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Shortest paths example, sp = (N*, min, +, 00, 0)
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Shortest paths solution
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solves this global optimality
problem:

A*(i, j) = min w(p),

peP(i, j)

where P(i, j) is the set of all paths
from i to j.
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Widest paths example, bw = (N*, max, min, 0, o)
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solves this global optimality
problem:

max w
peP(i, ) (P);

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (2{& 2 ¢, ~ {}, {a, b, ¢})

We want A* to solve this global
optimality problem:

i@ {avel {4 A )= | wie),
@{{b o} i 15 -B) e
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x e A*(i, j) to mean that there is at least
one path from 7 to j with x in every arc weight along the path. J

A*(4, 1) ={a, b} A*(4,5)={b}
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Another unfamiliar example, (212 ¢t~ )

We want matrix R to solve this
global optimality problem:

@ tabej el AL ) = () wip).
@{{b ¢} i — 5} 5) e
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € R(/, j) to mean that every path from j to
j has at least one arc with weight containing x. J

A*(4,1) ={b} A*(4, 5 =1{b} A*(5 1)={}
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We will start by looking at Semirings

possible routing use
minimum-weight routing
greatest-capacity routing
most-reliable routing
usable-path routing
shared link attributes?
shared path attributes?

name S @, ®
sp N® min  +
bw N®  max min
rel [0, 1] max x

use {0, 1} max min
2W

) M

§Qooo$o|
=S = = 8§ o 4

ow 8} U

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
|dentity for ®

|dentity for ®

—~lolZ Z
8
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Recommended Reading on Semiring Theory

GANGCLAYPOOL PUBLISHERS

Path Problems in

Networks

Michel Gondran

Michel Minoux
John Baras 1Nt
George Theodorakopoulos GraphS’ DIOIdS

and Semirings

New Models and Algorithms

URES ON
r NETWORKS
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Semirings (generalise (R, +, x,0,1))

We will look at the axioms of semirings. The most important are
distributivity

LD : a®(bdc) = (a®b)
RD : (a®b)®c = (a®c)
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Distributivity, illustrated

ag(bedc) = (a®b)@(a®c)

Jj makes the choice = i makes the choice
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Should distributivity hold in Internet Routing? No!

long path through a customer

(O— ©

customer provider
short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

More on this later in the term ...
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The (Tentative) Plan

1 6 October : Motivation, overveiw

2 11 October : Semigroups

3 13 October : Semirgoups and partial orders

4 18 October : Semigroup Constructions

5 20 October : Semirings — Theory

6 25 October : Semirings — Constructions

7 27 October : Beyond Semirings — AMEs — “functions on arcs”
8 1 November : AME Constructions

9 3 November : Protocols : RIP, EIGRP (HW 1 due noon 4 Nov)
10 8 November : Inter-domain routing in the Internet |

11 10 November : Inter-domain routing in the Internet I

12 15 November : Beyond Semirings — Global vs Local optimality
13 17 November : More on Global vs Local optimality

14 22 November : Dijkstra revisited

15 24 November : Bellman-Ford revisited (HW 2 due noon 25 Nov)
16 29 November : Other algorithms

17 January : HW 3 due 17 Jan, 4pm
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Lectures 2, 3

@ Semigroups
@ A few important semigroup properties
@ Semigroup and partial orders
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such
that

AS associative = Va,b,ce S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R, o), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity
AN  annihilator
CM commutative
SIL selective

P idempotent

Jae S, Vae S, a=aea=aea
Jwe S, Vae S, w=wea=aew
Va,be S, aeb=Dbea

Va,be S, aebe {a, b}

Vae S, aea=a

A semigroup with an identity is called a monoid.
Note that
SLL(S, o) = IP(S, o)
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A few concrete semigroups
S ) description a | w |CM | SL | IP
S left xlefty = x
S right | xrighty =y
S* - | concatenation | e
St concatenation
{t, f} A conjunction I I
{t, f} Y% disjunction *x | ok | %
N min minimum * * | *
N max maximum 0 * *x | x
W U union W[ « *
W n | intersection | W | {} | = *
fin(2Y) | U union {} * *
fin(2Y) | ~ | intersection (] = *
N + addition 0 *
N X multiplication | 1 | O | «

W a finite set, U an infinite set. For set Y, fin(Y) = {X € Y | X is finite}

tgg22 (cl.cam.ac.uk)
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A few abstract semigroups

S e | description a |w |CM|SL|IP
2V |y union T *
2V |~ | intersection | U |{} *

2UxU 1 pa | relational join | Zy | {}
X — X | o | composition | Ax.x

U an infinite set
XNY={(x,z)eUxU|3IyelU, (x, y) e XA (y, 2)e Y}
Ty ={(u, u) |ue U}

subsemigroup

Suppose (S, o) is a semigroup and T < S. If T is closed w.r.t e (that
is,Vx,ye T,xeye T), then (T, e)is asubsemigroup of S.
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Order Relations

We are interested in order relatons << Sx S
Definition (Important Order Properties)
RX
TR

reflexive = a<a

transitive = a<bab<c—a<c

AY antisymmetric = a<bab<a—a=>b

TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * * *
TR * * * *
AY * *
TO * *

tgg22 (cl.cam.ac.uk)
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)
a<dfp = 3ceS:b=aec
a<dtp = 3ceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a < b means 3¢y € S: b = ae ¢, and b < c means

dco e S:c = be . Letting ¢35 = ¢4 e o we have
C=beco=(aecy)eco=ae(ciecCo)=aecs. Thatis,

Jes e S:c = aecs, so a<ffc. The proof for <t is similar. O
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, e) is canonically ordered when a <f ¢
and a <t c are partial orders.

Definition (Groups)

A monoid is a group if for every a e S there exists a a~' € S such that
aea'=alea=na.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

Ifa, be S,thena=a,ea= (beb ')ea=be (b 'ea)=bec,for
c=b""ea soa<tp. Inasimilar way, b <% a. Thereforea=»b. [

v
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Natural Orders

Definition (Natural orders)
Let (S, o) be a semigroup.

a<tb = a=aeb
a<fip = =Qqe

Lemma

If o is commutative and idempotent, then a<P? b — a <P b, for
De{R, L}.

Proof.

a<llb <= b=aec=(aea)ec=ae(aec)
— aeb <= a<fb

adtb <« a=bec=(beb)ec=Dbe(bec)
= bea=aeb «— a<ib

—
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Special elements and natural orders
Lemma (Natural Bounds)
@ Ifa exists, then forall a, a <t o and o <P a
@ Ifw exists, then forall a, w <t aand a <f w
@ /fa and w exist, then S is bounded.

w <t a <t o«
a<?a<?w

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

L L
0 <Ein a gﬂin 00)
09 <min a <min 0

and still say that this is bounded, even though one might argue with the
terminology!

v
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Examples of special elements

S o al w | <K
N*® |min|ow | O < | =
N™® max | 0 | -0 | = | <
PW)l v |[{}| W ]| < |2
PW)| n |[W| {} | 2| <
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Property Management

Lemma

LetDe {R, L}.

@ IP(S, o) — RX(S, <P)

@ CM(S, o) — AY(S, <P)

@ AS(S, o) = TR(S, <P)

Q CM(S, o) = (SL(S, o) — TO(S, <P))

Proof.
Q@ a<la < a=aeg,
Q@ a<tbab<tla < a=aebrb=bea — a=>b

Q@ a<tbab<tc «— a—aebrb=bec — a=ae(bec) =
(aeb)ec=aec — a<tc

Q@ a—aebvb=aeb «— a<tbvb<ta

O

v
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, b e S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d e Swith d < aand d < b, we have d < c.

least upper bound

For a, b e S, the element c € S is the least upper bound of a and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d e Swith a< d and b < d, we have ¢ < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b e S.

join-semilattice
S is a join-semilattice if a lub b exists for each a, be S.
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Fun Facts

Fact 1

Suppose (S, e) is a commutative and idempotent semigroup.
o (S, <b)is a meet-semilattice with aglb b = ae b.
@ (S, <f) is ajoin-semilattice with alub b = g e b.

Fact 2
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

e If (S, <) is a join-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 28/64



Lectures 4, 5

@ Semigroup Constructions
@ Homework 1

@ Semirings

@ Matrix semirings

@ Shortest paths
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Add identity
Addld(a, (S, o)) = (Sw {a}, &)
where
a (if b = inr(«))
aeldp = b (if a = inr(«))
inl(x e y) (if a =inl(x), b = inl(y))
disjoint union
Aw B={inl(a) | ae A} u {inr(b) | be B}
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Add identity

Easy Exercises

AS(AddId(, (S, »))) < AS(S,e)
ID(AddId(e, (S, »))) < TRUE

AN(AddId(a, (S, »))) < AN(S,e)
CM(AddId(a, (S, ¢))) < CM(S,s)
IP(AddId(a, (S, o)) < IP(S,e)
SL(AddId(a, (S, »))) < SL(S,e)
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Inserting an annihilator

AddAn(w, (S, o)) = (S w {w}, &™)

where

ael'b = inrflw) (if a = inr(w))

inl(x e y) (if a = inl(x), b = inl(y))

{ inr(w)  (if b= inr(w))
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Add annihilator

Easy Exercises

AS(AddAn(a, (S, o)) < AS(S,s)
ID(AddAn(a, (S, @))) < ID(S,e)
AN(AddAn(a, (S, »))) < TRUE

CM(AddAn(a, (S, o)) < CM(S,s)
IP(AddAn(a, (S, o)) < IP(S,e)
SL(AddAn(a, (S, »))) < SL(S,s)
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Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, e) is commutative, idempotent, and
selective and that (T, ¢) is a semigroup.

(S, ¢) X (T,0)=(SxT, %)
where » = e x ¢ is defined as

(S1 08, tiol) Sy =S8 =5
(81, ty) * (S2, ) = { (Sy @8, 1) S1 =S85 # S
(51082, Io) S1 #5108 =5

33/64
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Examples

(N, min) x (N, min)
(1, 17)x(2,3) = (1,17)
<2a 17)*(2a3) = (273)
(2,3)%(2,3) = (2,3)

(N, min) x (N, max)
(1, 17)x(2,3) = (1,17)
(2,17)x(2,3) = (2,17
(2,3)x(2,3) = (2,3)

(N, max) x (N, min)
(1,17)x(2,3) = (2,3)
(2,17)x(2,3) = (2,3)
(2,3)%(2,3) = (2,3)
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Assuming AS(S,e) A CM(S,e) A IP(S,e) A SL(S,e)
AS((S,e) >:<:(T, o)) <« AS(T,o)
ID((S,e)x(T,0)) < ID(S,e) AID(T,o)
AN((S,e)x(T,0)) < AN(S,e) A AN(T,0)

CM((S,e) %(T, o)) <« CM(T,o)
IP((S,e) >:(T, o)) < IP(T,o)
SL((S, o)>i(T, o)) < SL(T,o)
IR((S,e)%(T,0)) < FALSE
IL((S,s)%(T,o)) < FALSE

All easy, except for AS (See Homework 1!).
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Direct Product of Semigroups

Let (S, o) and (T, ¢) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted

(S, o) x (T, 0)=(SxT, )

where

* — @ X O

is defined as

(31, t1) * (32, tg) = (S1 ® Sy, 1o tg).
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Easy exercises
AS((S;e) x (T,0)) <= AS(S,e) A AS(T,0)
ID((S,e) x (T,0)) < ID(S,e) AID(T,0)
AN((S,e) x (T,0)) < AN(S,e) A AN(T,0)
CM((S,e) x (T,0)) < CM(S,e) A CM(T,0)
P((S,e) x (T,0)) < 1IP(S,e) AIP(T,o)
What about SIL?
Consider the product of two selective semigroups, such as
(N, min) x (N, max).
(10, 10) » (1, 3) = (1, 10) ¢ {(10, 10), (1, 3)}
The result in this case is not selective! |
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Direct product and SIL?

SL((S,e) x (T,0)) < (IR(S,s) A IR(T,o)) v (IL(S, ) A IL(T, o))

v

IR is right
IL s left

Vs, te S,set =1t
Vs,te S,set=s5

See Homework 1

IR((S,e) x (T,¢)) < IR(S,e) AIR(T,o)
IL((S,e) x (T,0)) < IL(S,e) AIL(T,o)
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Revisit other constructions ...

IR(AddId(cv, (S, o)))
IL(AddId(cx, (S, »)))

FALSE
FALSE

()

FALSE
FALSE

TR(AddAn(a, (S, o))
IL(AddAn(e, (S, o))

<
=

Assuming AS(S,e) A CM(S,e) A IP(S,e) A SL(S, e)

IR((S,)%(T,o)) < FALSE
IL((S,)%(T,o)) < FALSE
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Lifted Product

Lifted product semigroup

Assume (S, o) is a semigroup. Let lift(S, o) = (fin(2°), &) where

X

oY ={xey|xe X, yeVY}

{1, 3, 17} + {1, 3, 17} = {2, 4, 6, 18, 20, 34}

tgg22 (cl.cam.ac.uk)

AS(lift(S, o))
ID(lift(S, o))
AN(lift(S, »))
CM(lift(S, o))
SL(lift(S, o))
IP(lift(S, o))
IL(lift(S, »))
IR(lift(S, o))

(R 2
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AS(S, )
ID(S,e) (&=
TRUE (w = {}

CM(S, )

IL(S,e) vIR(S,e) v (IP(S,e) A|S|=2)
SL((S,e))

FALSE

FALSE

{a})
)

tgg22 (cl.cam.ac.uk)
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Why bother with all of these < rules?

| would rather calculate than prove!

IP(Lift(Lift({t, f}, A))

SL({t, f}, A)

IL({t, £}, A) VIR({t, £}, A) v (IB({L £}, A) AL {L £} =2)
FALSE v FALSE v (TRUE A TRUE)

TRUE

e 090

Note

This kind of calculation will become more interesting as we introduce
more complex constructors and consider more complex properties —
such as those associated with semirings.
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Homework 1

Each question is 25 points.
@ Prove Fact 1
@ Prove Fact 2
© Prove
SLL((S,e) x (T,°))

=

(IR(S, o) A IR(T,0)) v (IL(S, ) A IL(T,))
@ (Rather difficult). Prove
SL(lift(S, o))

=

IL(S, ) v IR(S,) v (IP(S,e) A |S|=2)
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Bi-semigroups and Pre-Semirings

(S, ®, ®) is a bi-semigroup when
S, @) is a semigroup

° (
@ (S, ®) is a semigroup

(S, ®, ®) is a pre-semiring when
@ (S, @, ®) is abi-semigroup
@ @ is commutative

and left- and right-distributivity hold,

LD : a®((bdc) = (a®b @ (a®c)
RD : (a®b)®c = (a®c)@(b®c)
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Semirings
(S, ®, ®, 0, 1) is a semiring when
@ (S, @, ®) is apre-semiring
e (S, @, 0) is a (commutative) monoid
® (S, ®, 1) is a monoid
@ 0 is an annihilator for ® J
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Examples

Pre-semirings

name S ©®, ® 0 1
min_plus N min + 0

max min N max min O

Semirings
name S &, ® 0
sp N* min +
bw N* max min O

S o] =

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring
name S & ® 0
max_plus N max + O

7
0

@ What about “0 is an annihilator for ®”? No!

Fix that ...

name S ® ® 0 1
max_plus® Nw{—ow} max + —-o 0
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Matrix Semirings

® (S, ® ®, 0, 1) asemiring
@ Define the semiring of n x n-matrices over S : (M(S), @, ®, J, I)

@ and ®
1<g<n
Jandl
Ji,j) = 0

1 (ifi=))
i, j) = {_

0 (otherwise)

v
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M, (S) is a semiring!

For example, here is left distribution

AR (BdC)=(A®B) ®(ARC)

(A® (B®C))(/, j)
= @ A, 9®B®C)q, j)

1<qg<n

= @D A(, 9)®(B(q, )©C(q, )))
1<g<n

= @ (A(, 9)®B(q. ) @ (A(i, 9) ®C(q, )))
1<g<n

= (P A, 9®B(g, )@ P A, 9®C(q. )
1<q<n 1<g<n

= (A®B)®@(A®C))(, ))
Note : we only needed left-distributivity on S.
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Matrix encoding path problems

° (S, @, ®, 0, 1) asemiring
@ G = (V, E) adirected graph
@ w e E — S aweight function

Path weight
The weight of a path p = iy, i2, i3, - - - , ik IS
W(p) - W(i17 i2> ® W(i27 i3> X & W(ik_1, ik).

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) if (i, j) € E,
A(i, j) = {

0 otherwise

v
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The general problem of finding globally optimal path
weights

Given an adjacency matrix A, find A* such that forall /i, je V

A“(i, )= D w(p)

peP(i, j)

where P(i, j) represents the set of all paths from i/ to j.

How can we solve this problem?
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Matrix methods

Matrix powers, AX
A0 = |

Ak+1 _ A@Ak

Closure, A*
AW — 1ToA'@A2® .. @ A¥

A* = loA'"OA%2---AFg ...
Note: A* might not exist. Why?
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Matrix methods can compute optimal path weights

@ Let P(i,j) be the set of paths from i to J.
@ Let PX(i,j) be the set of paths from i to j with exactly k arcs.
@ Let P (i j) be the set of paths from i to j with at most k arcs.

Theorem
(1) A j) = D w(p)
pesPk(i, j)
2 ARG ) = P wp)

peP®) (i, )
38) A*(i,)) = @D wlp

peP(i, j)

Warning again: for some semirings the expression A*(i, j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k. Base Case: k = 0.

PO(i, i) = {e},

so A%(i, i) = 1(i, i) = 1 = w(e).

And i = jimplies P°(i,j) = {}. By convention
@ w(p) =0=1(, j).

pe{}
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Proof of (1)

Induction step.
AT j) = (A@AR)(, j)

= @ A(. q)®AXaq, )

1<g<n
= @D ALY D wp)
1<g<n pePk(q, j)

= @ @D Al 9ewlp)

1<q<npePk(q, j)

= @ @ wl, 9w

(i, Q)EE pePk(q,))

= D wp

pePk+1(i, j)
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When does A* exist? Try a general approach.

° (S, @, ®, 0, 1) asemiring

Powers, a*
a =1
ak+1 _ a®ak
Closure, a*
ak = P paea2e. - @ a
a = deod Lo -ode. -

Definition (g stability)

If there exists a q such that a(@ = a(@+1), then ais g-stable. By
induction: Vt,0 < t, al9t) = a(@ . Therefore, a* = a(9.
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Fun Facts

Fact 3
If 1 is an annihiltor for @, then every a e S is 0-stable!

Fact 4
If Sis O-stable, then M,(S) is (n— 1)-stable. That is,

A*=A(n_1)=|@A1@A2®---@An_1

Why? Because we can ignore paths with loops.
(a®ceb)®(a®b)=ax(1®c)®b=a®1®b=a®b

Think of ¢ as the weight of a loop in a path with weight a® b.
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Shortest paths example, (N*, min, +)

The adjacency matrix
0 1 2 3 4
2 5 4 o] o 2 1 6 oo |
A\ 1 2 oo 5 o 4
\[/ 3 6 o 4 o o
6 4 41 o 4 3 w w
Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.
tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 59 /64
(min, +) example
Our theorem tells us that A* = A(™=1) = A(4)
0 1 2 3 4
of] 0 2 1 5 4 ]
112 0 3 7 4
A* = A® =1 min A min A2 min A min A*=2| 1 3 0 4 3
3| 57 4 0 7
404 4 3 7 0 |
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(min, +) example

o 1 2 3 4 o 1 2 3 4
o[ 0 2 1 6 o] o[ 8 4 3 8 10
11 2 o 5 o 4 11 4 8 7 7 6
A= 2|1 5 o 4 3 A5 = 2| 3 78 6 5
3| 6 o 4 o ® 3| 8 7 6 11 10
41 0o 4 3 w ® 4110 6 5 10 12 |
o 1 2 3 4 o 1 2 3 4
o[ 2 6 7 5 47 o[ 4 8 9 7 6 ]
116 4 3 8 8 118 6 5 10 10
A2 = 2|7 3 2 7 9 A* = 2|9 5 4 9 11
3|5 8 7 8 7 3|7 10 9 10 9
4| 4 8 9 7 6 4| 6 10 11 9 8

First appearance of final valug is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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A “better” way — our basic algorithm

AO —
AKD — AAR @]

Lemma

AL — A 1A' A%D .- AK
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back to (min, +) example

0 1 2 3 4 0 1 2 3 4
o[ 0 2 1 6 o | o[ 0 2 1 5 4]
1 2 0 5 o 4 1 2 0 3 7 4
AV — 211 5 0 4 3| A = 21304 3
3 6 o 4 0 o 3|1 5 7 4 0 7
4 0o 4 3 o 0 | 414 4 3 7 0 |
0 1 2 3 4
o[ 0 2 1 5 4]
1 2 0 3 8 4
A2 - 2|11 30 4 3
31 5 8 4 0 7
414 4 3 7 0|
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Anoteon Avs. A@l

Lemma
If @ is idempotent, then

(A Dk = AW,

Proof. Base case: When k = 0 both expressions are |.
Assume (A® DX = AW, Then

(AT = (Aah(AdlF

(A@HAK

AAK) @ A(F)
A(|@A@...@Ak)@A(k)
A@A2®---®Ak+1 @A(k)
Ak+1 @A(k)

— A+
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