L11: Algebraic Path Problems with applications to Internet Routing Lecture 7

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2016

Solving (some) equations

Theorem 6.1

If **A** is *q*-stable, then \mathbf{A}^* solves the equations

 $\mathbf{L}=\mathbf{A}\mathbf{L}\oplus\mathbf{I}$

and

 $\mathbf{R}=\mathbf{R}\mathbf{A}\oplus\mathbf{I}.$

For example, to show $\mathbf{L} = \mathbf{A}^*$ solves the first equation:

$$\begin{array}{rcl}
\mathbf{A}^* &=& \mathbf{A}^{(q)} \\
&=& \mathbf{A}^{(q+1)} \\
&=& \mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I} \\
&=& \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \oplus \mathbf{I} \\
&=& \mathbf{A}\mathbf{A}^{(q)} \oplus \mathbf{I} \\
&=& \mathbf{A}\mathbf{A}^* \oplus \mathbf{I}
\end{array}$$

Note that if we replace the assumption "**A** is *q*-stable" with "**A**^{*} exists," then we require that \otimes distributes over <u>infinite</u> sums.

tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin@2015	2 / 15
----------------------	---	------------------	--------

A more general result

For the first equation:

The "best" solution

If **A** is *q*-stable and q < k, then Suppose Y is a matrix such that $\mathbf{Y} = \mathbf{A}^k \mathbf{Y} \oplus \mathbf{A}^*$ $\mathbf{Y} = \mathbf{A}\mathbf{Y} \oplus \mathbf{I}$ **Y** ⊴^{*L*}_⊕ **A*** = **AY** \oplus **I** Υ $= \mathbf{A}^{1}\mathbf{Y} \oplus \mathbf{A}^{(0)}$ and if \oplus is idempotent, then $= \mathbf{A}((\mathbf{AY} \oplus \mathbf{I})) \oplus \mathbf{I}$ $\mathbf{Y} \leqslant^L_{\oplus} \mathbf{A}^*$ $= \mathbf{A}^2 \mathbf{Y} \oplus \mathbf{A} \oplus \mathbf{I}$ $= \mathbf{A}^2 \mathbf{Y} \oplus \mathbf{A}^{(1)}$ So A* is the largest solution. What does this mean in terms of the sp $= \mathbf{A}^{k+1}\mathbf{Y} \oplus \mathbf{A}^{(k)}$ semiring?

(日) (四) (王) (王) (王)

590

Example with zero weighted cycles using sp semiring

Recall our basic iterative algorithm

$$\begin{array}{rcl} \mathbf{A}^{\langle \mathbf{0} \rangle} &= & \mathbf{I} \\ \mathbf{A}^{\langle k+1 \rangle} &= & \mathbf{A} \mathbf{A}^{\langle k \rangle} \oplus \mathbf{I} \end{array}$$

A closer look ...

$$\mathbf{A}^{\langle k+1 \rangle}(i,j) = \mathbf{I}(i,j) \oplus \bigoplus_{u}^{u} \mathbf{A}(i,u) \mathbf{A}^{\langle k \rangle}(u,j)$$
$$= \mathbf{I}(i,j) \oplus \bigoplus_{(i,u) \in E}^{u} \mathbf{A}(i,u) \mathbf{A}^{\langle k \rangle}(u,j)$$

This is the basis of distributed Bellman-Ford algorithms (as in RIP and BGP) — a node *i* computes routes to a destination *j* by applying its link weights to the routes learned from its immediate neighbors. It then makes these routes available to its neighbors and the process continues...

590

6/15

3

What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by \mathbf{A}) can change and the state of the computation can start in an arbitrary state (with respect to a new \mathbf{A}).

$$egin{array}{rcl} \mathbf{A}_{\mathbf{M}}^{\langle 0
angle} &= & \mathbf{M} \ \mathbf{A}_{\mathbf{M}}^{\langle k+1
angle} &= & \mathbf{A} \mathbf{A}_{\mathbf{M}}^{\langle k
angle} \oplus \mathbf{I} \end{array}$$

RIP-like example — counting to convergence (1)								
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 10 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 10 \\ 3 \\ \end{array} $							
Adjacency matrix A ₁	Adjacency matrix A_2							
Adjacency matrix \mathbf{A}_1 0 1 2 3 0 $\begin{bmatrix} \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & 1 \\ 2 & 1 & 1 & \infty & 10 \\ 3 & \infty & 1 & 10 & \infty \end{bmatrix}$	Adjacency matrix \mathbf{A}_2 0 1 2 3 0 $\begin{bmatrix} \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & \infty \\ 2 & 1 & 1 & \infty & 10 \\ 3 & \infty & \infty & 10 & \infty \end{bmatrix}$							
Adjacency matrix \mathbf{A}_1 0 1 2 3 0 $\begin{bmatrix} \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & 1 \\ 2 & 1 & 1 & \infty & 10 \\ 3 & \infty & 1 & 10 & \infty \end{bmatrix}$ See RFC	Adjacency matrix \mathbf{A}_2 0 1 2 3 0 $\begin{bmatrix} \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & \infty \\ 2 & 1 & 1 & \infty & 10 \\ 3 & \infty & \infty & 10 & \infty \end{bmatrix}$ 1058.							

g22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applica T.G.Griffin © 2015			
	g22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2015

8 / 15

RIP-like example — counting to convergence (2)

RIP-like example — counting to convergence (3)

The scenario: we arrived at A_1^* , but then links $\{(1,3), (3,1)\}$ fail. So we start iterating using the new matrix A_2 .

Let $\mathbf{B}_{\mathcal{K}}$ represent $\mathbf{A}_{2\mathbf{M}}^{\langle k \rangle}$, where $\mathbf{M} = \mathbf{A}_{1}^{*}$.

SAC

< □ >

RIP-like example — counting to convergence (4)

RIP-like example — counting to convergence (5)

			0	1 2	3						0	1	2	3	
B 6		0	0	1 1	7]				0	0	1	1	10]
		1	1	0 1	7			D		1	1	0	1	10	
	=	2	1	1 0	7			D 9	=	2	1	1	0	10	
		3	_ 2	1 2	0					3	_ 11	11	10	0	
			0	1	2	3					0	1	2	3	
B ₇		0	0	1	1	8]			0	0	1	1	11	7
		1	1	0	1	8		D.		1	1	0	1	11	
	=	2	1	1	0	8		D 10	=	2	1	1	0	10	
		3	_ 11	11	10	0				3	_ 11	11	10	0	
			0	1	2	3									
		0	0	1	1	9]								
D		1	1	0	1	9									
D 8	=	2	1	1	0	9									
		3	_ 11	11	10	0									
												∢≣≯	< ≣ >	₹ ×)
	tgg22 (d	cl.cam.a	ac.uk)		_11: Alc	ebraic	Path Pro	oblems v	vith app	lica		T.G.Griff	in@201	5 12	2/15

RIP-like example — counting to infinity (2)

RIP-like example — What's going on?

Recall

$$\mathbf{A}_{\mathbf{M}}^{\langle k \rangle}(i, j) = \mathbf{A}^{k}\mathbf{M}(i, j) \oplus \mathbf{A}^{*}(i, j)$$

- A*(i, j) may be arrived at very quickly
- but $\mathbf{A}^{k}\mathbf{M}(i, j)$ may be better until a very large value of k is reached (counting to convergence)
- or it may always be better (counting to infinity).

Solutions?

- RIP: $\infty = 16$
- In the next lecture we will explore various ways of adding paths to metrics and eliminating those paths with loops

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

・ロ・・ 白・ ・ ヨ・ ・ ヨ・

T.G.Griffin ©2015

Sac

15 / 15

Э