

Social and Technological Network Data Analytics

Lecture 13: Temporal Social Network Metrics and Applications

Prof Cecilia Mascolo

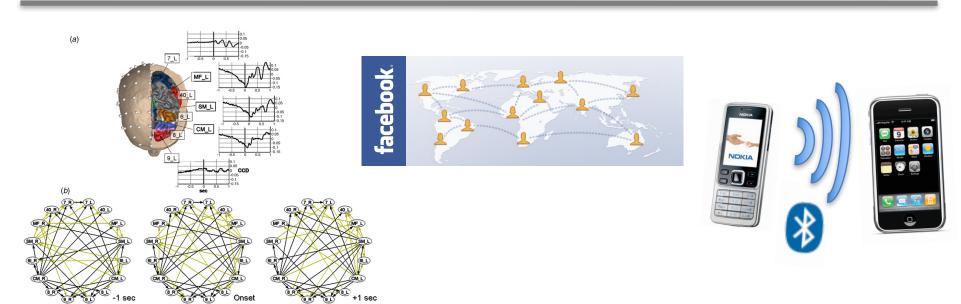
In This Lecture

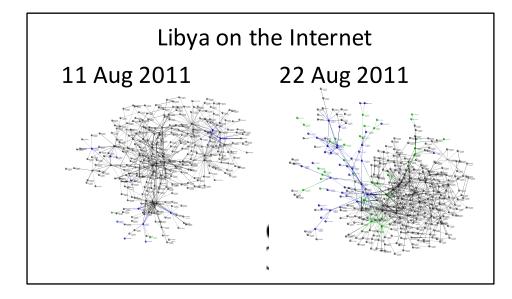
- We will show metric extensions for complex networks which keep time into account.
- We will also show how these can be applied to applications.

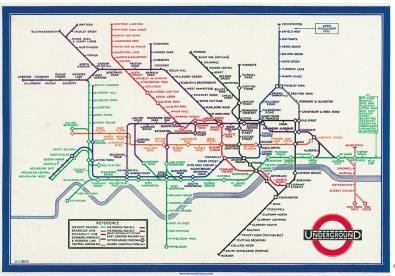
Why Temporal Social Network

- Most of the analysis we have seen has been done on aggregated network graphs
- Time has not been kept into account by the metrics
- Why does this matter?

Empirical Networks

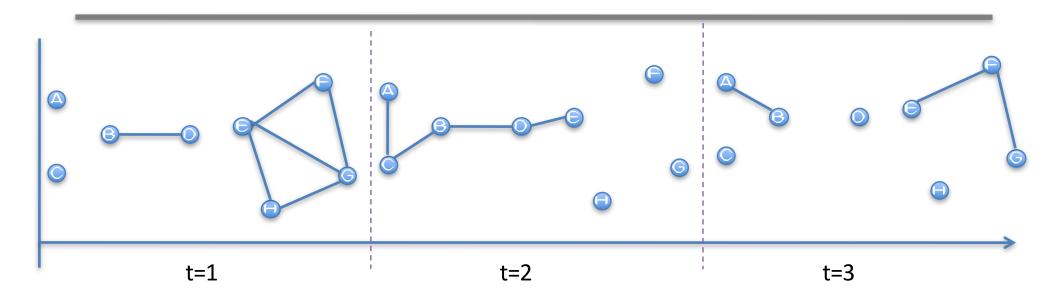


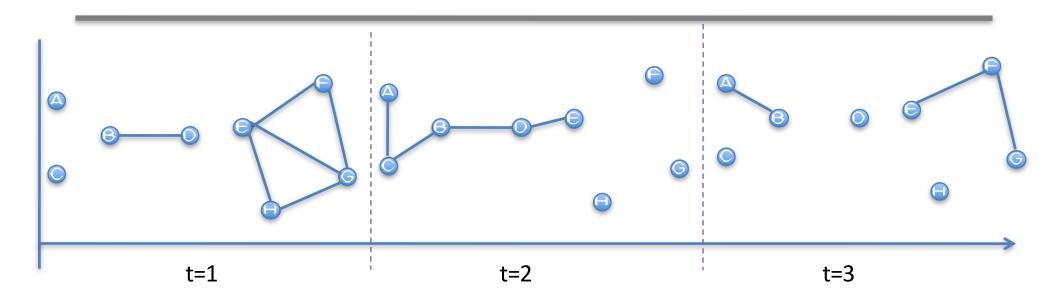


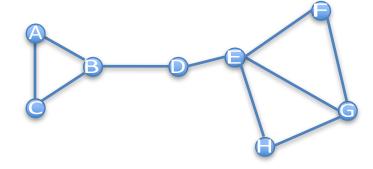


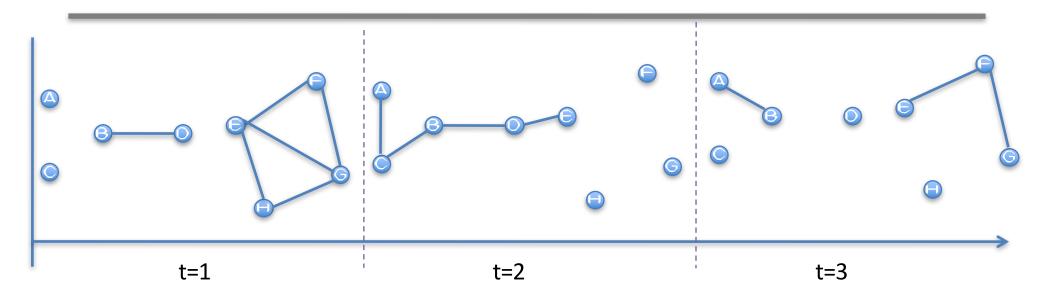
Time in networks

- Timestamps
 - e.g. Facebook: friends added and removed over time
- Duration
 - e.g. Spending time with friends
- Frequency
 - e.g. Friends, colleagues, strangers
- Time-order
 - e.g. Timetables in public transport systems

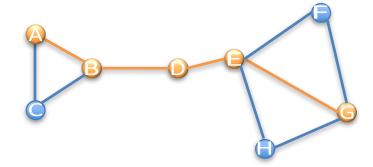


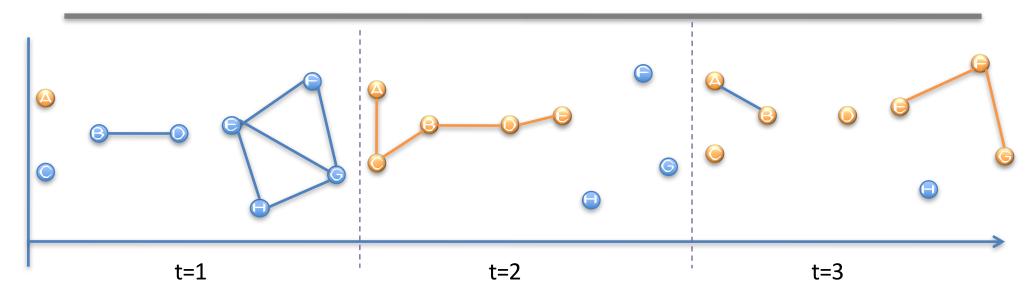




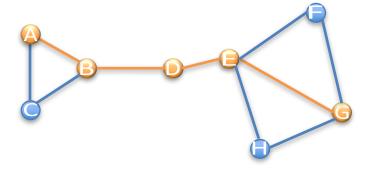


- Static
 - •Shortest path (A,G) = [A,B,D,E,G]
 - •Shortest path length (A,G) = 4 hops





- Static
 - •Shortest path (A,G) = [A,B,D,E,G]
 - •Shortest path length (A,G) = 4 hops
- Temporal
 - •Shortest path (A,G) = [A,C,B,D,E,F,G]
 - •Shortest path length (A,G) = 6 hops
 - •Time=3 seconds



• d_{ij} Shortest Temporal Path Duration

- d_{ij}^* Number of Hops in shortest temporal path
- Temporal Efficiency of communication $E_{ij} = \frac{1}{d_{ij}}$

Temporal Measures

Average Temporal Path Duration

$$L = \frac{1}{N(N-1)} \sum_{ij} d_{ij}$$

Average Temporal Path Hops

$$L^* = \frac{1}{N(N-1)} \sum_{ij} d_{ij}^*$$

Average Temporal Efficiency

$$E_{glob} = \frac{1}{N(N-1)} \sum_{ij} E_{ij}$$

- Infocom 2005 conference environment
- Bluetooth colocation scans
- 5 Minute Windows
- Measure 24 hours starting 12am

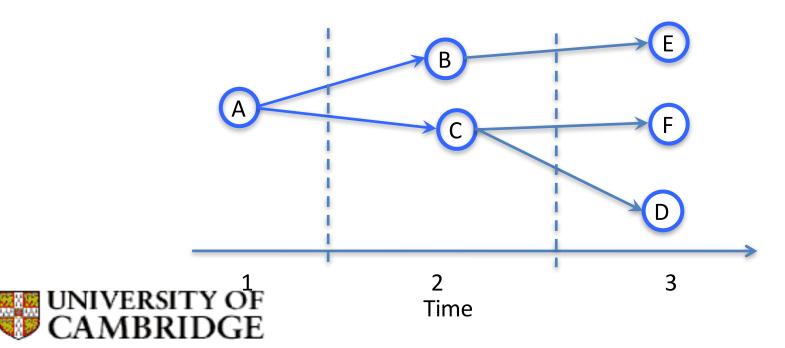
				Static		Temporal			
Day	N	<k></k>	Activity	Contacts	L	Eglob	L*	L	Eglob
1	37	25.73	6pm-12pm	3668	1.291	0.856	4.090	19h 39m	0.003
2	39	28.31	12am-12pm	8357	1.269	0.870	4.556	9h 6m	0.024
3	38	22.32	12am-12pm	4217	1.420	0.798	4.003	10h 32m	0.018
4	39	21.44	12am-5pm	3024	1.444	0.781	4.705	9h 55m	0.013

Temporal Centrality Measures

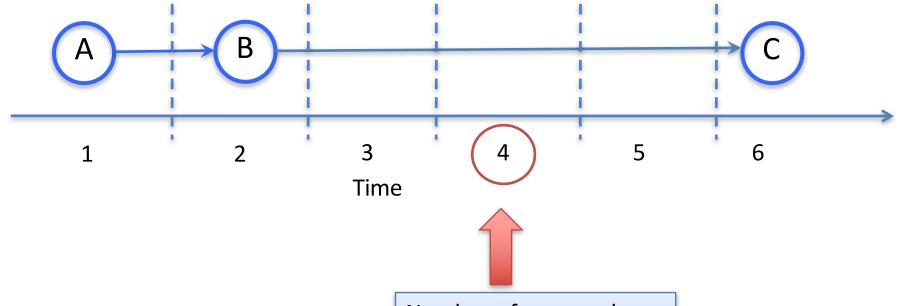
- Static Closeness and Betweenness based on static shortest paths
- Reformalise closeness and betweenness with temporal paths:
 - Duration
 - Time Order
 - Frequency

Temporal Closeness

$$C_i^C = \frac{N-1}{\sum_j d_{ij}}$$



Using temporal path length



Number of temporal shortest paths through B for which at time 4 B was carrying a message

Formally...

Num of temp. shortest paths between j and k in i at tm

$$C_i^B(t_m) = \frac{1}{(N-1)(N-2)} \sum_{\substack{j \neq i \\ k \neq i}} \sum_{\substack{k \neq j \\ k \neq i}}^{N-1}$$

$$\frac{U(i,t_m,j,k)}{\sigma_{jk}}$$

$$C_i^B = \frac{1}{M} \sum_m C_i^B(t_m)$$

Num of temp. shortest paths between j and k

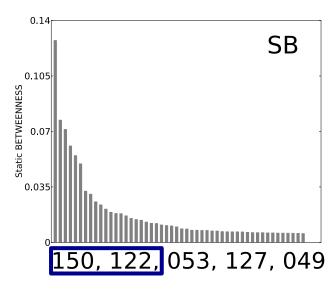
Evaluating Centrality

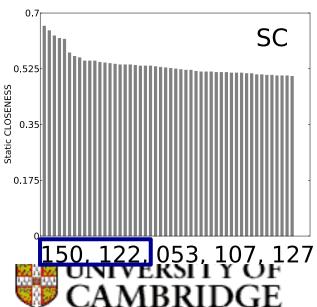
- Two perspectives:
 - Semantic: known roles of nodes
 - Dynamic Processes: mobile malware containment

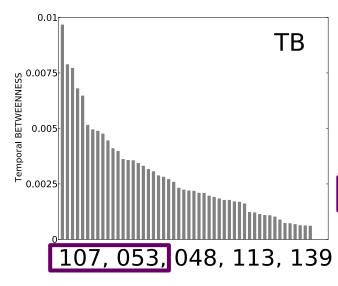
Public Investigation

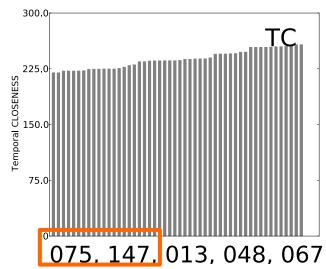
- Telephone logs
- Documents
- Financials
- Emails
 - 151 user mailboxes
 - May 1999 to Jun 2002
 - 250,000 emails
 - NOT anonymised

Semantics









ID	Role
009	(Unknown)
013	Legal
017	Manager
048	Executive
053	Trader
054	President
067	Vice President
073	Trader
075	Director of Trading
107	Trader
122	Managing Director
127	Manager
139	Director
147	Trader
150	Secretary

Semantics

ID	Name	Role
9	Stephanie Panus	(Unknown)
13	Marie Heard	Legal
17	Mike Grigsby	Manager
48	Tana Jones	Executive
53	John Lavorato	Trader
54	Greg Whalley	President
67	Sara Shackleton	Vice President
73	Jeff Dasovich	Trader
75	Gerald Nemec	Director of Trading
107	Louise Kitchen	Trader
122	Sally Beck	Managing Director
127	Kenneth Lay	Manager
139	Mary Hain	Director
147	Carol Clair	Trader
150	Liz Taylor	Secretary

Top bonuses awarded

John Lavorato: \$5 million Louise Kitchen: \$2 million

Jeffrey McMahon: \$1.5

million

James Fallon: \$1.5 million

Raymond Bowen Jr.:

\$750,000

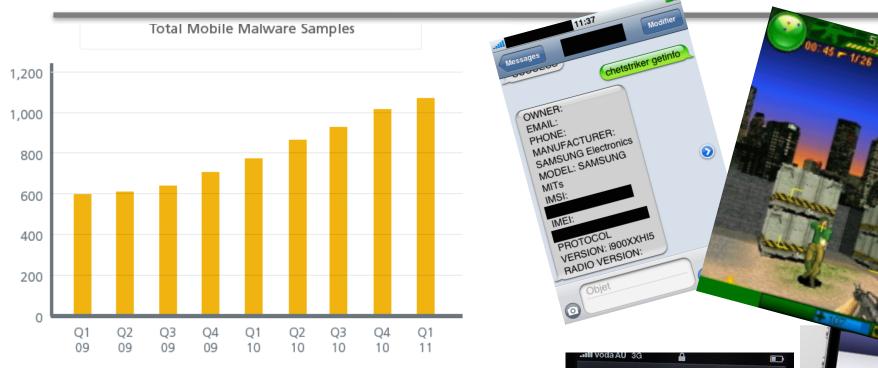
Mark Haedicke: \$750,000 Gary Hickerson: \$700,000 Wesley Colwell: \$600,000

Richard Dimichele:

9600 000

Big bonuses linked with information mediators

Mobile Phone Malware



Mobile Malware Propagation

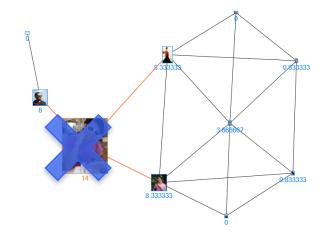
- Long Range
 - Sms, mms, email
 - Can be filtered by central service provider
- Short Range
 - Bluetooth, wifi
 - Evades central service provider

Limitations

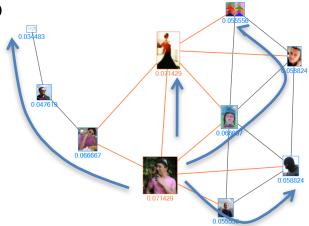
- Devices
 - Resource constrained
- Infrastructure
 - Limited bandwidth
- Prioritise Devices using SNA
 - Patch individual devices via nodes with high Betweenness
 - Flood patch via nodes with high Closeness

Priority Patching Schemes

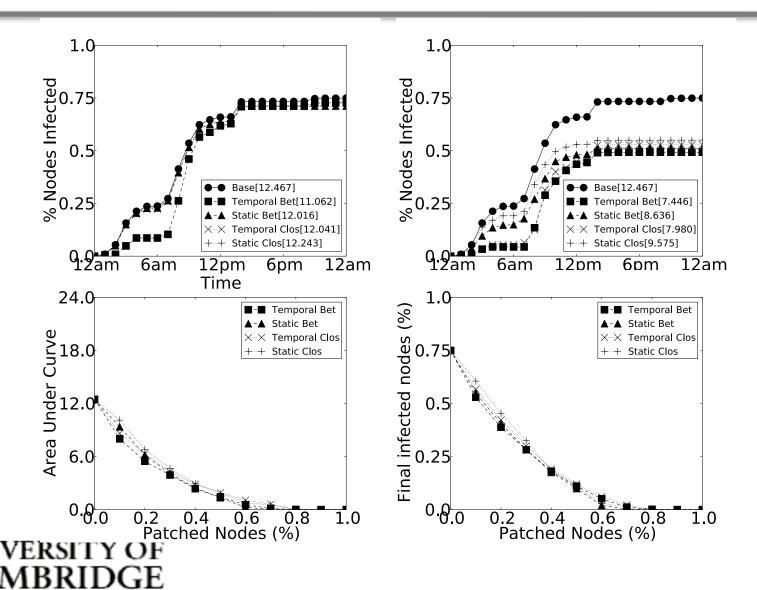
- 1. Traditional Patching
 - → Can we block path of malware?
 - **→**Betweenness

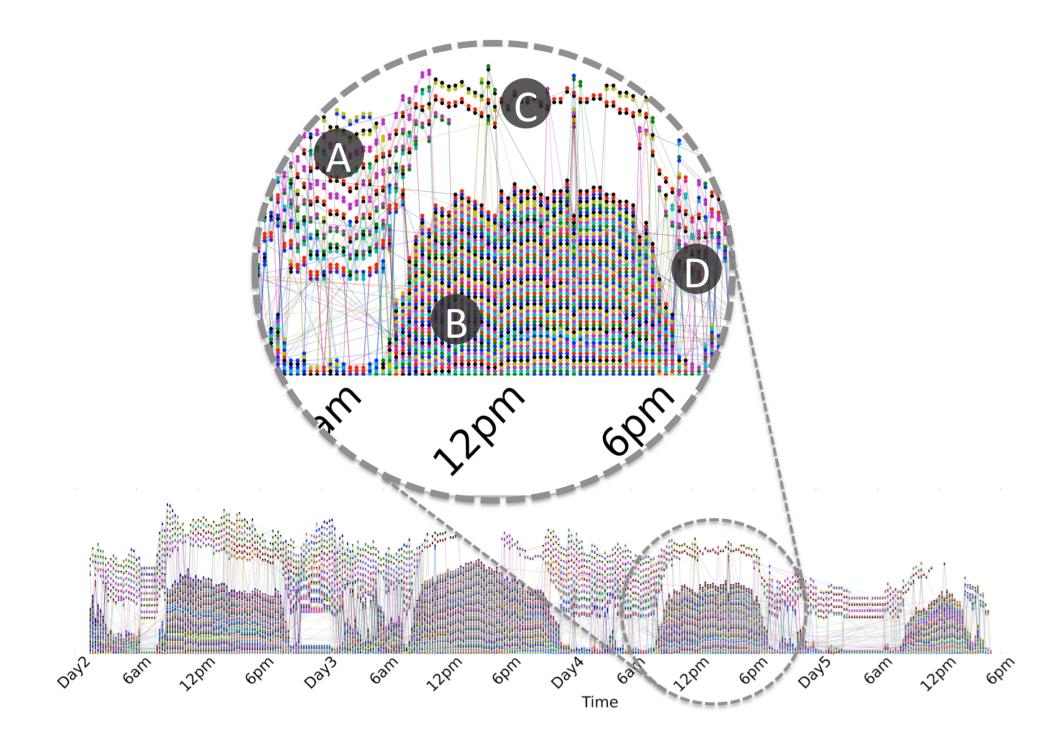


- 2. Opportunistic Patching
 - → Can we compete with malware?
 - **→**Closeness

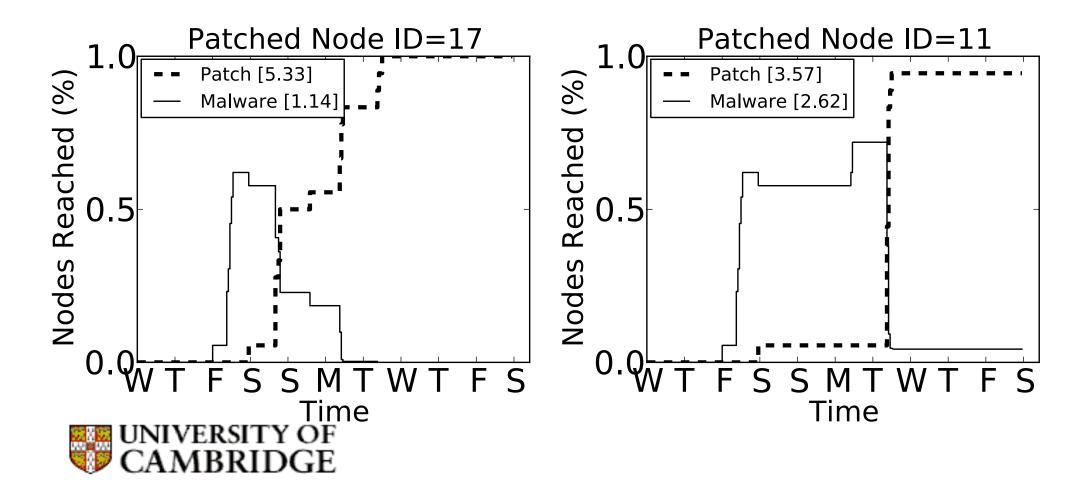


Patching Nodes

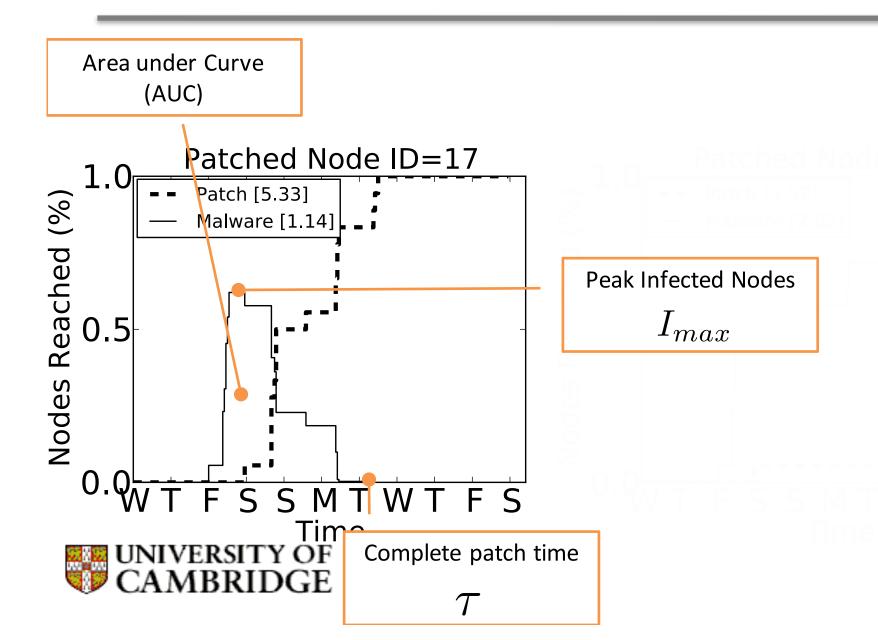




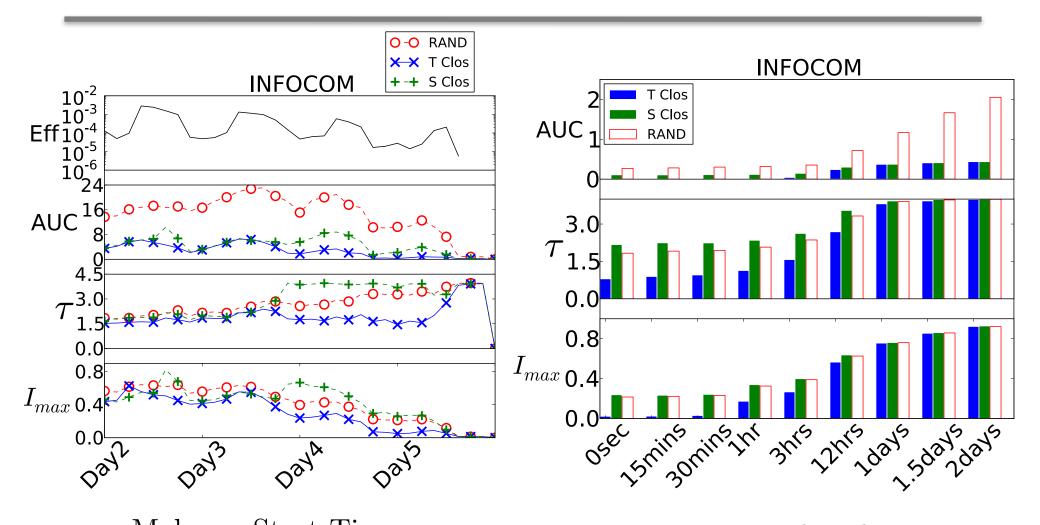
Flood Network with Patch



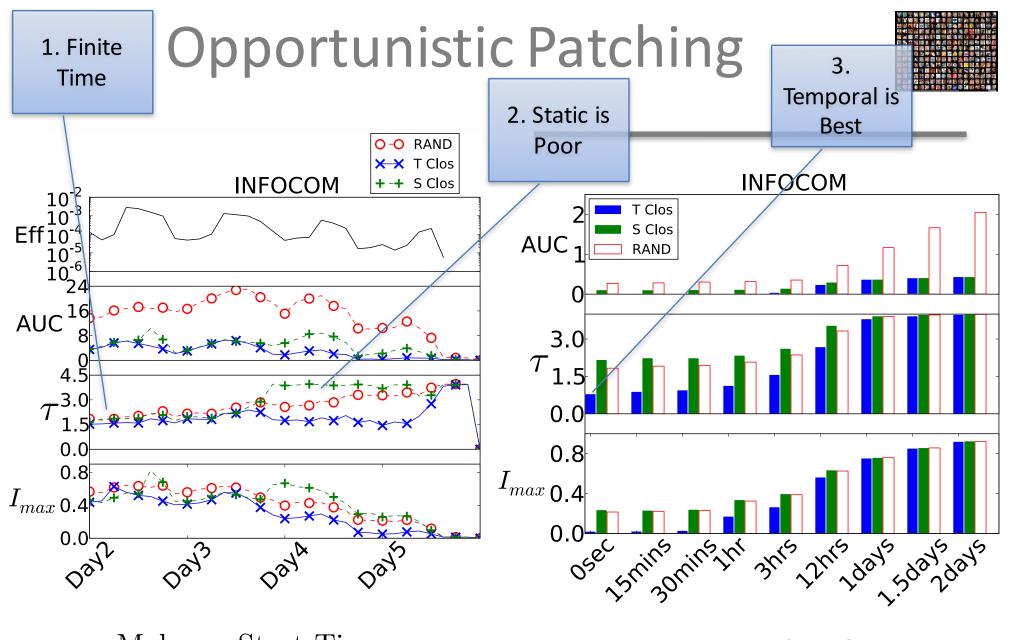
Flood Network with Patch



Opportunistic Patching



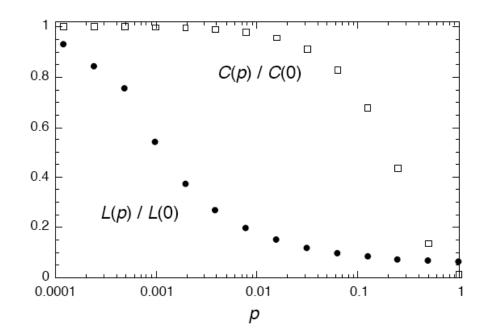
Patch Delay



Patch Delay

Static Small World

- Graphs which both are locally clustered but with small average path length
 - High local clustering but long paths => Lattice
 - Small average paths but low clustering => Random



Temporal Small World

- Does this hold in time-varying graphs
- Temporal small world:
 - quick paths from one node to another and
 - have some temporal local persistence of links

Testing for Temporally Small World

Measure

- communication efficiency
 - Temporal shortest path length
- speed of change
 - Temporal correlation coefficient
 - Measure persistence of links

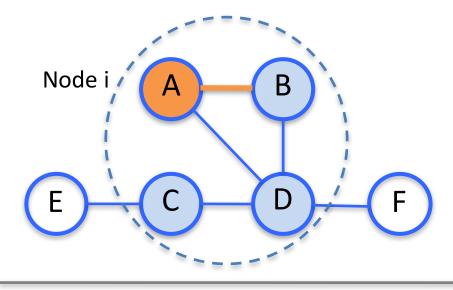
Model

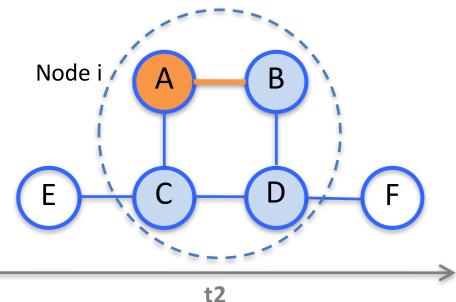
- Recreate a slowly changing and quickly changing temporal graph
- Brownian motion with prob(jump)

Coefficient of Temporal Clustering

$$C = \frac{\sum_{i} C_{i}}{N} \quad C_{i} = \frac{1}{T - 1} \sum_{t=1}^{T - 1} \frac{\sum_{j} a_{ij}(t) a_{ij}(t + 1)}{\sqrt{\left[\sum_{j} a_{ij}(t)\right]\left[\sum_{j} a_{ij}(t + 1)\right]}}$$

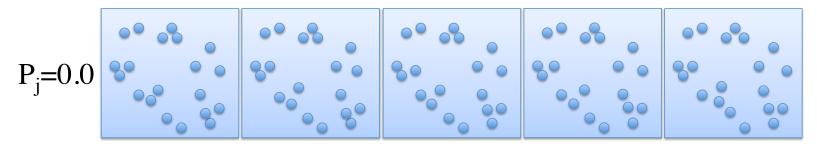
C(A)=1/3





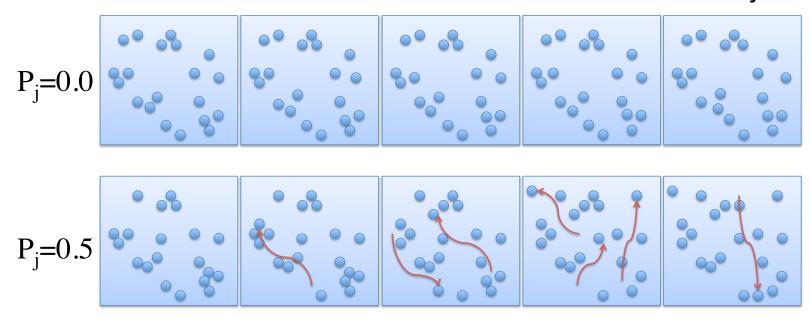
Temporal SW Model

N Random Walkers with Prob Jumping P_i



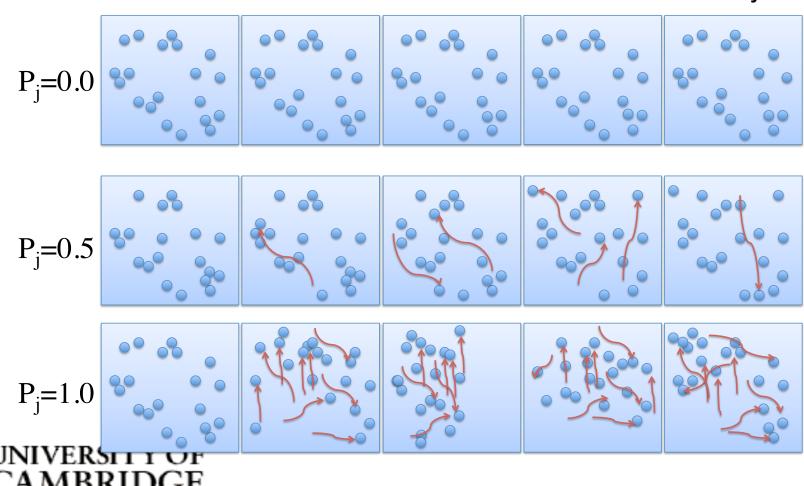
Temporal SW Model

N Random Walkers with Prob Jumping P_i



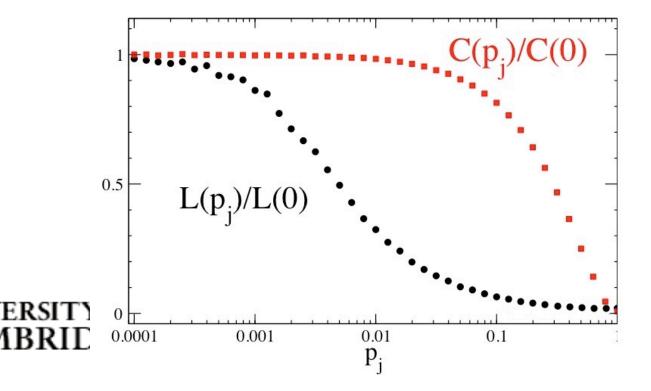
Temporal SW Model

N Random Walkers with Prob Jumping P_i



Temporal Small World

- Graphs which evolve slowly over time can still exhibit high communication efficiency
 - Highly temporal-clustering => non-jumping model
 - Low temporal-delay => fully-jumping model



Small-world Behaviour in Real Data

		C	C^{rand}	L	L^{rand}	E	E^{rand}
	α	0.44	0.18	3.9 (100%)	4.2 (98%)	0.50	0.48
	eta	0.40	0.17	6.0~(94%)	3.6~(92%)	0.41	0.45
Brain network	γ	0.48	0.13	12.2~(86%)	8.7~(89%)	0.39	0.37
	δ	0.44	0.17	2.2 (100%)	2.4 (92%)	0.57	0.56
NOON DEED STORY	d1	0.80	0.44	8.84 (61%)	6.00 (65%)	0.192	0.209
***************************************	d2	0.78	0.35	5.04 (87%)	4.01 (88%)	0.293	0.298
Bluetooth contacts (INFOCOM'06)	d3	0.81	0.38	9.06~(57%)	6.76 (59%)	0.134	0.141
(INFOCOIVI 00)	d4	0.83	0.39	21.42 (15%)	15.55(22%)	0.019	0.028
	Mar	0.044	0.007	456	451	0.000183	0.000210
facebook.	Jun	0.046	0.006	380	361	0.000047	0.000057
(London network)	Sep	0.046	0.006	414	415	0.000058	0.000074
	Dec	0.049	0.006	403	395	0.000047	0.000059

Summary

- We have introduced metrics for time varying social networks
- We have shown examples of use on real networks

References

- Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo and Vito Latora.
 Graph Metrics for Temporal Networks. Book Chapter in Petter Home and Jari Saramaki (Editors).
 Temporal Networks. Springer. 2013.
- John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia, Cecilia Mascolo, Mirco Musolesi and Vito Latora. Applications of Temporal Graph Metrics to Real-World Networks. Book Chapter in Petter Holme and Jari Saramaki (Editors). Temporal Networks. Springer. 2013.
- J. Tang, S. Scellato, M. Musolesi, C. Mascolo and V. Latora. **Small-world behavior in time-varying graph** In Physical Review E. Vol. 81 (5), 055101. May 2010.
- J. Tang, M. Musolesi, C. Mascolo, V. Latora, V. Nicosia. **Analysing Information Flows and Key Mediators through Temporal Centrality Metrics**. In Proc. of the 3rd Workshop on Social Network Systems (SNS 2010). Apr 2010.
- J. Tang, M. Musolesi, C. Mascolo and V. Latora. Temporal Distance Metrics for Social Network
 Analysis. In Proc, of the 2nd ACM SIGCOMM Workshop on Online Social Networks (WOSN09). Aug
 2009.
- J. Tang, C. Mascolo, M. Musolesi, V. Latora. Exploiting Temporal Complex Network Metrics in Mobile Malware Containment. In Proc. of the IEEE 12th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM2011). Jun 2011.
- V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora. **Components in time-varying graphs.** In AIP Chaos. Vol.22 Issue 2. 2012.

