Exercise II: The Binary Euclidean Algorithm

