
NetworkX:  
Network Analysis with Python

Dionysis Manousakas (special thanks to Petko Georgiev, Tassos Noulas
and Salvatore Scellato)

Social and Technological Network Data Analytics
Computer Laboratory, University of Cambridge
February 2017

Outline
1. Introduction to NetworkX

2. Getting started with Python and NetworkX

3. Basic network analysis

4. Writing your own code

5. Ready for your own analysis!

2

1. Introduction to NetworkX

3

Introduction: networks are everywhere…

4

Social
networks

Vehicular flowsMobile phone networks
Web pages/citations

Internet routing

How can we analyse these networks?
Python + NetworkX

Introduction: why Python?

5

Python is an interpreted, general-purpose high-level
programming language whose design philosophy emphasises
code readability

+
Clear syntax, indentation

Multiple programming paradigms
Dynamic typing, late binding

Multiple data types and structures
Strong on-line community

Rich documentation
Numerous libraries
Expressive features

Fast prototyping

-
Can be slow

Beware when you are
analysing very large

networks

Introduction: Python’s Holy Trinity

NumPy is an extension to
include
multidimensional arrays
and matrices.

Both SciPy and NumPy
rely on the C library
LAPACK for very fast
implementation.

6

Matplotlib is the
primary plotting
library in Python.

Supports 2-D and 3-D
plotting. All plots are
highly customisable
and ready for
professional
publication.

Python’s primary
library for
mathematical and
statistical computing.
Contains toolboxes
for:
• Numeric

optimization
• Signal processing
• Statistics, and

more…
Primary data type is
an array.

Introduction: NetworkX

7

A “high-productivity
software for complex
networks” analysis
• Data structures for representing various

networks (directed, undirected, multigraphs)

• Extreme flexibility: nodes can be any
hashable object in Python, edges can contain
arbitrary data

• A treasure trove of graph algorithms

• Multi-platform and easy-to-use

Introduction: when to use NetworkX

When to use
Unlike many other tools, it is
designed to handle data on a scale
relevant to modern problems

Most of the core algorithms rely on
extremely fast legacy code

Highly flexible graph
implementations (a node/edge can
be anything!)

When to avoid
Large-scale problems that require
faster approaches (i.e. massive
networks with 100M/1B edges)

Better use of memory/threads than
Python (large objects, parallel
computation)

Visualization of networks is better
handled by other professional tools
(e.g Gephi, Cytoscape)

8

Introduction: a quick example
• Use Dijkstra’s algorithm to find the shortest path in a weighted and

unweighted network.

9

>>> import networkx as nx
>>> g = nx.Graph()
>>> g.add_edge('a', 'b', weight=0.1)
>>> g.add_edge('b', 'c', weight=1.5)
>>> g.add_edge('a', 'c', weight=1.0)
>>> g.add_edge('c', 'd', weight=2.2)
>>> print nx.shortest_path(g, 'b', 'd')
['b', 'c', 'd']
>>> print nx.shortest_path(g, 'b', 'd', weight='weight')
['b', 'a', 'c', 'd']

Introduction: drawing and plotting
• It is possible to draw small graphs with NetworkX. You can export network

data and draw with other programs (Gephi, etc.).

10

Introduction: NetworkX official website

11

http://networkx.github.io/

http://networkx.github.io/

2. Getting started with Python and
NetworkX

12

Getting started: the environment

• Start Python (interactive or script mode) and import NetworkX

• Different classes exist for directed and undirected networks. Let’s create
a basic undirected Graph:

• The graph g can be grown in several ways. NetworkX provides many
generator functions and facilities to read and write graphs in many
formats.

$ python
>>> import networkx as nx

>>> g = nx.Graph() # empty graph

13

Getting started: adding nodes

One node at a time
>>> g.add_node(1)

A list of nodes
>>> g.add_nodes_from([2, 3])

A container of nodes
>>> h = nx.path_graph(5)
>>> g.add_nodes_from(h)

You can also remove any node of the graph
>>> g.remove_node(2)

14

Getting started: node objects
• A node can be any hashable object such as a string, a function, a file and

more.

>>> import math
>>> g.add_node('string')
>>> g.add_node(math.cos) # cosine function
>>> f = open('temp.txt', 'w') # file handle
>>> g.add_node(f)
>>> print g.nodes()
['string', <open file 'temp.txt', mode 'w' at
0x000000000589C5D0>, <built-in function cos>]

15

Getting started: adding edges
Single edge
>>> g.add_edge(1, 2)
>>> e = (2, 3)
>>> g.add_edge(*e) # unpack tuple

List of edges
>>> g.add_edges_from([(1, 2), (1, 3)])

A container of edges
>>> g.add_edges_from(h.edges())

You can also remove any edge
>>> g.remove_edge(1, 2)

16

Getting started: accessing nodes and
edges
>>> g.add_edges_from([(1, 2), (1, 3)])
>>> g.add_node('a')
>>> g.number_of_nodes() # also g.order()
4
>>> g.number_of_edges() # also g.size()
2
>>> g.nodes()
['a', 1, 2, 3]
>>> g.edges()
[(1, 2), (1, 3)]
>>> g.neighbors(1)
[2, 3]
>>> g.degree(1)
2

17

Getting started: Python dictionaries
• NetworkX takes advantage of Python dictionaries to store node and edge

measures. The dict type is a data structure that represents a key-value
mapping.

Keys and values can be of any data type
>>> fruit_dict = {'apple': 1, 'orange': [0.12, 0.02], 42: True}

Can retrieve the keys and values as Python lists (vector)
>>> fruit_dict.keys()
['orange', 42, 'apple']

Or (key, value) tuples
>>> fruit_dict.items()
[('orange', [0.12, 0.02]), (42, True), ('apple', 1)]
This becomes especially useful when you master Python list
comprehension

18

Getting started: graph attributes
• Any NetworkX graph behaves like a Python dictionary with nodes as

primary keys
(for access only!)

• The special edge attribute weight should always be numeric and holds
values used by algorithms requiring weighted edges.

>>> g.add_node(1, time='10am')
>>> g.node[1]['time']
10am
>>> g.node[1] # Python dictionary
{'time': '10am'}

>>> g.add_edge(1, 2, weight=4.0)
>>> g[1][2]['weight'] = 5.0 # edge already added
>>> g[1][2]
{'weight': 5.0}

19

Getting started: node and edge iterators
• Node iteration

• Edge iteration

>>> g.add_edge(1, 2)
>>> for node in g.nodes(): # or node in g.nodes_iter():
 print node, g.degree(node)
1 1
2 1

>>> g.add_edge(1, 3, weight=2.5)
>>> g.add_edge(1, 2, weight=1.5)
>>> for n1, n2, attr in g.edges(data=True): # unpacking
 print n1, n2, attr['weight']
1 2 1.5
1 3 2.5

20

Getting started: directed graphs

• Some algorithms work only for undirected graphs and others are not well
defined for directed graphs. If you want to treat a directed graph as
undirected for some measurement you should probably convert it using
Graph.to_undirected()

>>> dg = nx.DiGraph()
>>> dg.add_weighted_edges_from([(1, 4, 0.5), (3, 1, 0.75)])
>>> dg.out_degree(1, weight='weight')
0.5
>>> dg.degree(1, weight='weight')
1.25
>>> dg.successors(1)
[4]
>>> dg.predecessors(1)
[3]

21

Getting started: graph operators
• subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch
• union(G1, G2) - graph union, G1 and G2 must be disjoint
• cartesian_product(G1, G2) - return Cartesian product graph
• compose(G1, G2) - combine graphs identifying nodes common to both
• complement(G) - graph complement
• create_empty_copy(G) - return an empty copy of the same graph class
• convert_to_undirected(G) - return an undirected representation of G
• convert_to_directed(G) - return a directed representation of G

22

Getting started: graph generators
small famous graphs
>>> petersen = nx.petersen_graph()
>>> tutte = nx.tutte_graph()
>>> maze = nx.sedgewick_maze_graph()
>>> tet = nx.tetrahedral_graph()

classic graphs
>>> K_5 = nx.complete_graph(5)
>>> K_3_5 = nx.complete_bipartite_graph(3, 5)
>>> barbell = nx.barbell_graph(10, 10)
>>> lollipop = nx.lollipop_graph(10, 20)

random graphs
>>> er = nx.erdos_renyi_graph(100, 0.15)
>>> ws = nx.watts_strogatz_graph(30, 3, 0.1)
>>> ba = nx.barabasi_albert_graph(100, 5)
>>> red = nx.random_lobster(100, 0.9, 0.9)

23

Getting started: graph input/output
• General read/write

• Read and write edge lists

• Data formats
• Node pairs with no data: 1 2
• Python dictionaries as data: 1 2 {'weight':7, 'color':'green'}
• Arbitrary data: 1 2 7 green

>>> g = nx.read_<format>(‘path/to/file.txt’,...options...)
>>> nx.write_<format>(g,‘path/to/file.txt’,...options...)

>>> g = nx.read_edgelist(path, comments='#', create_using=None,
delimiter=' ', nodetype=None, data=True, edgetype=None,
encoding='utf-8')
>>> nx.write_edgelist(g, path, comments='#', delimiter=' ',
data=True, encoding='utf-8')

24

Getting started: drawing graphs
• NetworkX is not primarily a graph drawing package but it provides basic

drawing capabilities by using matplotlib. For more complex visualization
techniques it provides an interface to use the open source GraphViz
software package.

>>> import pylab as plt #import Matplotlib plotting interface
>>> g = nx.watts_strogatz_graph(100, 8, 0.1)
>>> nx.draw(g)
>>> nx.draw_random(g)
>>> nx.draw_circular(g)
>>> nx.draw_spectral(g)
>>> plt.savefig('graph.png')

25

3. Basic network analysis

26

Basic analysis: the Cambridge place
network

27

A directed network with
integer ids as nodes

Two places (nodes) are
connected if a user transition
has been observed between
them

Visualization thanks to Java unfolding:
http://processing.org/
http://unfoldingmaps.org/

http://processing.org/
http://processing.org/
http://processing.org/
http://unfoldingmaps.org/
http://unfoldingmaps.org/
http://unfoldingmaps.org/

Basic analysis: graph properties
• Find the number of nodes and edges, the average degree and the number

of connected components
cam_net = nx.read_edgelist('cambridge_net.txt',
create_using=nx.DiGraph(), nodetype=int)
N, K = cam_net.order(), cam_net.size()
avg_deg = float(K) / N

print "Nodes: ", N
print "Edges: ", K
print "Average degree: ", avg_deg
print "SCC: ", nx.number_strongly_connected_components(cam_net)
print "WCC: ", nx.number_weakly_connected_components(cam_net)

28

Basic analysis: degree distribution
• Calculate in (and out) degrees of a directed graph

• Then use matplotlib (pylab) to plot the degree distribution

in_degrees = cam_net.in_degree() # dictionary node:degree
in_values = sorted(set(in_degrees.values()))
in_hist = [in_degrees.values().count(x) for x in in_values]

plt.figure() # you need to first do 'import pylab as plt'
plt.grid(True)
plt.plot(in_values, in_hist, 'ro-') # in-degree
plt.plot(out_values, out_hist, 'bv-') # out-degree
plt.legend(['In-degree', 'Out-degree'])
plt.xlabel('Degree')
plt.ylabel('Number of nodes')
plt.title('network of places in Cambridge')
plt.xlim([0, 2*10**2])
plt.savefig('./output/cam_net_degree_distribution.pdf')
plt.close()

29

Basic analysis: degree distribution

Oops! What happened?

30

Basic analysis: degree distribution

Change scale of the x and y axes by
replacing
plt.plot(in_values,in_hist,'ro-')
with
plt.loglog(in_values,in_hist,'ro-')

Fitting data with SciPy:
http://scipy-cookbook.readthedocs.io/

items/FittingData.html

31

Basic analysis: clustering coefficient
• We can get the clustering coefficient of individual nodes or all the nodes

(but first we need to convert the graph to an undirected one)
cam_net_ud = cam_net.to_undirected()

Clustering coefficient of node 0
print nx.clustering(cam_net_ud, 0)

Clustering coefficient of all nodes (in a dictionary)
clust_coefficients = nx.clustering(cam_net_ud)

Average clustering coefficient
avg_clust = sum(clust_coefficients.values()) / len(clust_coefficients)
print avg_clust

Or use directly the built-in method
print nx.average_clustering(cam_net_ud)

32

Basic analysis: node centralities
• We will first extract the largest connected component and then compute

the node centrality measures
Connected components are sorted in descending order of their size
cam_net_components = nx.connected_component_subgraphs(cam_net_ud)
cam_net_mc = cam_net_components[0]

Betweenness centrality
bet_cen = nx.betweenness_centrality(cam_net_mc)

Closeness centrality
clo_cen = nx.closeness_centrality(cam_net_mc)

Eigenvector centrality
eig_cen = nx.eigenvector_centrality(cam_net_mc)

33

Basic analysis: most central nodes
• We first introduce a utility method: given a dictionary and a threshold

parameter K, the top K keys are returned according to the element
values.

• We can then apply the method on the various centrality metrics
available. Below we extract the top 10 most central nodes for each case.

def get_top_keys(dictionary, top):
 items = dictionary.items()
 items.sort(reverse=True, key=lambda x: x[1])
 return map(lambda x: x[0], items[:top])

top_bet_cen = get_top_keys(bet_cen,10)
top_clo_cen = get_top_keys(clo_cen,10)
top_eig_cent = get_top_keys(eig_cen,10)

34

Basic analysis: interpretability
• The nodes in our network correspond to real entities. For each place in the

network, represented by its id, we have its title and geographic coordinates.

• Iterate through the lists of centrality nodes and use the meta data to print
the titles of the respective places.

READ META DATA ###
node_data = {}
for line in open('./output/cambridge_net_titles.txt'):
 splits = line.split(';')
 node_id = int(splits[0])
 place_title = splits[1]
 lat = float(splits[2])
 lon = float(splits[3])
 node_data[node_id] = (place_title, lat, lon)

print 'Top 10 places for betweenness centrality:'
for node_id in top_bet_cen:
 print node_data[node_id][0]

35

Basic analysis: most central nodes

• The ranking for the different centrality metrics does not change much,
although this may well depend on the type of network under
consideration.

Top 10
Cambridge Railway Station (CBG)

Grand Arcade
Cineworld Cambridge

Greens
King's College

Cambridge Market
Grafton Centre

Apple Store
Anglia Ruskin University
Addenbrooke's Hospital

Top 10
Cambridge Railway Station (CBG)

Grand Arcade
Cineworld Cambridge

Apple Store
Grafton Centre

Cambridge Market
Greens

King's College
Addenbrooke's Hospital

Parker's Piece

Top 10
Cambridge Railway Station (CBG)

Cineworld Cambridge
Grand Arcade
King's College
Apple Store

Cambridge Market
Greens

Addenbrooke's Hospital
Grafton Centre

Revolution Bar (Vodka
Revolutions)

Betweenness centrality Closeness centrality Eigenvector centrality

36

Basic analysis: drawing our network
draw the graph using information about the nodes geographic position
pos_dict = {}
for node_id, node_info in node_data.items():
 pos_dict[node_id] = (node_info[2], node_info[1])
nx.draw(cam_net, pos=pos_dict, with_labels=False, node_size=25)
plt.savefig('cam_net_graph.pdf')
plt.close()

37

Basic analysis: working with JSON data
• Computing network centrality metrics can be slow, especially for large

networks.
• JSON (JavaScript Object Notation) is a lightweight data interchange

format which can be used to serialize and deserialize Python objects
(dictionaries and lists).

import json
Utility function: saves data in JSON format
def dump_json(out_file_name, result):
 with open(out_file_name, 'w') as out_file:
 out_file.write(json.dumps(result, indent=4, separators=(',', ': ')))

Utility function: loads JSON data into a Python object
def load_json(file_name):
 with open(file_name) as f:
 return json.loads(f.read())

path = 'betwenness_centrality.txt' # Example
dump_json(path, bet_cen)
saved_centrality = load_json(path) # Result is a Python dictionary

38

4. Writing your own code

39

Writing your own code: BFS
• With Python and NetworkX it is easy to write any graph-based algorithm
from collections import deque

def breadth_first_search(g, source):
 queue = deque([(None, source)])
 enqueued = set([source])
 while queue:
 parent, n = queue.popleft()
 yield parent, n
 new = set(g[n]) - enqueued
 enqueued |= new
 queue.extend([(n, child) for child in new])

Check out how to use generators:
https://wiki.python.org/moin/
Generators 40

https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators

Writing your own code: network triads
• Extract all unique triangles in a graph with integer node IDs

def get_triangles(g):
 nodes = g.nodes()
 for n1 in nodes:
 neighbors1 = set(g[n1])
 for n2 in filter(lambda x: x>n1, nodes):
 neighbors2 = set(g[n2])
 common = neighbors1 & neighbors2
 for n3 in filter(lambda x: x>n2, common):
 yield n1, n2, n3

41

Writing your own code: average neighbours’
degree
• Compute the average degree of each node’s neighbours:

• And the more compact version in a single line:

def avg_neigh_degree(g):
 data = {}
 for n in g.nodes():
 if g.degree(n):
 data[n] = float(sum(g.degree(i) for i in g[n]))/g.degree(n)
 return data

def avg_neigh_degree(g):
 return dict((n,float(sum(g.degree(i) for i in g[n]))/ g.degree(n))
for n in g.nodes() if g.degree(n))

42

5. Ready for your own analysis!

43

What you have learnt today
• How to create graphs from scratch, with generators and by loading local

data

• How to compute basic network measures, how they are stored in
NetworkX and how to manipulate them with list comprehension

• How to load/store NetworkX data from/to files

• How to use matplotlib to visualize and plot results (useful for final report!)

• How to use and include NetworkX features to design your own algorithms

44

Useful links
Code & data used in this lecture: www.cl.cam.ac.uk/~dm754/stna/stna-examples.zip
NodeXL: a graphical front-end that integrates network analysis into Microsoft Office and Excel.
(http://nodexl.codeplex.com/)
Pajek: a program for network analysis for Windows and MacOS (http://pajek.imfm.si/doku.php).
Graph-tool : Python module for network analysis, with the core data structures and algorithms
implemented in C++ and are based on the Boost Graph Library - also many algorithms are
implemented in OpenMP (https://graph-tool.skewed.de/)
Gephi: an interactive visualization and exploration platform (http://gephi.org/)
Power-law Distributions in Empirical Data: tools for fitting heavy-tailed distributions to data
(http://tuvalu.santafe.edu/~aaronc/powerlaws/)
GraphViz: graph visualization software (http://www.graphviz.org/)
Matplotlib: full documentation for the plotting library (http://matplotlib.org/)
Unfolding Maps: map visualization software in Java (http://unfoldingmaps.org/)
Folium: Python module for visualisation on an interactive Leaflet map (https://
folium.readthedocs.io/en/latest/)

45

http://www.cl.cam.ac.uk/~an346/stna-examples.zip
http://www.cl.cam.ac.uk/~dm754/stna/stna-examples.zip
http://nodexl.codeplex.com/
http://nodexl.codeplex.com/
http://pajek.imfm.si/doku.php
http://pajek.imfm.si/doku.php
https://graph-tool.skewed.de/
http://gephi.org/
http://gephi.org/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://www.graphviz.org/
http://www.graphviz.org/
http://matplotlib.org/
http://matplotlib.org/
http://matplotlib.org/
http://unfoldingmaps.org/
http://unfoldingmaps.org/
http://leafletjs.com/
https://folium.readthedocs.io/en/latest/
https://folium.readthedocs.io/en/latest/

Datasets

•Many online resources, e.g. SNAP, DNAC

•Mine your own data: [1],[2]

46

https://snap.stanford.edu/data/
https://dnac.ssri.duke.edu/datasets.php
https://github.com/ptwobrussell/Mining-the-Social-Web-2nd-Edition
https://github.com/bonzanini/Book-SocialMediaMiningPython

47

E-mail: Dionysis.Manousakas@cl.cam.ac.uk

Web: http://www.cl.cam.ac.uk/~dm754/stna/stna-tutorial_2017.pdf

mailto:dionysis.Manousakas@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~dm754/stna/stna-tutorial_2017.pdf

