L11: Algebraic Path Problems with applications to Internet Routing

Lectures 1, 2, and 3

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk
Computer Laboratory
University of Cambridge, UK

Michaelmas Term, 2016

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

1 / 64

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$

The adjacency matrix

<ロ > < @ > < き > < き > で を の < で と * **

Shortest paths solution

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from i to j.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

3 / 64

Widest paths example, bw = $(\mathbb{N}^{\infty}, \text{ max}, \text{ min}, \mathbf{0}, \infty)$

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 5 & 4 & 4 & 4 & \infty \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the minimal edge weight in p.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$

We want **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{p \in P(i, j)} w(p),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

5 / 64

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{p \in P(i, j)} w(p),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$A^*(4, 1) = \{b\}$$
 $A^*(4, 5) = \{b\}$ $A^*(5, 1) = \{\}$

We will start by looking at Semirings

name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	\mathbb{N}_{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{M}_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1 usable-path routing	
	2^W	\cup	\cap	{}	W	shared link attributes?
	2 ^W	\cap	\cup	W	{}	shared path attributes?

A wee bi	A wee bit of notation!						
$\frac{Symbol}{\mathbb{N}}$	Natural numbers (starting with zero)						
$\frac{\overline{0}}{1}$	\mathbb{N}^{∞} Natural numbers, plus infinity $\overline{0}$ Identity for \oplus Identity for \otimes						
tgg22 (cl	tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applica T.G.Griffin©2015 7 / 64						

Recommended Reading on Semiring Theory

Semirings (generalise $(\mathbb{R},+,\times,0,1)$)

We will look at the axioms of semirings. The most important are

distributivity

 $\mathbb{LD} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $\mathbb{RD} : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

◆□▶◆□▶◆■▶◆■▶ ● 釣魚@

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

9 / 64

Distributivity, illustrated

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

j makes the choice = i makes the choice

Should distributivity hold in Internet Routing? No!

customer provider short path through a customer

- *j* prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, *i* prefers the one with a shorter path

More on this later in the term ...

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

1 / 64

The (Tentative) Plan

4	0.0045654	_	Makinakian anamain
1			Motivation, overveiw
2	11 October	:	Semigroups
3	13 October	:	Semirgoups and partial orders
4	18 October	:	Semigroup Constructions
5	20 October	:	Semirings — Theory
6	25 October	:	Semirings — Constructions
7	27 October	:	Beyond Semirings — AMEs — "functions on arcs"
8	1 November	:	AME Constructions
9	3 November	:	Protocols: RIP, EIGRP (HW 1 due noon 4 Nov)
10	8 November	:	Inter-domain routing in the Internet I
11	10 November	:	Inter-domain routing in the Internet II
12	15 November	:	Beyond Semirings — Global vs Local optimality
13	17 November	:	More on Global vs Local optimality
14	22 November	:	Dijkstra revisited
15	24 November	:	Bellman-Ford revisited (HW 2 due noon 25 Nov)
16	29 November	:	Other algorithms
	17 January	:	HW 3 due 17 Jan, 4pm

Lectures 2, 3

- Semigroups
- A few important semigroup properties
- Semigroup and partial orders

4 D > 4 B > 4 E > 4 E > 9 Q @

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

3 / 64

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

AS associative $\equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c$

Important Assumption — We will ignore trival semigroups

We will impicitly assume that $2 \le |S|$.

Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet) , where $a \bullet b \equiv (a+b)/2$.

Some Important Semigroup Properties

A semigroup with an identity is called a monoid.

Note that

$$\mathbb{SL}(S, \bullet) \implies \mathbb{IP}(S, \bullet)$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

5 / 64

A few concrete semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
S	left	$x \operatorname{left} y = x$				*	*
S	right	x right $y = y$				*	*
S*	•	concatenation	ϵ				
\mathcal{S}^+	•	concatenation					
$\{t, f\}$	^	conjunction	t	f	*	*	*
$\{t, f\}$	V	disjunction	f	t	*	*	*
N	min	minimum		0	*	*	*
N	max	maximum	0		*	*	*
2 ^W	U	union	{}	W	*		*
2 ^W	\cap	intersection	W	{}	*		*
$fin(2^U)$	U	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
N	+	addition	0		*		
\mathbb{N}	×	multiplication	1	0	*		

W a finite set, U an infinite set. For set Y, $fin(Y) \equiv \{X \in Y \mid X \text{ is finite}\}\$

A few abstract semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
2^U	\subset	union	{}	U	*		*
2^U	\cap	intersection	U	{}	*		*
$2^{U \times U}$	\bowtie	relational join	$\mathcal{I}_{\mathcal{U}}$	{}			
$X \to X$	0	composition	$\lambda x.x$				

U an infinite set

$$X \bowtie Y \equiv \{(x, z) \in U \times U \mid \exists y \in U, (x, y) \in X \land (y, z) \in Y\}$$

 $\mathcal{I}_U \equiv \{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t \bullet (that is, $\forall x, y \in T, x \bullet y \in T$), then (T, \bullet) is a subsemigroup of S.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2015

7 / 64

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

$$\mathbb{RX}$$
 reflexive $\equiv a \leqslant a$

TR transitive
$$\equiv a \leqslant b \land b \leqslant c \rightarrow a \leqslant c$$

AY antisymmetric
$$\equiv a \leqslant b \land b \leqslant a \rightarrow a = b$$

$$\mathbb{TO}$$
 total $\equiv a \leqslant b \lor b \leqslant a$

	pre-order	•	preference order	total order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
$\mathbb{A}\mathbb{Y}$		*		*
$\mathbb{T}\mathbb{O}$			*	*

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$a \leq^R b \equiv \exists c \in S : b = a \bullet c$$

$$a \leq^L b \equiv \exists c \in S : a = b \cdot c$$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a \subseteq_{\bullet}^{R} b$ means $\exists c_{1} \in S : b = a \bullet c_{1}$, and $b \subseteq_{\bullet}^{R} c$ means

$$\exists c_2 \in S : c = b \bullet c_2$$
. Letting $c_3 = c_1 \bullet c_2$ we have

$$c = b \bullet c_2 = (a \bullet c_1) \bullet c_2 = a \bullet (c_1 \bullet c_2) = a \bullet c_3$$
. That is,

$$\exists c_3 \in S : c = a \bullet c_3$$
, so $a \leq^R_{\bullet} c$. The proof for \leq^L_{\bullet} is similar.

<ロ > < @ > < 重 > < 重 > < 更 > の < ⊙

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

9 / 64

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \leq_{\bullet}^{R} c$ and $a \leq_{\bullet}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \bullet a^{-1} = a^{-1} \bullet a = \alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If
$$a, b \in S$$
, then $a = \alpha_{\bullet} \bullet a = (b \bullet b^{-1}) \bullet a = b \bullet (b^{-1} \bullet a) = b \bullet c$, for $c = b^{-1} \bullet a$, so $a \leq_{\bullet}^{L} b$. In a similar way, $b \leq_{\bullet}^{R} a$. Therefore $a = b$.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

21 / 64

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$a \leq_{\bullet}^{L} b \equiv a = a \bullet b$$

$$a \leq_{\bullet}^{R} b \equiv b = a \bullet b$$

Lemma

If • is commutative and idempotent, then $a \leq_{\bullet}^{D} b \iff a \leq_{\bullet}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$a ext{ } extstyle extstyle def} b \iff b = a extstyle c = (a extstyle a) extstyle c = a extstyle (a extstyle c) = a extstyle b \iff a = b extstyle c = (b extstyle b) extstyle c = b extstyle (b extstyle c) = b extstyle a = a extstyle b \iff a extstyle \xi_b extstyle b$$

T.G.Griffin@2015

22 / 64

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\bullet}^{L} \alpha$ and $\alpha \leq_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant^L_{\bullet} a$ and $a \leqslant^R_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{cccc}
0 & \leq_{\min}^{L} & a & \leq_{\min}^{L} & \infty \\
\infty & \leq_{\min}^{R} & a & \leq_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

23 / 64

Examples of special elements

S	•	α	ω	$\leqslant^{\operatorname{L}}_{ullet}$	\leq^{R}_{ullet}
\mathcal{N}_{∞}	min	∞	0	\forall	\wedge
$M_{-\infty}$	max	0	$-\infty$	\geqslant	\leq
$\mathcal{P}(\mathbf{W})$	U	{}	W	\subseteq	\supseteq
$\mathcal{P}(\mathbf{W})$	\cap	W	{}	\supseteq	\subseteq

Property Management

Lemma

Let $D \in \{R, L\}$.

Proof.

- 2 $a \leq_{\bullet}^{L} b \land b \leq_{\bullet}^{L} a \iff a = a \bullet b \land b = b \bullet a \implies a = b$
- 3 $a \leq_{\bullet}^{L} b \land b \leq_{\bullet}^{L} c \iff a = a \bullet b \land b = b \bullet c \implies a = a \bullet (b \bullet c) = (a \bullet b) \bullet c = a \bullet c \implies a \leq_{\bullet}^{L} c$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

25 / 64

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the <u>least upper bound of a and b</u>, written c = a lub b, if it is an upper bound $(a \le c \text{ and } b \le c)$, and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a meet-semilattice if a glb b exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each a, $b \in S$.

◆ロト ◆昼 ▶ ◆ 重 ト ・ 重 ・ 夕 ♀ ○

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2015

7 / 64

Fun Facts

Fact 1

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- (S, \leq^L) is a meet-semilattice with $a \text{ glb } b = a \bullet b$.
- (S, \leq^R) is a join-semilattice with $a \text{ lub } b = a \bullet b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, \leq) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

◆□▶◆□▶◆■▶ ◆■▶ ■ かく○

Lectures 4, 5

- Semigroup Constructions
- Homework 1
- Semirings
- Matrix semirings
- Shortest paths

◆ロト ◆昼 ト ◆ 喜 ト ◆ 喜 ・ か へ ご

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

00 / 64

Add identity

$$AddId(\alpha, (S, \bullet)) \equiv (S \uplus \{\alpha\}, \bullet_{\alpha}^{id})$$

where

$$a \bullet_{\alpha}^{\mathrm{id}} b \equiv \begin{cases} a & (\text{if } b = \mathrm{inr}(\alpha)) \\ b & (\text{if } a = \mathrm{inr}(\alpha)) \\ \mathrm{inl}(x \bullet y) & (\text{if } a = \mathrm{inl}(x), b = \mathrm{inl}(y)) \end{cases}$$

disjoint union

$$A \uplus B \equiv \{ \operatorname{inl}(a) \mid a \in A \} \cup \{ \operatorname{inr}(b) \mid b \in B \}$$

Add identity

Easy Exercises

```
\begin{array}{lll} \mathbb{AS}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{TRUE} \\ \mathbb{AN}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{AN}(S,\bullet) \\ \mathbb{CM}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{CM}(S,\bullet) \\ \mathbb{IP}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{IP}(S,\bullet) \\ \mathbb{SL}(\mathsf{AddId}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{SL}(S,\bullet) \end{array}
```

◆□▶◆□▶◆■▶ ■ り90

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

31 / 64

Inserting an annihilator

$$AddAn(\omega, (S, \bullet)) \equiv (S \uplus \{\omega\}, \bullet_{\omega}^{an})$$

where

$$a \bullet_{\omega}^{\mathrm{an}} b \equiv \begin{cases} \mathrm{inr}(\omega) & (\mathrm{if} \ b = \mathrm{inr}(\omega)) \\ \mathrm{inr}(\omega) & (\mathrm{if} \ a = \mathrm{inr}(\omega)) \\ \mathrm{inl}(x \bullet y) & (\mathrm{if} \ a = \mathrm{inl}(x), \ b = \mathrm{inl}(y)) \end{cases}$$

Add annihilator

Easy Exercises

 $\begin{array}{llll} \mathbb{AS}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{ID}(S,\bullet) \\ \mathbb{AN}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{TRUE} \\ \mathbb{CM}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{CM}(S,\bullet) \\ \mathbb{IP}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{IP}(S,\bullet) \\ \mathbb{SL}(\mathsf{AddAn}(\alpha,\;(S,\;\bullet))) &\Leftrightarrow& \mathbb{SL}(S,\bullet) \end{array}$

4□ > 4□ > 4 = > 4 = > 9 q @

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

33 / 64

Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, \bullet) is commutative, idempotent, and selective and that (T, \diamond) is a semigroup.

$$(S, \bullet) \stackrel{\vec{\times}}{\times} (T, \diamond) \equiv (S \times T, \star)$$

where $\star \equiv \bullet \stackrel{\overrightarrow{\times}}{\times} \diamond$ is defined as

$$(s_1, t_1) \star (s_2, t_2) = \begin{cases} (s_1 \bullet s_2, t_1 \diamond t_2) & s_1 = s_1 \bullet s_2 = s_2 \\ (s_1 \bullet s_2, t_1) & s_1 = s_1 \bullet s_2 \neq s_2 \\ (s_1 \bullet s_2, t_2) & s_1 \neq s_1 \bullet s_2 = s_2 \end{cases}$$

Examples

```
(\mathbb{N}, \min) \stackrel{?}{\times} (\mathbb{N}, \min)
 (1, 17) \star (2,3) = (1,17) 
 (2, 17) \star (2,3) = (2,3) 
 (2, 3) \star (2,3) = (2,3)
```

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

35 / 64

```
Assuming AS(S, \bullet) \wedge CM(S, \bullet) \wedge IP(S, \bullet) \wedge SL(S, \bullet)
AS((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow AS(T, \diamond)
ID((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow ID(S, \bullet) \wedge ID(T, \diamond)
AN((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow AN(S, \bullet) \wedge AN(T, \diamond)
CM((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow CM(T, \diamond)
IP((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow IP(T, \diamond)
SL((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow SL(T, \diamond)
IR((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow FALSE
IL((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow FALSE
```

All easy, except for AS (See Homework 1!).

Direct Product of Semigroups

Let (S, \bullet) and (T, \diamond) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted

$$(S, \bullet) \times (T, \diamond) \equiv (S \times T, \star)$$

where

$$\star = \bullet \times \diamond$$

is defined as

$$(s_1, t_1) \star (s_2, t_2) = (s_1 \bullet s_2, t_1 \diamond t_2).$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

37 / 64

Easy exercises

What about SL?

Consider the product of two selective semigroups, such as $(\mathbb{N}, \min) \times (\mathbb{N}, \max)$.

$$(10, 10) \star (1, 3) = (1, 10) \notin \{(10, 10), (1, 3)\}$$

The result in this case is not selective!

Direct product and SL?

$$\mathbb{SL}((\mathcal{S},\bullet)\times(\mathcal{T},\diamond)) \ \Leftrightarrow \ (\mathbb{IR}(\mathcal{S},\bullet)\wedge\mathbb{IR}(\mathcal{T},\diamond))\vee(\mathbb{IL}(\mathcal{S},\bullet)\wedge\mathbb{IL}(\mathcal{T},\diamond))$$

See Homework 1

$$\begin{array}{lll} \mathbb{IR}((S, \bullet) \times (T, \diamond)) & \Leftrightarrow & \mathbb{IR}(S, \bullet) \wedge \mathbb{IR}(T, \diamond) \\ \mathbb{IL}((S, \bullet) \times (T, \diamond)) & \Leftrightarrow & \mathbb{IL}(S, \bullet) \wedge \mathbb{IL}(T, \diamond) \end{array}$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015 39 / 64

Revisit other constructions ...

$$\begin{split} &\mathbb{IR}(\mathsf{AddId}(\alpha,\;(\boldsymbol{S},\;\bullet))) \;\;\Leftrightarrow\;\; \mathbb{FALSE} \\ &\mathbb{IL}(\mathsf{AddId}(\alpha,\;(\boldsymbol{S},\;\bullet))) \;\;\Leftrightarrow\;\; \mathbb{FALSE} \end{split}$$

$$&\mathbb{IR}(\mathsf{AddAn}(\alpha,\;(\boldsymbol{S},\;\bullet))) \;\;\Leftrightarrow\;\; \mathbb{FALSE} \\ &\mathbb{IL}(\mathsf{AddAn}(\alpha,\;(\boldsymbol{S},\;\bullet))) \;\;\Leftrightarrow\;\; \mathbb{FALSE} \end{split}$$

Assuming
$$\mathbb{AS}(S, \bullet) \wedge \mathbb{CM}(S, \bullet) \wedge \mathbb{IP}(S, \bullet) \wedge \mathbb{SL}(S, \bullet)$$

$$\mathbb{IR}((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow \mathbb{FALSE}$$

$$\mathbb{IL}((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow \mathbb{FALSE}$$

Lifted Product

Lifted product semigroup

Assume (S, \bullet) is a semigroup. Let $lift(S, \bullet) \equiv (fin(2^S), \hat{\bullet})$ where

$$X \hat{\bullet} Y = \{ x \bullet y \mid x \in X, y \in Y \}.$$

$$\{1, 3, 17\} + \{1, 3, 17\} = \{2, 4, 6, 18, 20, 34\}$$

< ロ ト ◆ 個 ト ◆ 差 ト ◆ 差 ・ 夕 Q (^)

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

41 / 64

```
\begin{array}{lll} \mathbb{AS}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{AS}(S, \bullet) \\ \mathbb{ID}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{ID}(S, \bullet) \; (\hat{\alpha} = \{\alpha\}) \\ \mathbb{AN}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{TRUE} \; (\omega = \{\}) \\ \mathbb{CM}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{CM}(S, \bullet) \\ \mathbb{SL}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{IL}(S, \bullet) \vee \mathbb{IR}(S, \bullet) \vee (\mathbb{IP}(S, \bullet) \; \wedge \; | \; S \; | = 2) \\ \mathbb{IP}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{SL}((S, \bullet)) \\ \mathbb{IL}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{FALSE} \\ \mathbb{IR}(\operatorname{lift}(S, \bullet)) & \Leftrightarrow & \mathbb{FALSE} \end{array}
```

Why bother with all of these ⇔ rules?

I would rather calculate than prove!

```
\begin{split} & \mathbb{IP}(\mathrm{lift}(\mathrm{lift}(\{t,\ f\},\ \wedge)) \\ \Leftrightarrow & \mathbb{SL}(\{t,\ f\},\ \wedge) \\ \Leftrightarrow & \mathbb{IL}(\{t,\ f\},\ \wedge) \vee \mathbb{IR}(\{t,\ f\},\ \wedge) \vee (\mathbb{IP}(\{t,\ f\},\ \wedge)\ \wedge \mid \{t,\ f\}\mid = 2) \\ \Leftrightarrow & \mathbb{FALSE} \vee \mathbb{FALSE} \vee (\mathbb{TRUE} \wedge \mathbb{TRUE}) \\ \Leftrightarrow & \mathbb{TRUE} \end{split}
```

Note

This kind of calculation will become more interesting as we introduce more complex constructors and consider more complex properties — such as those associated with semirings.

< ロ ト ∢ @ ト ∢ 喜 ト ∢ 喜 ト り へ ⊝

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

13 / 64

Homework 1

Each question is 25 points.

- Prove Fact 1
- Prove Fact 2
- Prove

$$\begin{array}{c} \mathbb{SL}((\mathcal{S}, \bullet) \times (\mathcal{T}, \diamond)) \\ \Leftrightarrow \\ (\mathbb{IR}(\mathcal{S}, \bullet) \wedge \mathbb{IR}(\mathcal{T}, \diamond)) \vee (\mathbb{IL}(\mathcal{S}, \bullet) \wedge \mathbb{IL}(\mathcal{T}, \diamond)) \end{array}$$

(Rather difficult). Prove

$$\begin{array}{c} \mathbb{SL}(\mathrm{lift}(\mathcal{S}, \bullet)) \\ \Leftrightarrow \\ \mathbb{IL}(\mathcal{S}, \bullet) \vee \mathbb{IR}(\mathcal{S}, \bullet) \vee (\mathbb{IP}(\mathcal{S}, \bullet) \ \land \mid \mathcal{S} \mid = 2) \end{array}$$

Bi-semigroups and Pre-Semirings

(S, \oplus, \otimes) is a bi-semigroup when

- (S, \oplus) is a semigroup
- (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- (S, \oplus, \otimes) is a bi-semigroup
- \oplus is commutative

and left- and right-distributivity hold,

 $\mathbb{LD} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $\mathbb{RD} : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

4□ ▶ 4□ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

45 / 64

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- (S, \oplus, \otimes) is a pre-semiring
- $(S, \oplus, \overline{0})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

Examples

Semirings 1 0 S \oplus , \otimes name \mathcal{N}_{∞} min + 0 ∞ sp M_{∞} min 0 bw max ∞

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

47 / 64

How about (max, +)?

• What about "0 is an annihilator for ⊗"? No!

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

\oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

$$(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

49 / 64

$\mathbb{M}_n(S)$ is a semiring!

For example, here is left distribution

$$\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}) = (\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C})$$

$$(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j)$$

$$= \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j))$$

$$= \bigoplus_{1 \leqslant q \leqslant n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

Note: we only needed left-distributivity on S.

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

51 / 64

The general problem of finding globally optimal path weights

Given an adjacency matrix **A**, find **A*** such that for all $i, j \in V$

$$\mathbf{A}^*(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

where P(i, j) represents the set of all paths from i to j.

How can we solve this problem?

Matrix methods

Matrix powers, \mathbf{A}^k

$$\mathbf{A}^0 = \mathbf{I}$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

Matrix methods can compute optimal path weights

- Let P(i,j) be the set of paths from i to j.
- Let $P^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

$$(1) \qquad \mathbf{A}^{k}(i, j) = \bigoplus w(p)$$

(2)
$$\mathbf{A}^{(k)}(i, j) = \bigoplus_{i=1}^{k} w(p_i^k)$$

(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in P^{k}(i, j) \\ p \in P^{k}(i, j)}} \mathbf{w}(p)$$
(2)
$$\mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in P^{(k)}(i, j) \\ p \in P(i, j)}} \mathbf{w}(p)$$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

Proof of (1)

By induction on k. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = \mathbf{w}(\epsilon)$$
.

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{\boldsymbol{p}\in\{\}}\boldsymbol{w}(\boldsymbol{p})=\overline{0}=\boldsymbol{I}(i,\,j).$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

55 / 64

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i,j)$$

$$= \bigoplus_{\substack{1 \leqslant q \leqslant n \\ 1 \leqslant q \leqslant n}} \mathbf{A}(i,q) \otimes \mathbf{A}^k(q,j)$$

$$= \bigoplus_{\substack{1 \leqslant q \leqslant n \\ 1 \leqslant q \leqslant n \\ p \in P^k(q,j)}} \mathbf{A}(i,q) \otimes (\bigoplus_{\substack{p \in P^k(q,j) \\ 1 \leqslant q \leqslant n \\ p \in P^k(q,j)}} \mathbf{W}(p)$$

$$= \bigoplus_{\substack{(i,q) \in E \\ p \in P^k(q,j) \\ p \in P^{k+1}(i,j)}} \mathbf{W}(p)$$

When does A* exist? Try a general approach.

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Powers, a^k

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a q such that $a^{(q)} = a^{(q+1)}$, then a is q-stable. By induction: $\forall t, 0 \le t, a^{(q+t)} = a^{(q)}$. Therefore, $a^* = a^{(q)}$.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with application

T.G.Griffin@2015

7 / 64

Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If *S* is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Why? Because we can ignore paths with loops.

$$(a \otimes c \otimes b) \oplus (a \otimes b) = a \otimes (\overline{1} \oplus c) \otimes b = a \otimes \overline{1} \otimes b = a \otimes b$$

Think of c as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

59 / 64

(min, +) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^* = \mathbf{A}^{(4)} = \mathbf{I} \text{ min } \mathbf{A} \text{ min } \mathbf{A}^2 \text{ min } \mathbf{A}^3 \text{ min } \mathbf{A}^4 = \begin{bmatrix} 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 3 & 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

(min, +) example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & \frac{2}{2} & \frac{1}{1} & 6 & \infty \\ \frac{2}{2} & \infty & 5 & \infty & \frac{4}{4} \\ \frac{1}{1} & 5 & \infty & \frac{4}{4} & \frac{3}{2} \\ 6 & \infty & \frac{4}{4} & \infty & \infty \\ 0 & \frac{1}{4} & \frac{1}{3} & \frac{1}{4} & \frac{1$$

$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 6 & 7 & \frac{5}{2} & \frac{4}{4} \\ 6 & 4 & \frac{3}{2} & 8 & 8 \\ 7 & \frac{3}{2} & 2 & 7 & 9 \\ \frac{5}{4} & 8 & 9 & \frac{7}{7} & 6 \end{bmatrix} \qquad \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 8 & 9 & 7 & 6 \\ 8 & 6 & 5 & 10 & 10 \\ 9 & 5 & 4 & 9 & 11 \\ 7 & 10 & 9 & 10 & 9 \\ 6 & 10 & 11 & 9 & 8 \end{bmatrix}$$

First appearance of final value is in red and <u>underlined</u>. Remember: we are looking at all paths of a given length, even those with cycles!

◆□▶◆■▶◆■▶ ■ り90

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2015

31 / 64

A "better" way — our basic algorithm

$$\begin{array}{ccc} \mathbf{A}^{\langle 0 \rangle} & = & \mathbf{I} \\ \mathbf{A}^{\langle k+1 \rangle} & = & \mathbf{A} \mathbf{A}^{\langle k \rangle} \oplus \mathbf{I} \end{array}$$

Lemma

$$\mathbf{A}^{\langle k \rangle} = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

back to (min, +) example

$$\mathbf{A}^{\langle 1 \rangle} \ = \ \begin{array}{c} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 6 & \infty \\ 1 & 2 & 0 & 5 & \infty & 4 \\ 1 & 5 & 0 & 4 & 3 \\ 6 & \infty & 4 & 0 & \infty \\ 4 & \infty & 4 & 3 & \infty & 0 \end{array} \right] \quad \mathbf{A}^{\langle 3 \rangle} \ = \ \begin{array}{c} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{array} \right]$$

$$\mathbf{A}^{\langle 2 \rangle} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 8 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 8 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

4ロ → 4 個 → 4 種 → 4 種 → 1 型 → 9 Q O

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin©2015

63 / 64

A note on A vs. A I

Lemma

If \oplus is idempotent, then

$$(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}.$$

Proof. Base case: When k = 0 both expressions are **I**.

Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$(\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k}$$

$$= (\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$$

$$= \mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{k}) \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{(k+1)}$$