L11: Algebraic Path Problems with applications to Internet Routing Lecture 15

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2016

Path Weight with functions on arcs?

For graph G = (V, E), and arc path $p = (u_0, u_1)(u_1, u_2) \cdots (u_{k-1}, u_k)$.

Functions on arcs: two natural ways to do this... Weight function $w : E \to (S \to S)$. Let $f_j = w(u_{j-1}, u_j)$. $w_a^L(p) = f_1(f_2(\cdots f_k(a) \cdots)) = (f_1 \circ f_2 \circ \cdots \circ f_k)(a)$ $w_a^R(p) = f_k(f_{k-1}(\cdots f_1(a) \cdots)) = (f_k \circ f_{k-1} \circ \cdots \circ f_1)(a)$

How can we "make this work" for path problems?

Algebra of Monoid Endomorphisms (AME) (See Gondran and Minoux 2008)

Let $(S, \oplus, \overline{0})$ be a commutative monoid.

 $(S, \oplus, F \subseteq S \rightarrow S, \overline{0})$ is an algebra of monoid endomorphisms (AME) if

- $\forall f \in F, f(\overline{0}) = \overline{0}$
- $\forall f \in F, \forall b, c \in S, f(b \oplus c) = f(b) \oplus f(c)$

I will declare these as optional

- $\forall f, g \in F, f \circ g \in F$ (closed)
- $\exists i \in F, \forall s \in S, i(s) = s$
- $\exists \omega \in F, \forall n \in N, \omega(n) = \overline{0}$

Note: as with semirings, we may have to drop some of these axioms in order to model Internet routing ...

 tgg22 (cl.cam.ac.uk)
 L11: Algebraic Path Problems with applica
 T.G.Griffin©2015
 3 / 21

So why do we want AMEs?

Each (closed with ω and *i*) AME can be viewed as a semiring of functions. Suppose $(S, \oplus, F, \overline{0})$ is an algebra of monoid endomorphisms. We can turn it into a semiring

$$\mathbb{F} = (F, \, \hat{\oplus}, \, \circ, \, \omega, \, i)$$

where $(f \oplus g)(a) = f(a) \oplus g(a)$ and $(f \circ g)(a) = f(g(a))$.

But functions are hard to work with....

- All algorithms need to check equality over elements of a semiring
- f = g means $\forall a \in S, f(a) = g(a)$
- *S* can be very large, or infinite

SQA

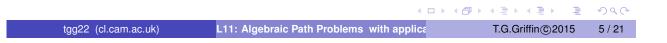
How do we represent a set of functions $F \subseteq S \rightarrow S$?

Assume we a set L and a function

 $\triangleright \in L \rightarrow (S \rightarrow S).$

We normally write $I \triangleright s$ rather than $\triangleright(I)(s)$. We think of $I \in L$ as the index for a function $f_l(s) = l \triangleright s$. In this way (L, \triangleright) can be used to represent the set of functions

 $F = \{f_l = \lambda s. (l \triangleright s) \mid l \in L\}.$



Indexed Algebra of Monoid Endomorphisms (IAME)

Let $(S, \oplus, \overline{0})$ be a commutative and idempotent monoid.

A (left) IAME $(S, L, \oplus, \rhd, \overline{0})$

• $\triangleright \in L \rightarrow (S \rightarrow S)$

•
$$\forall l \in L, \ l \rhd \overline{0} = \overline{0}$$

- $\exists l \in L, \forall s \in S, l \triangleright s = s$
- $\exists l \in L, \forall s \in S, l \triangleright s = \overline{0}$
- $\forall I \in L, \forall n, m \in S, I \triangleright (n \oplus m) = (I \triangleright n) \oplus (I \triangleright m)$

When we need closure? Not very often! If needed, it would be

 $\forall l_1, l_2 \in L, \exists l_3 \in L, \forall s \in S, l_3 \triangleright s = l_1 \triangleright (l_2 \triangleright s)$

tgg22 (cl.cam.ac.uk)

日本《國本《國本《國本

IAME of Matrices

Given a left IAME $(S, L, \oplus, \rhd, \overline{0})$ define the left IAME of matrices

 $(\mathbb{M}_n(S), \mathbb{M}_n(L), \oplus, \triangleright, \mathbf{J}).$

For all i, j we have $\mathbf{J}(i, j) = \overline{\mathbf{0}}$. For $\mathbf{A} \in \mathbb{M}_n(L)$ and $\mathbf{B}, \mathbf{C} \in \mathbb{M}_n(S)$ define

$$(\mathbf{B} \oplus \mathbf{C})(i, j) = \mathbf{B}(i, j) \oplus \mathbf{C}(i, j)$$

$$(\mathbf{A} \triangleright \mathbf{B})(i, j) = \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \triangleright \mathbf{B}(q, j)$$

Solving (some) equations. Left version here ...

We will be interested in solving for L equations of the form

$$\mathbf{L} = (\mathbf{A} \rhd \mathbf{L}) \oplus \mathbf{B}$$

Let

$$\begin{array}{rcl} \mathbf{A} \rhd^0 \mathbf{B} &= & \mathbf{B} \\ \mathbf{A} \rhd^{k+1} \mathbf{B} &= & \mathbf{A} \rhd (\mathbf{A} \rhd^k \mathbf{B}) \end{array}$$

and

$$\mathbf{A} \triangleright^{(k)} \mathbf{B} = \mathbf{A} \triangleright^0 \mathbf{B} \oplus \mathbf{A} \triangleright^1 \mathbf{B} \oplus \mathbf{A} \triangleright^2 \mathbf{B} \oplus \cdots \oplus \mathbf{A} \triangleright^k \mathbf{B}$$

$$\mathbf{A} \vartriangleright^* \mathbf{B} = \mathbf{A} \vartriangleright^0 \mathbf{B} \oplus \mathbf{A} \vartriangleright^1 \mathbf{B} \oplus \mathbf{A} \vartriangleright^2 \mathbf{B} \oplus \cdots \oplus \mathbf{A} \vartriangleright^k \mathbf{B} \oplus \cdots$$

▲ □ ▶ ▲ 三 ▶

< ∃⇒

Key result (again)

q stability

If there exists a q such that for all **B**, $\mathbf{A} \triangleright^{(q)} \mathbf{B} = \mathbf{A} \triangleright^{(q+1)} \mathbf{B}$, then **A** is *q*-stable. Therefore, $\mathbf{A} \triangleright^* \mathbf{B} = \mathbf{A} \triangleright^{(q)} \mathbf{B}$.

Theorm If **A** is *q*-stable, then $\mathbf{L} = \mathbf{A} \triangleright^* (\mathbf{B})$ solves the equation $\mathbf{L} = (\mathbf{A} \triangleright \mathbf{L}) \oplus \mathbf{B}.$

Something familiar : Lexicographic product

 $(S, L_S, \oplus_S, \triangleright_S) \times (T, L_T, \oplus_T, \triangleright_T) \equiv (S \times T, L_S \times L_T, \oplus_S \times \oplus_T, \triangleright_S \times \triangleright_T)$

$$\mathbb{D}((S, L_{S}, \oplus_{S}, \rhd_{S}) \stackrel{\prec}{\times} (T, L_{T}, \oplus_{T}, \rhd_{T})) \\ \longleftrightarrow \\ \mathbb{D}(S, L_{S}, \oplus_{S}, \rhd_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \rhd_{T}) \\ \land (\mathbb{C}(S, L_{S}, \bowtie_{S}) \lor \mathbb{K}(T, L_{T}, \bowtie_{T})))$$

Where

Tł

$$\begin{split} \mathbb{D}(S, \ L, \ \oplus, \ \vartriangleright) &\equiv \forall a, b \in S, \ I \in L, \ I \rhd (a \oplus b) = (I \rhd a) \oplus (I \rhd b) \\ \mathbb{C}(S, \ L, \ \vartriangleright) &\equiv \forall a, b \in S, \ I \in L, \ I \rhd a = I \rhd b \implies a = b \\ \mathbb{K}(S, \ L, \ \vartriangleright) &\equiv \forall a, b \in S, \ I \in L, \ I \rhd a = I \rhd b \end{split}$$

うへで

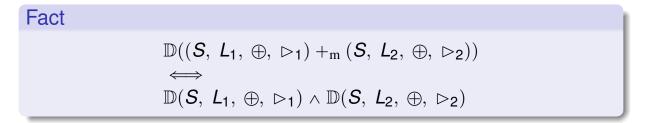
◆□ > ◆□ > ◆□ > ◆□ > ● □ >

Something new: Functional Union

$$(S, L_1, \oplus, \rhd_1) +_m (S, L_2, \oplus, \rhd_2) = (S, L_1 \uplus L_2, \oplus, \rhd_1 \uplus \rhd_2)$$

Where

 $\inf(I) (\triangleright_1 \uplus \triangleright_2) \mathbf{s} = I \triangleright_1 \mathbf{s}$ $\inf(I) (\triangleright_1 \uplus \triangleright_2) \mathbf{s} = I \triangleright_2 \mathbf{s}$



	4	□▶∢@▶∢≣▶∢≣▶	596
tgg22 (cl.cam.ac.uk)	L11: Algebraic Path Problems with applica	T.G.Griffin©2015	11 / 21

Left and Right

 $\begin{aligned} \operatorname{right}(S, \oplus) &\equiv (S, \{R\}, \oplus, \operatorname{right}) \\ &R \operatorname{right} s = s \end{aligned}$ $\begin{aligned} \operatorname{left}(S, \oplus) &\equiv (S, S, \oplus, \operatorname{left}) \\ &s_1 \operatorname{left} s_2 = s_1 \end{aligned}$ $\begin{aligned} \mathsf{The following are always hold.} \\ &\mathbb{D}(\operatorname{right}(S, \oplus)) \\ &\mathbb{D}(\operatorname{right}(S, \oplus)) \\ &\mathbb{D}(\operatorname{left}(S, \oplus)) \\ &\mathbb{C}(\operatorname{right}(S, \oplus)) \\ &\mathbb{K}(\operatorname{left}(S, \oplus)) \end{aligned}$

590

12/21

Scoped Product (Think iBGP/eBGP)

$$(S, L_{S}, \oplus_{S}, \rhd_{S}) \Theta (T, L_{T}, \oplus_{T}, \rhd_{T}) \equiv \\ ((S, L_{S}, \oplus_{S}, \rhd_{S}) \times \operatorname{left}(T, \oplus_{T})) +_{\mathrm{m}} (\operatorname{right}(S, \oplus_{S}) \times (T, L_{T}, \oplus_{T}, \rhd_{T}))$$

Between regions (
$$\lambda \in L_S$$
, $s \in S$, $t_1, t_2 \in T$)
 $inl(\lambda, t_2) \triangleright (s, t_1) = (\lambda \triangleright_S s, t_2)$
Within regions ($\lambda \in L_T$, $s \in S$, $t \in T$)
 $inr(R, \lambda) \triangleright (s, t) = (s, \lambda \triangleright_T t)$

Theorem. If
$$\mathbb{IP}(T, \oplus_T)$$
, then
 $(\mathbb{D}((S, L_S, \oplus_S, \rhd_S) \Theta (T, L_T, \oplus_T, \rhd_T)))$
 \longrightarrow
 $\mathbb{D}(S, L_S, \oplus_S, \rhd_S) \land \mathbb{D}(T, L_T, \oplus_T, \rhd_T))$

$$\mathbb{D}(((S, L_{S}, \oplus_{S}, \rhd_{S}) \times \operatorname{left}(T, \oplus_{T})) +_{m} (\operatorname{right}(S, \oplus_{S}) \times (T, L_{T}, \oplus_{T}, \rhd_{T}))) \\ \iff \mathbb{D}((S, L_{S}, \oplus_{S}, \rhd_{S}) \times \operatorname{left}(T, \oplus_{T})) \\ \land \mathbb{D}((\operatorname{right}(S, \oplus_{S})) \times (T, L_{T}, \oplus_{T}, \rhd_{T}))) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \rhd_{S}) \land \mathbb{D}(\operatorname{left}(T, \oplus_{T}))) \\ \land (\mathbb{C}(S, L_{S}, \bowtie_{S}) \vee \mathbb{K}(\operatorname{left}(T, \oplus_{T}))) \\ \land \mathbb{D}(\operatorname{right}(S, \oplus_{S})) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \land (\mathbb{C}(\operatorname{right}(S, \oplus_{S})) \lor \mathbb{D}(T, L_{T}, \boxtimes_{T}))) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \iff \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \implies \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \implies \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(T, L_{T}, \oplus_{T}, \bowtie_{T})) \\ \implies \mathbb{D}(S, L_{S}, \oplus_{S}, \bowtie_{S}) \land \mathbb{D}(S, L_{S}, \oplus_{S}, \boxtimes_{S}) \land \mathbb{D}(S, L_{S}, \oplus_{S}) \land \mathbb{D}(S, L_{S}, \oplus_{S}, \boxtimes_{S}) \land \mathbb{D}(S, L_{S}, \oplus_{S}) \land \mathbb{D}(S, L_{S}) \land \mathbb{D}(S, L_{S}) \land \mathbb{D}(S, L_{S})$$

Homework 3 : Shortest Paths with Gains and Losses

$$spgl \equiv (\mathbb{R} \times \mathbb{R}, \oplus, \bullet)$$

Where

$$(s_1, t_1) \oplus (s_2, t_2) \equiv \begin{cases} (s_1, t_1 \min t_2) & (\text{if } s_1 = s_1) \\ (s_1, t_1) & (\text{if } s_1 = s_1 \min s_2 \neq s_2) \\ (s_2, t_2) & (\text{if } s_1 \neq s_1 \min s_2 = s_2) \end{cases}$$

 $(c_1, n_1) \bullet (c_2, n_2) \equiv (c_1 + n_1 c_2, n_1 n_2)$



Homework 3 : Calculating path weights in spg1

$$((c_1, n_1) \bullet (c_2, n_2)) \bullet (c_3, n_3)$$

= $(c_1 + n_1 c_2, n_1 n_2) \bullet (c_3, n_3)$
= $(c_1 + n_1 c_2 + n_1 n_2 c_3, n_1 n_2 n_3)$
 $(c_1, n_1) \bullet (c_2, n_2) \bullet (c_3, n_3) \bullet \cdots \bullet (c_k, n_k)$

$$= (c_1 + n_1c_2 + n_1n_2c_3 + \dots + n_1n_2n_3 \cdots n_{k-1}c_k, n_1n_2n_3 \cdots n_k)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

16/21

Homework 3 : Shortest Paths with Discounting

Assume $0 < \delta < 1$.

$$\operatorname{spd} \equiv (\mathbb{R} \times \mathbb{N}, \oplus, \diamond)$$

Where

$$(s_1, t_1) \oplus (s_2, t_2) \equiv \begin{cases} (s_1, t_1 \min t_2) & (\text{if } s_1 = s_1) \\ (s_1, t_1) & (\text{if } s_1 = s_1 \min s_2 \neq s_2) \\ (s_2, t_2) & (\text{if } s_1 \neq s_1 \min s_2 = s_2) \end{cases}$$

 $(c_1, n_1) \diamond (c_2, n_2) \equiv (c_1 + c_2 \delta^{n_1}, n_1 + n_2)$

Homework 3 : Calculating path weights in spd

$$\begin{array}{rcl} & ((c_1, n_1) \diamond (c_2, n_2)) \diamond & (c_3, n_3) \\ = & (c_1 + c_2 \delta^{n_1}, n_1 + n_2) \diamond & (c_3, n_3) \\ = & (c_1 + c_2 \delta^{n_1} + c_3 \delta^{(n_1 + n_2)}, n_1 + n_2 + n_3) \\ = & (c_1 + c_2 \delta^{n_1} + c_3 \delta^{n_1} \delta^{n_2}, n_1 + n_2 + n_3) \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

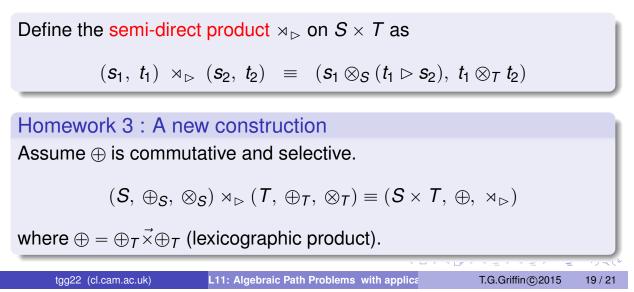
18/21

Homework 3 : Can we generalise this kind of construction?

Given semigroups (S, \otimes_S) and (T, \otimes_T) , and a function

 $\triangleright \in T \rightarrow (S \rightarrow S)$

Write $t \triangleright s$ instead of $\triangleright(t)(s)$.



Homework 3 : Does this work?

spgl		
Let		
$n \triangleright c \equiv n imes c$		
then		
$\mathrm{spgl} = (\mathbb{R}, \ \mathrm{min}, \ +) \rtimes_{ \vartriangleright} (\mathbb{R}, \ \mathrm{min}, \ \times)$		
spd		
Assume $0 < \delta < 1$ and		
$n \triangleright c \equiv c imes \delta^n,$		
then		
$\mathrm{spd} = (\mathbb{R}, \ min, \ +) \rtimes_{\vartriangleright} (\mathbb{N}, \ min, \ +)$		

taa22	(cl.cam.ac.uk)
ישאבר ו	(CI.Cam.ac.uk)

<- 17 ► < 12 ►

Homework 3 : Problems

Question 1 (30 marks) When is $(S \times T, \rtimes_{\triangleright})$ a semigroup?

Question 2 (35 marks)

When is $(S, \oplus_S, \otimes_S) \rtimes_{\triangleright} (T, \oplus_T, \otimes_T)$ left distributive?

Question 3 (35 marks) When is $(S, \oplus_S, \otimes_S) \rtimes_{\triangleright} (T, \oplus_T, \otimes_T)$ right distributive?

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

・ロト・日本・日本・日本・日本・日本

T.G.Griffin©2015

21 / 21