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In	This	Lecture

• We	describe	power	law	networks	and	their	
properties	and	show	examples	of	networks	
which	are	power	law	in	nature,	including	the	
web.

• We	present	the	preferential	attachment	
model	which	allows	the	generation	of	power	
law	networks.

• We	study	prediction	of	power	laws
• We	introduce	search	and	PageRank



The	Web	is	a	Graph…

This	course	page.
Me

My	web	page.
My	Profile

My	profile	page.
Link	to	NSPCC

NSPCC	Page



Precursor	of	hypertexts

• Citation	networks	of	
books	and	articles.

• Difference:	links	point	
only	backwards	in	
time



Web	is	a	DirectedGraph

• Path:	A	path	from	A	to	B	exists	if	there	is	a	
sequence	of	nodes	beginning	with	A	and	
ending	with	B	such	that	each	consecutive	pair	
of	nodes	is	connected	by	an	edge	pointing	in	
the	forward	direction.

A

B

CD

E



Strongly	Connected	Component

• A	strongly	connected	component	(SCC)	in	a	
directed	graph	is	a	subset	of	nodes	such	that:

i)	Every	pair	in	the	subset	has	a	path	to	each	other
ii)	The	subset	is	not	part	of	some	larger	subset	with	
property	i)

• Weakly	connected	component	(WCC)	is	the	
connected	component	in	the	undirected	graph	
derived	from	the	directed	graph.
– Two	nodes	can	be	in	the	same	WCC	even	if	there	no	
directed	path	between	them.



SCC	example



The	Web

• Broder’00
• Data	from	
Altavista (200	
million	pages)

• 186M	nodes	
in	the	WCC	
(90%	of	links)



Popularity	of	Web	Pages

• How	do	we	expect	the	popularity	of	web	
pages	to	be	distributed?
–What	fraction	of	web	pages	have	k in-links?

– If	each	page	decides	independently	at	random	
whether	to	link	to	any	given	other	page	then	the	n
of	in-links	of	a	page	is	the	sum	of	independent	
random	quantities	->	normal	distribution

– In	this	case,	the	number	pages	with	k	in-links	
decreases	exponentially	in	k

– Is	this	true	for	the	Web?



Degree	distribution	for	the	Web
• Finding:	degree	distr.	proportional	to	~1/k2
• 1/k2 decreases	much	more	slowly	than	a	
normal	distribution



Power	Law	vs Exponential

p(x) = x−α

p(x) = e−λx

Power	law

Exponential



Distribution	of	WCC	and	SCC



Reachability

• Followed	links	backwards	and	forward



Diameter	of	the	Web

• 75%	of	the	time	there	is	no	directed	path	
between	two	random	nodes

• Average	distance	of	existing	paths:	16
• Average	distance	of	undirected	paths:	6.83

• Diameter	in	the	SCC	is	at	least	28



Power	Laws	aka	Scale	Free	Networks

• We	have	seen	that	the	degree	distribution	
followed	a	straight	line	in	log-log

• α defines	the	slope	of	the	curve	
• α is	typically	between	2	and	3.

€ 

ln pk = −α lnk + c
pk = Ck−α



Power	Laws	in	various	domains



What	does	it	mean?



Random	vs Power	Law	Networks



Example



What’s	a	good	model	for	
scale	free	networks

• Let’s	use	the	web	network	as	example:
• Pages	are	created	in	order	(1,2,3..)
• Page	j created	and	it	links	to	an	earlier	page	in	the	
following	way:
– With	prob.	p,	j chooses	page	i at	random	and	links	it;
– With	prob.	1-p,	j	chooses	page	i at	random	and	links	to	
the	page	i points	to.

– Repeat.
• The	middle	step	is	essentially	a	copy	of	the	node	i
behaviour…



Preferential	attachment

• Pages	are	created	in	order	(1,2,3..)
• Page	j created	and	it	links	to	an	earlier	page	in	
the	following	way:
–With	prob.	p,	j chooses	page	i at	random	and	links	
it;

–With	prob.	1-p,	j chooses	a	page	z with	prob.	
proportional	to	z’s current	number	of	in-links	and	
links	to	z (ie proportional	to	degree).

– Repeat.
Rich-get-richer	model
If	we	run	this	for	many	pages	the	fraction	 of	
pages	with	k	in-links	will	be	distributed	
approximately	 according	 to	a	power	law	1/kc
c	depends on	p



Intuition

• With	probability	1-p	page	j	chooses	a	page	i
with	probability	proportional	to	i’s	number	of	
in-links	and	creates	a	link	to	i.

• This	mechanism	predicts	that	the	growth	
happens	so	that	
– A	page’s	popularity	growth	at	a	rate	proportional	
to	its	current	value.	

– The	rich	get	richer	effect	amplifies	the	larger	
values



Preferential	Attachment

• What	have	we	shown?	
• There	is	a	“copying”	behaviour happening	in	
these	networks	where	node	seem	to	emulate	
other	nodes.	

• This	is	shown	true	for	selection	of	books,	
songs,	web	pages,	movies	etc.



How	predictable	is	the	
rich-get-richer	process?

• Is	the	popularity	of	items	in	the	power	law	
predictable?

• Would	a	popular	book	still	be	popular	if	we	go	
back	in	time	and	start	the	process	again?

• Experiments	show	it	would	not…



Unpredictability	[Salganik et	al	06]

• 48	songs,	14,000	participants,	8	servers



View	of	the	curve

• The	way	we	have	seen	the	curve	so	far…

We	concentrated	on	this



Let’s	transform	the	function

• If	the	initial	function	is	a	power	law,	this	one	is	
too	(we	do	not	prove	this)

Sale	ranking

Niche	tastes

Popularity	means	this	



Search

– Information	retrieval	problem:	synonyms	
(jump/leap),	polysemy	(Leopard),	etc

– Now	with	the	web:	diversity	in	authoring	
introduces	issues	of	common	criteria	for	ranking	
documents

– The	web	offers	abundance	of	information:	whom	
do	we	trust	as	source?

• Still	one	issue:	static	content	versus	real	time
–World	trade	center	query	on	11/9/01
– Twitter	helps	solving	these	issues	these	days



Automate	the	Search

• When	searching	“Computer	Laboratory”	on	
Google	the	first	link	is	for	the	department’s	page.

• How	does	Google	know	this	is	the	best	answer?
• We	could	collect	a	large	sample	of	pages	relevant	
to	“computer	laboratory”	and	collect	their	votes	
through	their	links.

• The	pages	receiving	more	in-links	are	ranked	first.
• But	if	we	use	the	network	structuremore	deeply	
we	can	improve	results.



Example:	Query	“newspaper”
Authorities

• Links	are	seen	
as	votes.

• Authorities
are	
established:	
the	highly	
endorsed	
pages	



A	Refinement:	Hubs

• Numbers	
are	reported	
back	on	the	
source	page	
and	
aggregate.

• Hubs	are	
high	value	
lists



Principle	of	Repeated	
Improvement

• And	we	are	now	
reweighting	the	
authorities

• When	do	we	
stop?



Repeating	and	Normalizing

• The	process	can	be	repeated
• Normalization:
– Each	authority	score	is	divided	by	the	sum	of	all	
authority	scores

– Each	hub	score	is	divided	by	the	sum	of	all	hub	
scores		



More	Formally:	
does	the	process	converge?

• Each	page	has	an	authority	ai and	a	hub	hi
score

• Initially		ai=	hi =	1

• At	each	step

• Normalize	

€ 

ai = h j
j−> i
∑

h j = ai
j−> i
∑

€ 

ai∑ =1

h j∑ =1



The	process	converges



PageRank

• We	have	seen	hubs	and	authorities
– Hubs	can	“collect”	links	to	important	authorities	
who	do	not	point	to	each	others

– There	are	other	models:	better	for	the	web,	where	
one	prominent	can	endorse	another.

• The	PageRank	model	is	based	on	transferrable	
importance.



PageRank Concepts

• Pages	pass	endorsements	on	outgoing	links	as	
fractions	which	depend	on	out-degree

• Initial	PageRank	value	of	each	node	in	a	
network	of	n	nodes:	1/n.

• Choose	a	number	of	steps	k.
• [Basic]	Update	rule:	each	page	divides	its	
pagerank equally	over	the	outgoing	links	and	
passes	an	equal	share	to	the	pointed	pages.	
Each	page’s	new	rank	is	the	sum	of	received	
pageranks.



Example

• All	pages	start	with	PageRank=	1/8

A	becomes	 important	and
B,C	benefit	too	at	step	2



Convergence

• Except	for	some	special	cases,	PageRank	
values	of	all	nodes	converge	to	limiting	values	
when	the	number	of	steps	goes	to	infinity.

• The	convergence	case	is	one	where	the	
PageRank	of	each	page	does	not	change	
anymore,	i.e.,	they	regenerate	themselves.



Example	of	Equilibrium



Problems	with	the	basic	PageRank
Dead	ends

• F,G	converge	to	½	and	all	the	other	nodes	to	0



Solution:	The	REAL	PageRank

• [Scaled]	Update	Rule:
– Apply	basic	update	rule.	Then,	scale	down	all	values	
by	scaling	factor	s [chosen	between	0	and	1].

– [Total	network	PageRank	value	changes	from	1	to	s]
– Divide	1-s	residual	units	of	PageRank equally	over	all	
nodes:	(1-s)/n	each.

• It	can	be	proven	that	values	converge	again.
• Scaling	factor	usually	chosen	between	0.8	and	0.9



Search	Ranking	is	very	important	
to	business	

• A	change	in	results	in	the	search	pages	might	
mean	loss	of	business	
– I.e.,	not	appearing	on	first	page.

• Ranking	algorithms	are	kept	very	secret	and	
changed	continuously.



Examples	of	Google	Bombs



Random	Walks

• Starting	from	a	
node,	follow	one	
outgoing	link	with	
an	equal	
probability



PageRank as	Random	Walk

• The	probability	of	being	at	a	page	X	after	k
steps	of	a	random	walk	is	precisely	the	
PageRank of	X	after	k applications	of	the	Basic	
PageRank Update	Rule

• Scaled	Update	Rule	equivalent:	follow	a	
random	outgoing	link	with	probability	s while	
with	probability	1-s	jump	to	a	random	node	in	
the	network.
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