

Social and Technological Network Data Analytics

Lecture 2: Small World and Weak Ties

Prof. Cecilia Mascolo

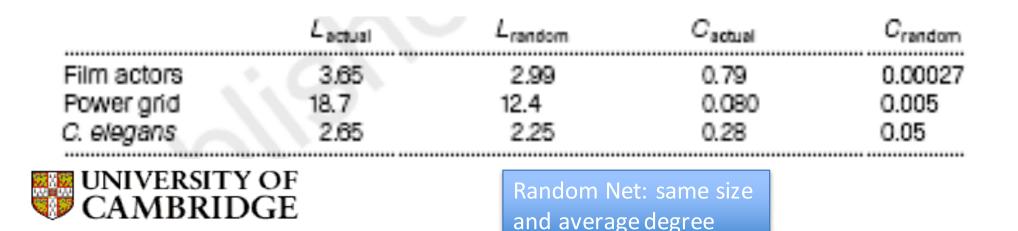
In This Lecture

- We will compare random networks with real networks
- We will introduce the concept of small world networks
- We will introduce the concept of weak ties and illustrate their importance

Clustering Coefficient of Real Networks

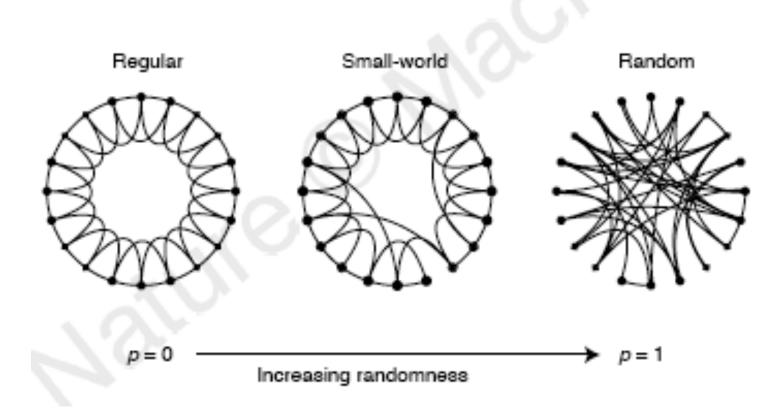
- From [Watts and Strogatz, 1998]
- Characteristic path length and clustering coefficient for some real networks and for random networks with same number of nodes and average number of edges per node.
- Aim is to check if random graphs can model real networks.

- Film Actors: actors in movies together
- Power grid: the network of the electricity generators
- C. elegans: network of neurons of a worm
- L is comparable while C is very different



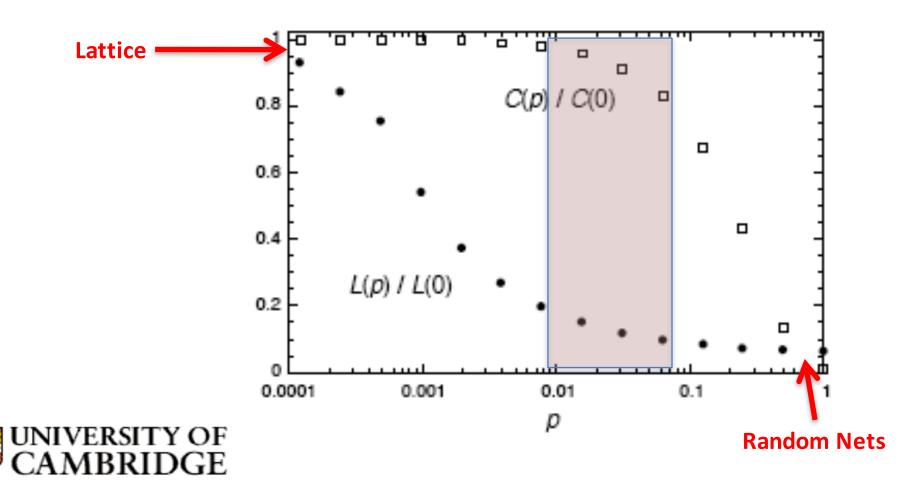
- Watts & Strogatz built a model which was able to capture these characteristics.
- Start with regular lattice
 - Increase a probability p of "rewiring" a node to another node.
 - When p very high the lattice would become a random graph.

Small World Model (2)



How are L and C in this model?

- There is a zone where C is high and L is low
- These are small world networks



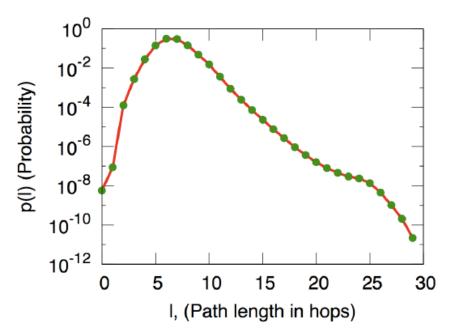
Other Real Networks Examples

		-						
Network	Size	$\langle k angle$	l	l rand	С	C_{rand}	Reference	Nr.
WWW, site level, undir.	153 127	35.21	3.1	3.35	0.1078	0.00023	Adamic, 1999	1
Internet, domain level	3015-6209	3.52 - 4.11	3.7-3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al., 2001a,	2
							Pastor-Satorras et al., 2001	
Movie actors	225 226	61	3.65	2.99	0.79	0.00027	Watts and Strogatz, 1998	3
LANL co-authorship	52 909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman, 2001a, 2001b, 2001c	4
MEDLINE co-authorship	1 520 251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman, 2001a, 2001b, 2001c	5
SPIRES co-authorship	56 627	173	4.0	2.12	0.726	0.003	Newman, 2001a, 2001b, 2001c	6
NCSTRL co-authorship	11 994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman, 2001a, 2001b, 2001c	7
Math. co-authorship	70975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al., 2001	8
Neurosci. co-authorship	209 293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al., 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner and Fell, 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner and Fell, 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya and Solé, 2000	12
Silwood Park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya and Solé, 2000	13
Words, co-occurrence	460.902	70.13	2.67	3.03	0.437	0.0001	Ferrer i Cancho and Solé, 2001	14
Words, synonyms	22311	13.48	4.5	3.84	0.7	0.0006	Yook et al., 2001b	15
Power grid	4941	2.67	18.7	12.4	0.08	0.005	Watts and Strogatz, 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts and Strogatz, 1998	17

- [Leskovec and Horvitz 2008] analyzed a large dataset of the Microsoft Messenger.
- Communication Network contained 180 million users and 1.3 billion conversations in 1 month.
- Buddy Network contained 240 million users.
- 99.9% users belonged to a connected component.

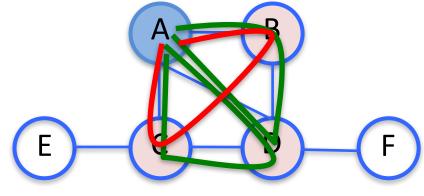
Analysis of a Messenger Network

- Average shortest path is 6.6 (confirming Milgram's study).
- Although some longer paths up to 29.
- Average clustering coefficient is quite high: 0.137.



Again on Clustering Coefficient

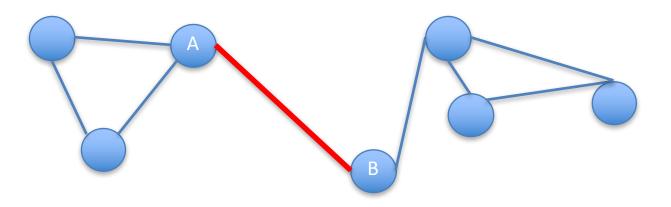
- We have introduced the clustering coefficient. This indicates:
 - The number of triangles including node A.
 - How connected the friends of A are.
- **Triadic closure**: if C and B are connected to A there is an increased likelihood that they will be connected among themselves in future.



- Granovetter interviewed people about how they discovered their jobs
 - Most people did so through personal contacts
 - Often the personal contacts described as acquaintances and not close friends
- Basic intuition on this is: close friends are part of triad closures and would know what you know and would know others who would know what you know
- We will explain this more formally...

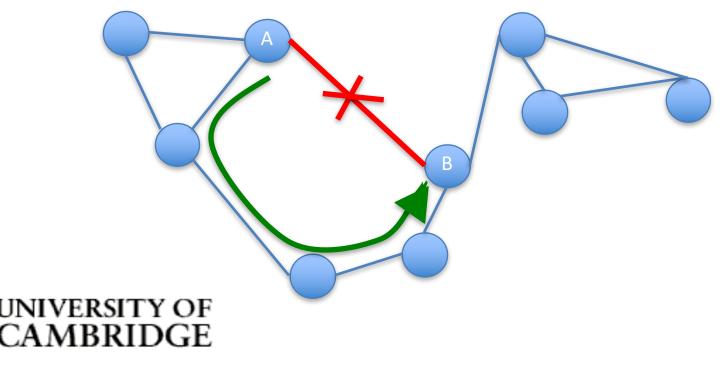
Bridges

 Edge between A and B is a bridge if, when deleted, it would make A and B lie in 2 different components



Local Bridges

- An edge is a local bridge if its endpoints have no friends in common
 - If deleting the edge would increase the distance of the endpoints to a value more than 2.



Strong Triadic Closure Property (STPC)

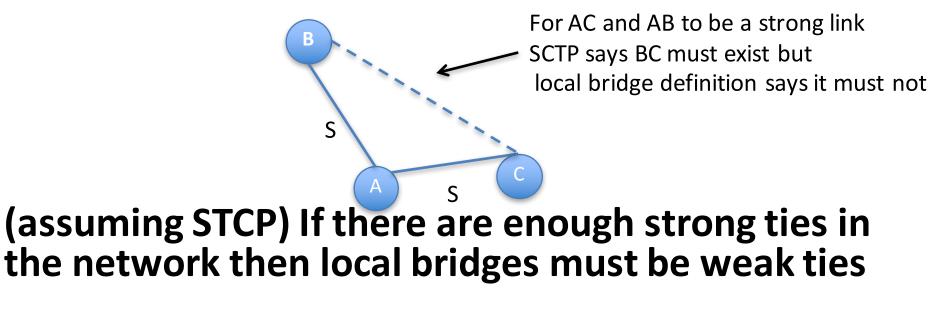
 Links between nodes have different "value": strong and weak ties

– E.g: Friendship vs acquaintances

 Strong Triadic Closure Property (Granovetter): If a node A has two strong links (to B and C) then a link (strong or weak) must exist between B and C.

Local Bridges and Weak Ties

 If node A satisfies the STCP and is involved in at least two strong ties then any local bridge it is involved in must be a weak tie. (Proof by contradiction)



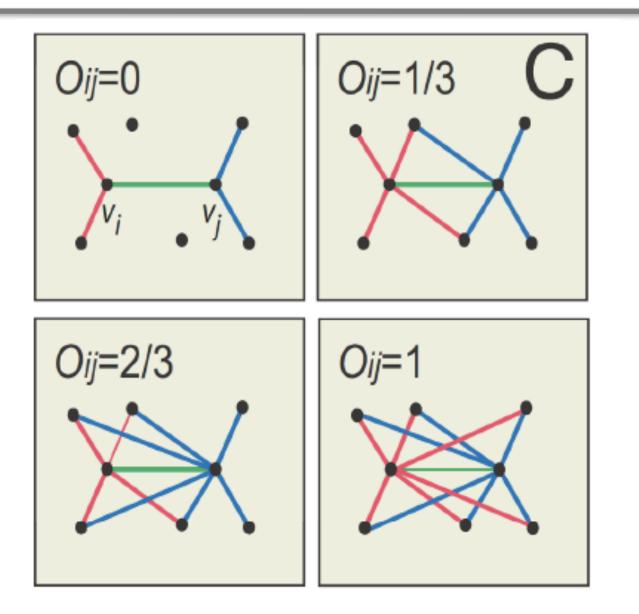
- Granovetter's theory about the importance of weak ties remained not validated for years for large social networks due to the lack of data.
- [Onnela et al '07] tested it over a large cellphone network (4 millions users):
 - Edge between two users if they called each other within the 18 months period.
 - Data exhibits a giant component (84%).
 - Edge weight: time spent in conversation.

- Extending the definition of local bridge
- Given:
- Neighbourhood overlap:

Number of nodes who are neighbours of both A & B Number of nodes who are neighbours of at least A or B

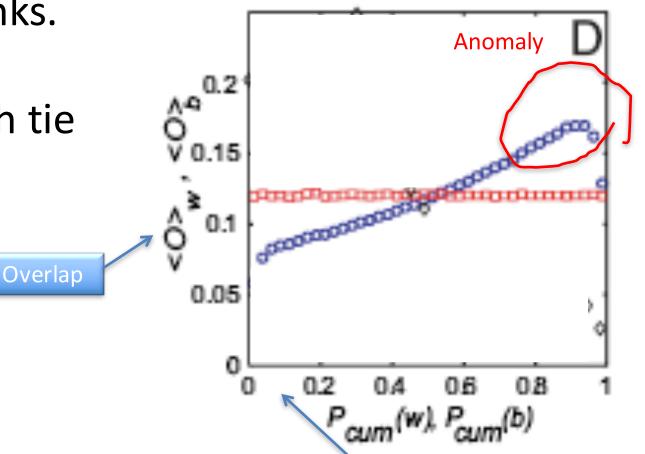
- When the numerator is 0 the quantity is 0. — Numerator is 0 when AB is a local bridge
- The definition finds "almost local bridges" (~0)

Neighbourhood overlap



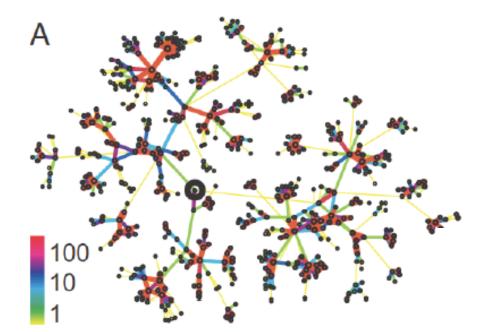
Relationship of Overlap with Tie Strength

- Red: random shuffled weights over links.
- Blue: real ones.
 Correlation with tie strength.

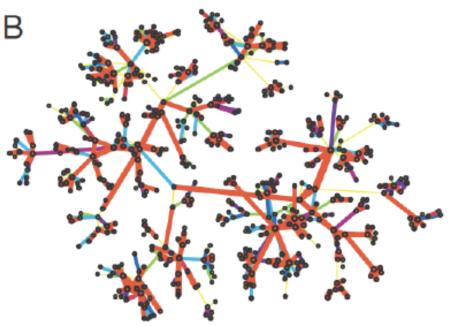


Tie strength: cumulative tie strength smaller than w

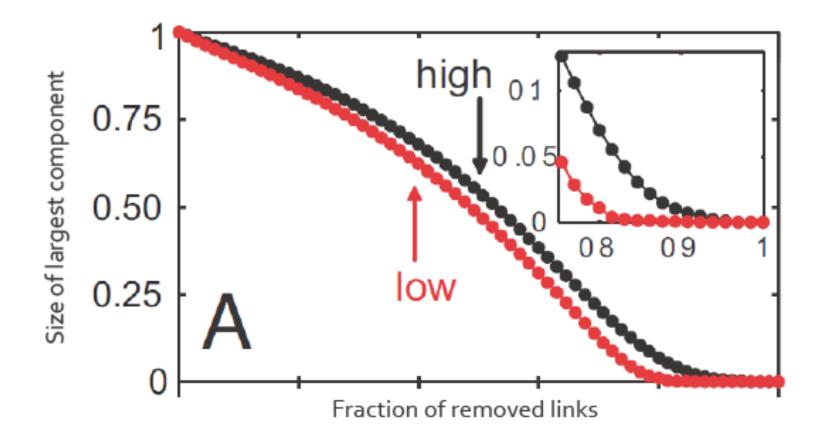
Real tie weights in a portion of the graph (around a random node)

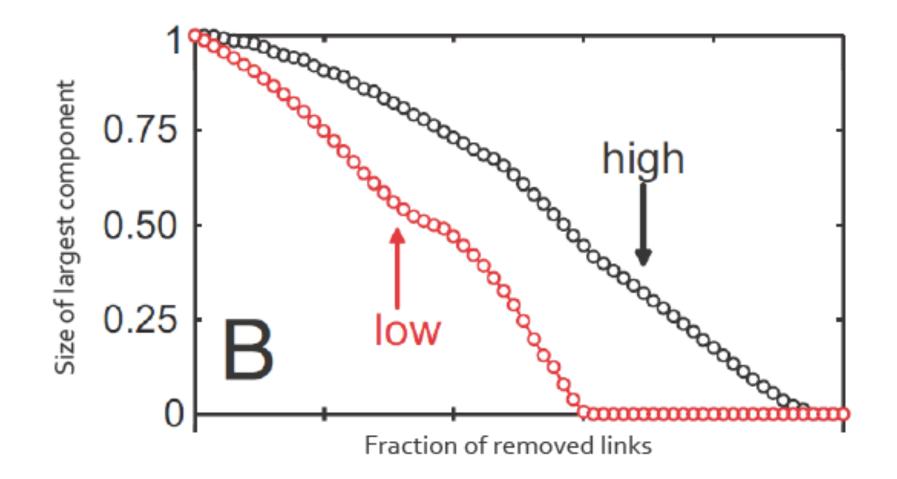


A= Real B= Randomly shuffled



Effect of edge removal





Weak ties matter!

- We have just seen that weak ties matter and if they are removed, they lead to a breakdown in the network.
- If strong ties are removed they lead to a smooth degrading of the network

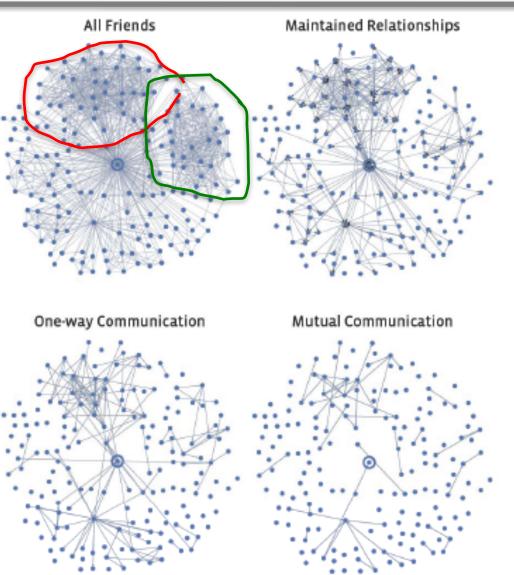
Difference of importance of weak ties in social and other networks

- The importance of weak ties is specific to social networks
- In biological and spatial networks:
 - Deleting an important road [strong tie] damages the network more
 - A central vein in a leaf is more important than smaller veins

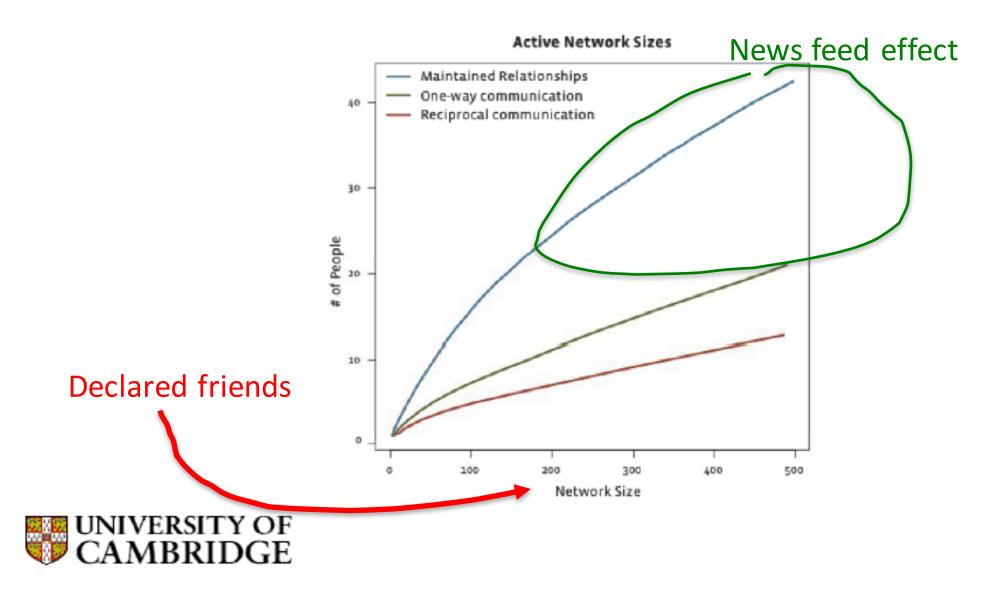
Tie strength matters: Facebook Example

- Facebook data analysis of one month of data
- Four networks:
 - Declared friendship
 - Reciprocal communication (messages)
 - One way communication
 - Maintained relationship: clicking on content on news feed from other friend or visiting profile more than once.

What does it look like? (one random user)



Active Network Size: number of links

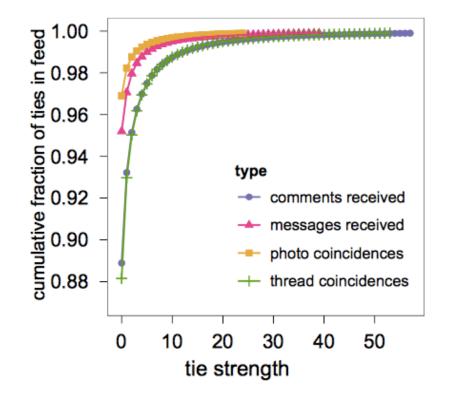


Another study on FB shows the impact of ties over information dissemination

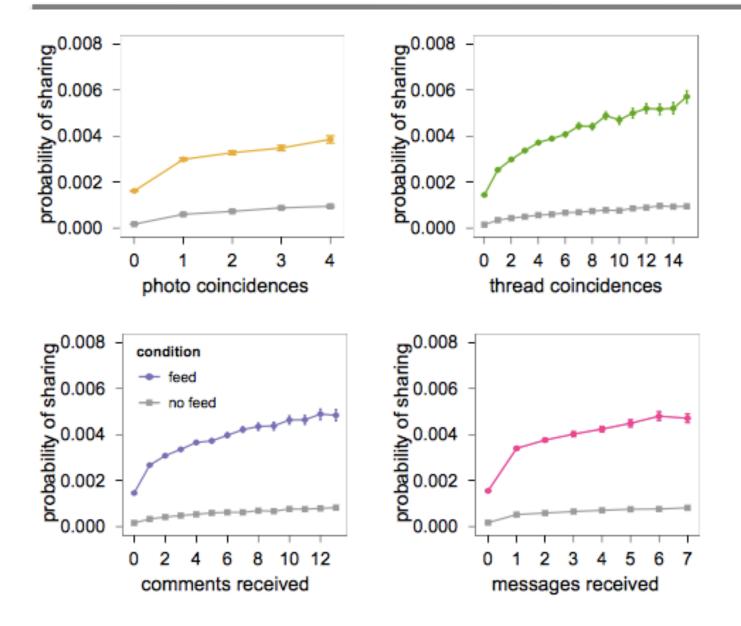
- 3 months of FB data
- 253 million users (profile and location)
- Measuring effect of tie strength on sharing

How did they measure tie strength?

- Private interactions
- Public interactions (comments)
- Coappearance in pictures
- Involvement in the same post with comments

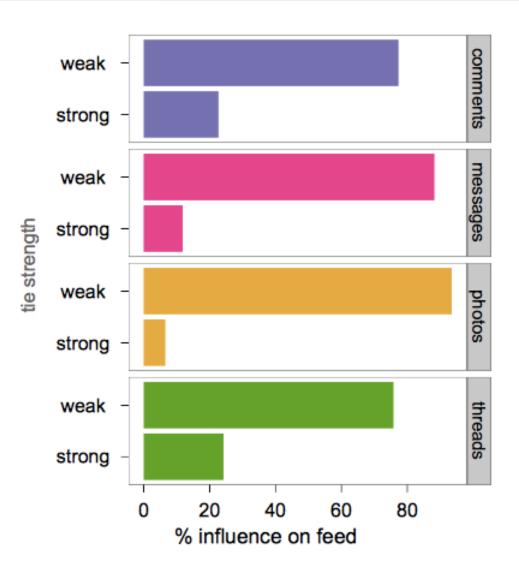


Strong ties are more influential



However...

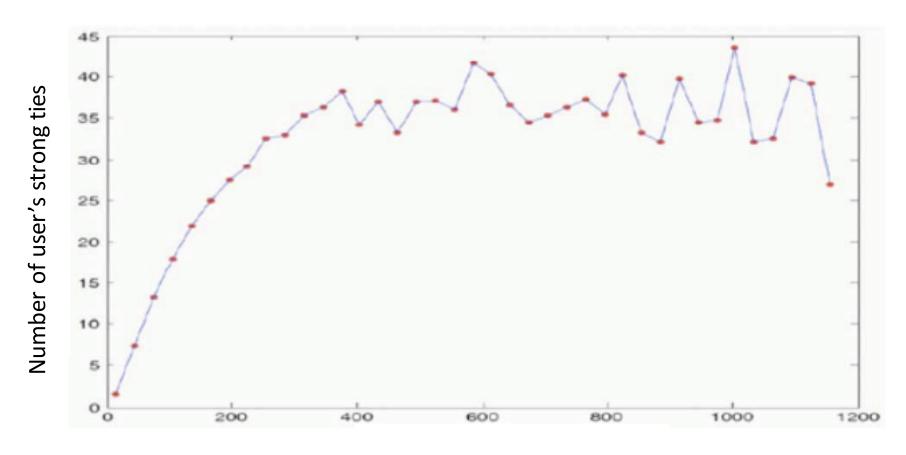
Strong ties are more influential but their effect is not large enough to compensate the abundance of weak ties...



Twitter Analysis

- Huberman at al. have analyzed strong and weak ties in Twitter.
- The "followers" graph in Twitter is directed
 - Someone can follow someone else who does not follow him
- Messages of 140 chars can be posted
- Messages can be addressed to specific users (although they stay readable to all)
- Weak ties: users followed
- Strong ties: users to whom the user sent at least
 2 messages in the observation period

Twitter



Followees

Number of strong ties stays below ~50

Summary

- Small world network models are able to capture a good quantity of real networks
 - They have characteristic path length comparable to random networks.
 - But much higher clustering coefficient.
- We have introduced weak and strong ties and shown example of application on real networks

References

- Kleinberg's book: Chapter 3 and 20.
- Collective dynamics of 'small-world' networks. Watts, D.J.; Strogatz, S.H. (1998). *Nature* 393 (6684): 409–10.
- Structure and tie strengths in mobile communication networks. J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, A. L. Barabasi. *Proceedings of the National Academy of Sciences*, Vol. 104, No. 18. (13 Oct 2006), pp. 7332-7336.
- Maintained relationships on facebook. Cameron Marlow, Lee Byron, Tom Lento, and Itamar Rosenn. 2009. On-line at http://overstated.net/2009/03/09/maintained- relationships-on-facebook.
- The role of social networks in information diffusion. Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada Adamic. 2012. In *Proceedings of the 21st international conference on World Wide Web* (WWW '12). ACM, New York, NY, USA, 519-528.
- Social networks that matter: Twitter under the microscope. Bernardo A. Huberman, Daniel M. Romero, and Fang Wu. First Monday, 14(1), January 2009.

