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Motivation

From previous lectures (hopefully!):

◮ Most existing best-path theory has been concerned with the
semiring world.

◮ BGP is definitely not distributive and furthermore its
extension of routes cannot be described by a single operator.

◮ Therefore the routing problems solved in the internet cannot
be modelled by semirings.

Q: Where does this leave us?
A: In a new, exciting world of more general structures!



Questions?

The questions we might want to ask about these new general
structures are:

◮ When do our algorithms converge?

◮ When do they reconverge?

◮ How long does convergence/reconvergence take?

Quick semiring recap

We can represent a routing problem as a semiring (S ,⊕,⊗, 0, 1)
where:

◮ S is the carrier set

◮ ⊕ : S → S → S is the choice operator

◮ ⊗ : S → S → S is the extension operator

◮ 0 ∈ S is the invalid path

◮ 1 ∈ S is the zero length path

For example:

◮ Shortest paths: (N∞,min,+,∞, 0)
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Algebras of monoid endomorphisms

We can generalise such structures to algebras of monoid
endomorphisms (S ,⊕,F , 0, 1̄) where:

◮ S is the carrier set

◮ ⊕ : S → S → S is the choice operator

◮ F ⊆ S → S is a set of edge functions

◮ 0 ∈ S is the invalid route

◮ 1̄ ⊆ S is the set of zero length routes

For example:

◮ Shortest paths: (N∞,min,F+,∞, {0}) where
F+ = {fn | n ∈ N} and fn(x) = n + x .
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Generalising properties

Property AME formulation

⊕ associative -
⊕ commutative -
⊕ selective -
F associative n/a
0 identity for ⊕ -
0 annihilator for F ∀f : f (0) = 0
1̄ identity for F n/a
1̄ annihilator for ⊕ ∀f : ∀1 ∈ 1̄ : ∀a ∈ S : f (a)⊕ 1 = 1
F distributes over ⊕ ∀f : ∀ab ∈ S : f (a+ b) = f (a)⊕ f (b)
F increasing over ⊕ ∀f : ∀a ∈ S : a = a⊕ f (a)
F s. increasing over ⊕ ∀f : ∀a ∈ S : a = a⊕ f (a) 6= f (a)



Bellman-Ford and convergence

Generalising the distributed Bellman-Ford algorithm is simple:

σ(X )ij =

(

⊕

k

Aik(Xkj)

)

⊕ Iij

and so once again we have that

σ(X ) = AX ⊕ I

The algorithm converges from a starting state X iff:

∃n ∈ N. σ
n(X ) = σ

n+1(X )

To prove

Ideally we would like to guarantee that we converge from all states
rather than just I , the identity matrix.

This means that the algorithm will be able to cope with:

◮ Node failure (servers going down)

◮ Edge failure (connections going down)

◮ Change in edge weights (due to congestion etc.)

Hence we should find conditions on the algebra such that:

∀X : ∃n ∈ N : σn(X ) = σ
n+1(X )



Assumptions for proof

Property SRs AMEs

⊕ associative Yes Yes
⊕ commutative Yes Yes
⊕ selective Yes Yes
⊗/F associative Yes -
0 identity for ⊕ Yes Yes
0 annihilator for F Yes Yes
1̄ identity for F Yes -
1̄ annihilator for ⊕ Yes Yes
F distributes over ⊕ Yes No
F increasing over ⊕ No Yes
F s. increasing over ⊕ No Yes

Additional assumptions

We’re also going assume that set S is finite...

This is a very strong assumption, but so too is our claim that:

∀X . ∃n ∈ N. σ
n(X ) = σ

n+1(X )

For instance this doesn’t hold even for the shortest-paths algebra.

Shortest-paths only converges when starting from I . For general
starting states we get count-to-convergence/infinity problems.
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Proof invariants

In the semiring world we can prove that with each iteration every
entry in the routing matrix improves monotonically.

In the non-distributive world this is no longer true. We need to find
a new invariant...

Creating an invariant

As S is finite then we can define the height function:

h(x) = |{a | a ≤⊕

L x}|

Using this we can then define the similarity between x , y ∈ S as:

s(x , y) =

{

h(0) + 1 if x = y

min(h(x), h(y)) otherwise

If x and y differ than they’re only as similar as the height of the
best of the pair. Intuitively this makes sense as the better the
element is the more likely it is to be incorporated into other routes.



Far enough?

Is this enough? Does the similarity between Xij and σ(X )ij
increase each iteration?

Sadly not as the lack of distributivity means that individual entries
may get worse.

Matrix invariants

Instead of trying to reason about the properties of individual
entries in the routing matrices, we can instead reason about the
matrices themselves.

For all X and Y define the similarity between them as:

S(X ,Y ) = min
ij

(s(Xij ,Yij))



Finally an invariant!

We will now prove that for all X and Y such that σ(X ) 6= σ(Y )
then

S(X ,Y ) < S(σ(X ), σ(Y ))

i.e. an iteration must strictly improve the best entry that X and Y

disagree on.

Proof 1/3

As σ(X ) 6= σ(Y ) there must be distinct i and j such that
σ(X )ij 6= σ(Y )ij and S(X ,Y ) = h(σ(X )ij) or h(σ(Y )ij).

Without loss of generality let us assume the former and so
h(σ(X )ij) ≤ h(σ(Y )ij).

If σ(X )ij = Iij then we have a contradiction as:

h(σ(Y )ij) ≤ h(0)

= h(Iij)

= h(σ(X )ij)

and by anti-symmetry of ≤ we have that σ(X )ij = σ(Y )ij .



Proof 2/3

Therefore σ(X )ij = Aik(Xkj) for some k .

If Xkj = Ykj then we have a similar contradiction in that:

σ(Y )ij ≤ Aik(Ykj)

= Aik(Xkj)

= σ(X )ij

and by anti-symmetry of ≤ we have that σ(X )ij = σ(Y )ij .

Proof 3/3

Therefore Xkj 6= Ykj and hence we have that:

S(X ,Y ) ≤ h(Xkj)

< h(Aik(Xkj))

= h(σ(X )ij)

= S(σ(X ), σ(Y ))

as required.



Convergence

Using this lemma we can therefore form a chain:

S(X , σ(X )) < S(σ(X ), σ2(X )) < S(σ2(X ), σ3(X )) < ...

This chain is bounded above by h(0) + 1 and therefore there must
be an n such that σn(X ) = σn+1(X ).

Interestingly now that we have the existence of such n it is easy to
show that S(X , σn(X )) < S(σ(X ), σn(X )).

Uniqueness

This fixed point is also necessarily unique.

Suppose we had two distinct fixed points X and Y then by
applying the lemma we could get:

S(X ,Y ) < S(σ(X ), σ(Y ))

= S(X ,Y )

which is clearly a contradiction.



Too strong by half?

We now have a set of sufficient conditions for convergence from
any state, but are they too strong? Even shortest-distance doesn’t
fulfil them!

But how do we fix count-to-convergence problems? By introducing
paths.

Adding paths

Given an algebra (S ,⊕,F , 1) and a graph G we can form an
augmented algebra (SP ,⊕P ,FP , 0P , 1̄P) that tracks and removes
paths.

◮ Let PS(G ) be the set of simple paths.

SP = (S × PS(G )) ∪ {null}

◮ 0P = null

◮ 1̄P = {(1, i) | i ∈ G}



◮ Choice operator

Let ⊕L be a selective operator over paths that selects the
shortest path and breaks ties by the lexicographic order of the
nodes in the path.

null ⊕P (w , q) = (w , q)

(v , p)⊕P null = (v , p)

(v , p)⊕P (w , q) =











(v , p) if v = v ⊕ w 6= w

(w , q) if v 6= v ⊕ w = w

(v ⊕ w , p ⊕L q) otherwise

◮ Extension functions

Let eij ∈ F be the edge weight in G between i and j .

Then we define fij as:

fij(null) = null

fij(x , p) =

{

null if i ∈ p or j 6= src(p)

(eij(x), i :: p) otherwise

We then have that

FP = {fij | i , j ∈ G}



Paths and sufficient conditions

It is easy to show that given an (S ,⊕,F , 1) satisfying:

◮ ⊕ associative

◮ ⊕ commutative

◮ ⊕ selective

◮ F increasing over ⊕ (note: not strictly increasing!)

◮ 1 is an annihilator for ⊕

that all the required conditions for our previous theorem hold.

The one exception is the finiteness of S .

Consistent pairs

But we’ve added simple paths... surely we must be finite!

Unfortunately not. For any given entry (x , p), the weight of p may
not be x , and therefore the cardinality of SP is the same as the
cardinality of S .

Instead take the sub-algebra of only consistent pairs where
x = w(p) where the weight function w obviously depends on the
underlying graph. Our theorem then applies to this consistent
algebra.



Inconsistent pairs

We can then prove by induction on path lengths that any routing
matrix containing inconsistent information eventually has such
information flushed.

Therefore we eventually reach a consistent state from which we
then converge!

Inconsistent pairs

We can then prove by induction on path lengths that any routing
matrix containing inconsistent information eventually has such
information flushed within n iterations.

Therefore we eventually reach a consistent state from which we
then converge!



Convergence time

So we have some (relatively) weak conditions for which we
converge. How long does such convergence take?

For k-stable semirings we know that convergence is guaranteed in
nk − 1 iterations.

Can we come up with a similar bound for non-distributive algebras?

Linear convergence time

Following on from our intuition about the shortest-widest paths
algebra, we first tried to attempt to prove that if lij is the length of
the longest simple path from i to j then:

∀ij : ∀t ∈ N : σlij+t(I )ij = σ
lij+t+1(I )ij

Although this holds for the shortest-widest paths, in general you
cannot make the proof go through.



Non-linear convergence time

The hole in the proof lead us to the following counter-example
graph...

Chaining widgets

Which we can then chain to form an exponential counter-example.
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Chaining widgets

Consider a widget with n nodes in it and which takes c iterations
to converge. Let ak be the number of iterations the kth level
meta-widget takes to converge with a0 = c .

ak = (c + 1)ak−1 + c − 1

= a0(c + 1)k + ...

= c(c + 1)k + ...

Exponential convergence time

Let nk be the number of nodes in meta-widget at level k then:

nk = nk+1

Therefore under the assumption that c ≥ n and so c + 1 > n the
ratio between c(c + 1)k and nk+1 grows exponentially.


