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In	This	Lecture

• We	will	show	metric	extensions	for	complex	
networks	which	keep	time	into	account.

• We	will	also	show	how	these	can	be	applied	to	
applications.



Why	Temporal	Social	Network

• Most	of	the	analysis	we	have	seen	has	been	
done	on	aggregated	network	graphs	

• Time	has	not	been	kept	into	account	by	the	
metrics

• Why	does	this	matter?



Empirical	Networks
J. Phys. A: Math. Theor. 41 (2008) 224014 F De Vico Fallani et al

Figure 2. (a) Realistic head model for the representative subject. On the right hemisphere
of the scalp, the positions of the electrodes are depicted as white little spheres. On the left
hemisphere of the cortex, all the cortical regions of interest are displayed and opportunely labelled.
The trial-averaged waveforms for a particular subset of areas (7 L, MF L, SM L, CM L, 9 L)
are illustrated. (b) Functional networks of the subject in the Beta frequency band during three
representative instants (−1 s, onset, +1 s) of the task performance. Dark arrows represent the
functional links that persist in all the three instants, while the light arrows represent those flows
that changed direction in at least one instant.

the representative Beta frequency band. The overall presence of mutual links in the cortical
networks is always higher with respect to random (ρ > 0). However, a different behaviour can
be found between the preparation and the execution of the movement. In particular, during
the movement preparation the reciprocity of the cortical networks moves from a relative high
reciprocal state (ρ > 0.25) to a lower (ρ < 0.17) level as revealed by the negative slope of
ρ(t) for −1 < t < 0 s. Instead, during the movement execution the average trend of ρ(t) for
0 < t < 1 s constantly remains in the low reciprocal state reached in proximity of the onset
(0.15 < ρ < 0.2). In figure 3(b), the level of reciprocity of all the possible connections within
the cortical network is illustrated for the same band and during the entire period of interest.
The level of grey codes the number of subjects that actually hold a particular reciprocal link
identified by the values at the ordinates. In table 1, the correspondence between the y-values and
the bilateral link can be deduced by inspecting the values of the symmetric adjacency matrix.
The presence of continuous horizontal lines indicates a sort of ‘persistence’ of particular
reciprocal connections which can also remain active during the entire task performance, as for
the cingulate motor areas (CM L and CM R) with the ipsi-lateral supplementary motor areas
(SM L and SM R), respectively. In such a case, at least three subjects present these persistent
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Time	in	networks

• Timestamps
– e.g.	Facebook:	friends	added	and	removed	over	
time

• Duration
– e.g.	Spending	time	with	friends

• Frequency
– e.g.	Friends,	colleagues,	strangers

• Time-order
– e.g.	Timetables	in	public	transport	systems

5



Temporal	Graph

t=1 t=2 t=3
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Temporal	Graph

•Static
•Shortest	path	(A,G)	=	[A,B,D,E,G]
•Shortest	path	length	(A,G)	=	4	hops

t=1 t=2 t=3



Temporal	Graph

•Static
•Shortest	path	(A,G)	=	[A,B,D,E,G]
•Shortest	path	length	(A,G)	=	4	hops

•Temporal
•Shortest	path	(A,G)	=	[A,C,B,D,E,F,G]
•Shortest	path	length	(A,G)	=	6	hops
•Time=3	seconds

t=1 t=2 t=3



Temporal	Measures

• Shortest	Temporal	Path	Duration

• Number	of	Hops	in	shortest	temporal	path

• Temporal	Efficiency	of	communication

dij =

d�ij =

Eij =
1

dij



Temporal	Measures

• Average	Temporal	Path	Duration

• Average	Temporal	Path	Hops	

• Average	Temporal	Efficiency

L = 1
N(N�1)

�
ij dij

L⇥ = 1
N(N�1)

�
ij d⇥ij

Eglob = 1
N(N�1)

�
ij Eij



Does	it	really	matter?

• Infocom 2005	conference	environment
• Bluetooth	colocation scans
• 5	Minute	Windows
• Measure	24	hours	starting	12am

Static Temporal

Day N <k> Activity Contacts L Eglob L* L Eglob

1 37 25.73 6pm-12pm 3668 1.291 0.856 4.090 19h	39m 0.003

2 39 28.31 12am-12pm 8357 1.269 0.870 4.556 9h	6m 0.024

3 38 22.32 12am-12pm 4217 1.420 0.798 4.003 10h	32m 0.018

4 39 21.44 12am-5pm 3024 1.444 0.781 4.705 9h	55m 0.013



Temporal	Centrality	Measures

• Static	Closeness	and	Betweenness	based	on	
static	shortest	paths

• Reformalise closeness	and	betweenness	with	
temporal	paths:
– Duration
– Time	Order
– Frequency



Temporal	Closeness

A

B

C

D

E

F

Time
1 2 3
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necting k to j appears at time tm. Since the path through k is the only way for i to
temporally reach j, then we would say that k plays an important mediatory role and
is ”central” for communication between i and j. Nevertheless, the vulnerability of
node k heavily depends on the interval [tℓ, tm]: the longer this temporal interval, the
higher the probability that a message forwarded to k is lost if k is removed from
the network. In order to take into account the effect of waiting times, the temporal
betweenness centrality [43] of the node i at time tm is defined as:

CBi (tm) =
1

(N− 1)(N− 2)∑j ̸=i
∑
k ̸= j
k ̸=i

U(i, tm, j,k)
σ jk

(11)

where σ jk is the number of temporal shortest path from j to k, andU(i, tm, j,k) is
the number of temporal shortest paths from i to j in which node i is traversed from
the path in the snapshot tm or in a previous snapshot t ′ < tm, so that the next edge
of the same path will be available at a later snapshot t ′′ > tm. The average temporal
betweenness of node i is defined as the average ofCBi (tm) over all the snapshots:

CBi =
1
M∑m

CBi (tm) (12)

The closeness centrality of a node i is a measure of how close i is to any other
node in the network. It can be measured as the inverse of the average distance from
i to any other node in the network:

CCi =
N− 1
∑ j di j

(13)

where di j is the distance between i and j in a static graph. The temporal closeness
centrality is defined in an analogous way, the only difference being that for time-
varying graphs di j denotes the length of the temporal shortest path from i to j.
As shown in Ref. [43] and elsewhere in this book [41], temporal closeness and

betweenness centrality have proven useful to identify key spreaders and temporal
mediators in corporate communication networks. In particular, it was found that
traders indeed played an important mediatory role in time-varying graphs con-
structed from the ENRON email communication data set, being consistently ranked
among the first ones both for temporal betweenness and for temporal closeness cen-
trality. This result is qualitatively and substantially different from the one obtained
by computing betweenness and closeness centrality in the corresponding aggregated
graph, where the most central nodes are the people who interacted with the most
number of other people, i.e., a secretary and a managing director. This apparently
unimportant discrepancy between the centrality rankings actually turns out to be
fundamental for the spreading of information (or diseases) throughout the system.
In fact, simulation reported in Ref. [43] confirmed that when a spreading process is
initiated at the nodes having the highest temporal closeness centality the number of
other nodes reached by the spreading was higher and the time needed to reach them



• Using	temporal	path	length

Temporal	Betweenness

A B C

Time
1 2 6543

Number	of	temporal	
shortest	paths	through	B	
for	which	at	time	4	B	
was	carrying	a	message



Formally…
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Evaluating	Centrality

• Two	perspectives:
– Semantic:	known	roles	of	nodes
– Dynamic	Processes:	mobile	malware	containment



Enron	in	the	News

$



Public	Investigation

• Telephone	logs
• Documents
• Financials
• Emails

- 151	user	mailboxes
- May	1999	to	Jun	2002
- 250,000	emails
- NOT	anonymised



Semantics
ID Role
009 (Unknown)
013 Legal
017 Manager
048 Executive
053 Trader
054 President
067 Vice President
073 Trader
075 Director of Trading
107 Trader
122 Managing Director
127 Manager
139 Director
147 Trader
150 Secretary



ID Name Role
9 Stephanie Panus (Unknown)
13 Marie Heard Legal
17 Mike Grigsby Manager
48 Tana Jones Executive
53 John Lavorato Trader
54 Greg Whalley President
67 Sara Shackleton Vice President
73 Je� Dasovich Trader
75 Gerald Nemec Director of Trading
107 Louise Kitchen Trader
122 Sally Beck Managing Director
127 Kenneth Lay Manager
139 Mary Hain Director
147 Carol Clair Trader
150 Liz Taylor Secretary

Semantics

• Big	bonuses	linked	with	information	mediators



Mobile	Phone	Malware



Mobile	Malware	Propagation

• Long	Range
– Sms,	mms,	email
– Can	be	filtered	by	central	service	provider

• Short	Range
– Bluetooth,	wifi
– Evades	central	service	provider



Limitations

• Devices
– Resource	constrained

• Infrastructure
– Limited	bandwidth

• Prioritise Devices	using	SNA
– Patch	individual	devices	via	nodes	with	high	Betweenness
– Flood	patch	via	nodes	with	high	Closeness



Priority	Patching	Schemes

1. Traditional	Patching
➔Can	we	block	path	of	malware?
➔Betweenness

2. Opportunistic	Patching
➔Can	we	compete	with	malware?
➔Closeness



Patching	Nodes





Flood	Network	with	Patch



Flood	Network	with	Patch
Area	under	Curve	

(AUC)

Peak	Infected	Nodes

Imax

Complete	patch	time

�



Opportunistic	Patching

Malware Start Time Patch Delay



Opportunistic	Patching

Malware Start Time Patch Delay

3.	
Temporal	is	

Best

1.	Finite	
Time

2.	Static	is	
Poor



Static	Small	World	

• Graphs	which	both	are	locally	clustered	but	
with	small	average	path	length
– High	local	clustering	but	long	paths	=>	Lattice
– Small	average	paths	but	low	clustering	=>	Random



Temporal	Small	World

• Does	this	hold	in	time-varying	graphs
• Temporal	small	world:
– quick	paths	from	one	node	to	another	and
– have	some	temporal	local	persistence	of	links

33



Testing	for	
Temporally	Small	World

• Measure
– communication	efficiency

• Temporal	shortest	path	length
– speed	of	change

• Temporal	correlation	coefficient
• Measure	persistence	of	links

• Model
– Recreate	a	slowly	changing	and	quickly	changing	
temporal	graph

– Brownian	motion	with	prob(jump)

34



Coefficient	of	
Temporal	Clustering

A B

C DE F

Node	i

t
1

A B

C DE F

Node	i

t2

2

gage in relations for continuous intervals of time. Hence,
a given link has a higher probability to appear in graph
Gt if it was already present in graph Gt−1. To quantify
this effect, following Ref. [19] we compute C, the average
topological overlap of the neighbor set of a node between
two successive graphs in the sequence:

C =
∑

i Ci

N
Ci =

1
T − 1

T−1∑

t=1

∑
j aij(t)aij(t + 1)

√
[
∑

j aij(t)][
∑

j aij(t + 1)]
(1)

We name this metric the temporal-clustering coefficient
of G.

A fundamental concept in graph theory is that of
geodesic, or shortest path. In a static graph, a shortest
path between nodes i and j is defined as a path of min-
imal length between the two nodes. This is a sequence
of adjacent nodes starting at i, ending at j, and visiting
the minimum number of nodes. Finally, the distance be-
tween node i and node j is set equal to the length of the
shortest paths from i to j. Here, we introduce the con-
cepts of temporal shortest path and temporal distance to
generalize the definitions of shortest paths and of node
distance to the case of time-varying graphs. We illus-
trate the basic idea with the example shown in Fig. 1a.
Suppose node A wants to send a message in the fastest
possible way to the other nodes of the graph. We assume
that node A can start passing the message at time t = 1,
and the message has to be delivered by time t = 4. On
graph G1, node A can directly pass the message to nodes
B and D, which are therefore assigned temporal distance
1 from node A, since they can be reached in one unit of
time. There are also other temporal paths to go from
A to nodes B and D in three time units. For example,
we can go from A to D in the following way: A → B in
G1, B → D in G3. This is also a temporal path from
A to D, though it is not the shortest, since the fastest
way to go from A to D is to use the link A → D in G1.
Distance 3 is assigned to node C, since the message can
be passed from A to D in graph G1, and then from node
D to node C in G3, thus reaching C in three time units.
Node F can be reached in 4 time steps by means of three

FIG. 1: An example of a time-varying graph G with T = 4
(panel a), and its projection into a static graph (panel b).

alternative shortest paths: A → B in G1, B → F in G4;

A → D in G1, D → C in G3, C → F in G4; and A → D
in G1, D → B in G3, B → F in G4. Finally, there are no
temporal paths from A to E, hence we set the temporal
distance of E from A equal to ∞, and we say that E is
not reachable from A. This is an effect of the time order
of the links in a time-varying graph, and indeed node A
and E are connected in the aggregate graph shown in
Fig. 1b in which all links are considered as concurrent.

Notice also that, due to the time order of the links,
the temporal distances are not symmetric, even if the
time-varying graph consists of a sequence of undirected
graphs. For instance, while the temporal distance from
A to F is 4, the temporal distance from F to A is ∞
(because the links occur in the wrong time order to facil-
itate the passage from F to A). Conversely, in the static
graph in Fig. 1b, we have dAF = dFA = 2. In order
words, the main difference between a time-varying graph
G, as that shown in panel a), and its associated static
graph, reported in panel b), is that some of the short-
est paths of the static graph are not temporally valid
(in the sense that the links do not appear in the correct
time order) and, therefore, cannot be used to route mes-
sages. In general, in time-varying graphs there are more
disconnected node pairs, than in static ones. As an ex-
ample, the static graph in Fig. 1 is composed of a single
connected component, while if time is taken into consid-
eration, it is not possible to go from A to E, or from F
to A. In order to compute the temporal distances dij for
all node pairs i, j = 1, 2, ..., N of a generic graph G, we
have implemented a generalization of the breadth first
search algorithm [25]. The average temporal connectiv-
ity properties of G can be measured by the characteristic
temporal path length L:

L =
1

N(N − 1)

∑

ij

dij (2)

Alternatively, in order to avoid the potential diver-
gence due to pairs of nodes that are not temporally con-
nected, we can define the temporal global efficiency of G
as [15]:

E =
1

N(N − 1)

∑

ij

1
dij

(3)

Low values of L (high values of E) indicate that the nodes
of the graphs can communicate efficiently. In the follow-
ing, we will show that time-varying graphs from models
and real-world systems can be, at the same time, tempo-
rally clustered and still have small temporal distances be-
tween their nodes. Analogously to the small-world anal-
ysis in static graphs [14, 15], we will compare the actual
values of C, L and E of a given time-varying graph G,
with the corresponding values calculated by considering
an ensemble {Grand} of randomized versions of G. Each
sequence Grand is obtained by randomly reshuffling the
graphs in G, i.e., by destroying the time order (and cor-
relations) in the original sequence G1, G2, . . . , GT . More
precisely, we will show that some time-varying graphs

C(A)=1/3



Temporal	SW	Model

• N	Random	Walkers	with	Prob Jumping	Pj

Pj=0.0!

Pj=0.5!

Pj=1.0!
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Temporal	SW	Model

• N	Random	Walkers	with	Prob Jumping	Pj

Pj=0.0!

Pj=0.5!

Pj=1.0!



Temporal	Small	World

• Graphs	which	evolve	slowly	over	time	can	still	
exhibit	high	communication	efficiency
– Highly	temporal-clustering	=>	non-jumping	model
– Low	temporal-delay	=>	fully-jumping	model



Small-world	Behaviour in	Real	Data

Brain	network

Bluetooth	contacts
(INFOCOM’06)

(London	network)

3

can have a value of C much larger than the clustering
coefficient of the reshuffled sequence Crand, and, at the
same time a value of L as small as Lrand. We will refer
to this behavior as small-world behavior in time-varying
systems.

0.0001 0.001 0.01 0.1 1
p
j

0

0.5

1

L(p
j
)/L(0)

C(p
j
)/C(0)

FIG. 2: Characteristic temporal path length and temporal-
clustering coefficient of time-varying graphs produced by the
model of moving agents, as a function of the probability pj of
long-distance jumps. In the simulations we have set N = 100,
D = 100 m, v = 1 m/s, rc = 5 m and produced sequences of
length T = 500. The characteristic temporal path length of
the reshuffled sequences is reported as dashed line.

Random-walkers network model.- We first illustrate
how this behavior can be obtained in a network model
of moving agents, as a result of simple motion rules. We
consider a system of N random walkers which move in
a two-dimensional square of linear size D with a fixed
velocity v, and additionally perform long-distance jumps
to randomly chosen position of the square with a jump
probability pj [4]. For each fixed value of pj ∈ [0, 1], the
time-varying network G is constructed by linking, every
second, all nodes having a distance in space smaller than
a given value rc (a similar idea was used to construct
physical networks of nanoparticles [26]). In Fig. 2 we
plot C and L as a function of pj. The values reported
are normalized to the maximum values of C and L ob-
tained for pj = 0, and respectively equal to C(0) = 0.91
and L(0) = 442.8. We observe that a small percent-
age of jumps is sufficient to create links between nodes
otherwise at large temporal distances and to produce a
large drop in the temporal L. When pj = 0.01, L has
reduced to one forth of L(0), and when pj = 0.1, L has
about the same value as for the reshuffled sequence. The
value of Lrand obtained as an average over 1000 realiza-
tions of Grand is reported as dashed line. While L(pj) is
rapidly decreasing, C(pj) is constant up to large values
of pj ∼ 0.1 so that for intermediate values of pj we have
time-varying graphs exibiting small-world behavior. Fi-
nally, notice also that, by approximating for each value
of pj the corresponding time-varying graph G as a static
graph, we obtain instead a value of static L which changes
by less than 15% in the whole range [0, 1] of pj . We thus
cannot capture the temporal small-world behavior with
the standard characteristic path length of a static graph.

Brain cortical networks.- We finally explore real-world
time-varying complex networks. We first consider time-
varying functional cortical networks extracted from a set
of high-resolution EEG recordings in a group of 5 normal
subjects performing a task consisting in a foot movement
[13]. For each subject, and for each of four frequency
bands (α, β, γ, θ), we considered a time period of 0.5 sec
corresponding to the final phase of execution of the foot
movement. Each time-varying graph has N = 16 nodes,
representing cortical regions of interest, and consists in
a time sequence of T = 100 directed unweighted graphs,
where the directed links represent causal influences be-
tween cortical regions (see Ref. [13] for details). We have

C Crand L Lrand E Erand

α 0.44 0.18 3.9 (100%) 4.2 (98%) 0.50 0.48

β 0.40 0.17 6.0 (94%) 3.6 (92%) 0.41 0.45

γ 0.48 0.13 12.2 (86%) 8.7 (89%) 0.39 0.37

δ 0.44 0.17 2.2 (100%) 2.4 (92%) 0.57 0.56

d1 0.80 0.44 8.84 (61%) 6.00 (65%) 0.192 0.209

d2 0.78 0.35 5.04 (87%) 4.01 (88%) 0.293 0.298

d3 0.81 0.38 9.06 (57%) 6.76 (59%) 0.134 0.141

d4 0.83 0.39 21.42 (15%) 15.55(22%) 0.019 0.028

Mar 0.044 0.007 456 451 0.000183 0.000210

Jun 0.046 0.006 380 361 0.000047 0.000057

Sep 0.046 0.006 414 415 0.000058 0.000074

Dec 0.049 0.006 403 395 0.000047 0.000059

TABLE I: Temporal-clustering, characteristic temporal path
length and efficiency for brain cortical networks (subject 1,
and four band frequencies) [13], for the social interaction
networks of INFOCOM’06 (time periods between 1pm and
2:30pm, four different days), and for messages over Facebook
online social network (three different months of year 2007)
[27]. Results are compared with those obtained for 1000 ran-
domized (shuffled) sequences of the same length.

computed the values of C, L and E for each real se-
quence and for the reshuffled ones. In Table I we re-
port the results for one of the subjects. The values in
parenthesis next to L and Lrand are the percentage of
pairs of nodes that are temporally connected. Discon-
nected node pairs are not considered in the average to
compute L and Lrand. For all the considered bands, the
real sequence exhibits small-world properties, having a
large value of C (larger than Crand) and, at the same
time, a small characteristic temporal path length (a high
efficiency), comparable to that observed in the shuffled
sequence. Similar results (not reported) were obtained
for the other four subjects.

Social interaction networks.- The second real case
study of our analysis is a time-varying social network
based on a dataset of contacts among participants of
INFOCOM’06, a major data communication conference
which took place in a hotel. The contacts were collected
by means of Bluetooth-enabled devices able to record in-
teractions among people that are in promixity [28]. The



Summary

• We	have	introduced	metrics	for	time	varying	
social	networks	

• We	have	shown	examples	of	use	on	real	
networks
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