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In	This	Lecture

• In	this	lecture	we	introduce	the	process	of	
spreading	epidemics	in	networks.

– This	has	been	studied	widely	in	various	disciplines	
from	different	perspectives	from	theoretical	
models	to	simulations	of	real	events.

– But	it	also	has	important	parallels	and	applications	
in	information/idea	diffusion	in	social	and	
technological	networks.



Epidemics	vs Cascade	Spreading

• In	cascade	spreading	nodes	make	decisions	
based	on	pay-off	benefits	of	adopting	one	
strategy	or	the	other.

• In	epidemic	spreading	
– Lack	of	decision	making.
– Process	of	contagion	is	complex	and	unobservable

• In	some	cases	it	involves	(or	can	be	modeled	as)	
randomness.



Branching	Process

• Simple	model.
• First	wave:		A	person	carrying	a	disease	enters	
the	population	and	transmits	to	all	he	meets	
with	probability	p.	He	meets	k people:	a	
portion	of	which	will	be	infected.

• Second	wave:	each	of	the	k people	goes	and	
meet	k different	people.	So	we	have	a	second	
wave	of	k*k=k2 people.

• Subsequent	waves:	same	process.



Example	with	k=3

High	contagion	probability:
The	disease	 spreads

Low	contagion	probability:
The	disease	 dies	out



Basic	Reproductive	Number

• Basic	Reproductive	Number	R0=p*k
– It	determines	if	the	disease	will	spread	or	die	out.

• In	the	branching	process	model,	if	R0<1	the	
disease	will	die	out	after	a	finite	number	of	
waves.	If	R0>1,	with	probability	>0,	the	disease	
will	persist	by	infecting	at	least	one	person	in	
each	wave.



Measures	to	Limit	the	Spreading

• When	R0 is	close	1,	slightly	changing	p	or	k	can	
result	in	epidemics	dying	out	or	happening.
– Quarantining	people/nodes	reduces	k.
– Encouraging	better	sanitary	practices	reduces	
germs	spreading	[reducing	p].

• Limitations	of	this	model:
– No	realistic	contact	networks:	no	triangles!
– Nodes	can	infect	only	once.
– No	nodes	recover.



Formal	Epidemics	Models
The	SI	Model

• S:	susceptible	individuals.	
• I:	infected	individuals,	when	infected	they	can	
infect	others	continuously.

• n:	total	population.
• <k>	average	contacts	per	individual
• β=λ<k>	is	the	infection	rate	per	individual	(0≤λ≤1)
• Susceptible	contacts	per	unit	of	time	βS/n.
• Overall	rate	of	infection	IβS/n.
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SIR	Model

• Infected	nodes	recover	at	a	rate	γ.
• A	node	stays	infected	for	τ time.
• Branching	process	is	SIR	with	τ=1.
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Example

• Numerical	examples	of	solution:
• β=1,	γ=0.4,	s(at start)=0.99,	i(at start)=0.01,	
r(at start)=0
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SIS	Model
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•If		β >	γ growth	curve	like	in	SI	but	
never	reaching	all	population	infected.	
The	fraction	of	infected->0	as	β
approaches	γ.
•If	β<	γ the	infection	will	die	out	
exponentially.
•SIS	has	the	same	R0 as	SIR.



Epidemic	Threshold

• When	would	the	epidemic	develop	and	when	
would	it	die	out?

• It	depends	on	the	relationship	of	β and	γ:
– Basic	Reproductive	Number	R0=β/γ
– If	the	infection	rate	[per	unit	of	time]	is	higher	
than	the	removal	rate	the	infection	will	survive	
otherwise	it	will	die	out.

– In	SI,	γ=0	so	the	epidemics	always	happen.



Limitations	of	SIR

• Contagion	probability	is	uniform	and	“on-off”

• Extensions

– Probability	q	of	recovering	in	each	step.
– Infected	state	divided	into	intermediate	states	(early,	
middle	and	final	infection	times)	with	varying	
probability	during	each.

– We	have	assumed	homogenous	mixing	:	assumes	all	
nodes	encounter	each	others	with	same	probability:	
we	could	assume	different	probability	per	encounter.



Relaxing	Assumptions

• Homogeneous	Mixing:	a	node	connects	to	the	
same	average	number	of	other	nodes	as	any	
other.

• Most	real	networks	are	not	Erdos-Renyi
random	networks	(for	which	the	
homogeneous	mixing	assumption	holds).

• Most	networks	have	heterogeneous	degree	
distributions.
– Scale	free	networks!



Would	the	Model	Apply	to	SF?

• Pastor-Satorras and	Vespignani [2001]	have	
considered	the	life	of	computer	viruses	over	
time	on	the	Internet:

Surviving	probability	of	virus Virus	
survived	on	
average	6-
9/14	
months	
depending	
on	type



How	to	Justify	
This	Survival	Time?

• The	virus	survival	time	is	considerably	high	
with	respect	to	the	results	of	epidemic	models	
of	spreading/recovering:
– Something	wrong	with	the	epidemic	threshold!

• Experiment:	SIS	over	a	generated	Scale	Free	
network	(exponent	-3).



No	Epidemic	Threshold	for	SF!

Random	Network

Scale	Free	Network

Infections	proliferate	in	SF	networks	
independently	 	of	their	spreading	rates!



Network	Immunisation

• Random	network	can	be	immunized	with	
some	sort	of	uniform	immunization	process	
[oblivious	of	the	characteristics	of	nodes].

• Random	immunisation does	not	work	in	SF	
networks no	matter	how	many	nodes	are	
immunized	[unless	it	is	all	of	them].

• Targeted	immunization	in	SF	must	be	used	
instead.
– Keeping	into	account	degree!



Immunization	on	SF	Networks

• Red=SF
• Black=	Random

Uniform	Immunization

Targeted	Immunization Uniform	and	
Targeted
Immunization

Fraction	of	immunized	nodes

Density	of	
Infected



Local	Immunization

• Global	knowledge	on	the	network	structure	is	
rarely	available	(more	on	this	later)

• Local	immunization	strategy:
– Select	g nodes	at	random
– Ask	to	each	of	them	to	pass	over	the	vaccine	to	
one	of	their	neighbors

– As	a	result,	a	node	with	degree	k	is	immunized	
with	a	probability	kP(k)	(hubs	are	immunized	with	
higher	probability!)



Modelling SARS	Spreading

• SARS:	severe	acute	respiratory	syndrome
• SIR	like	model	with	more	parameters	and	
homogenous	mixing

• Travel	data	and	census	data
• WHO	data	about	SARS	spreading	to	evaluate	
the	model

• Outbreak	starts	in	Hong	Kong



Epidemics	Flow



The	Parameters	of	the	Model

• Parameters	used:



Adding	Travel	and	Geography

• A	model	per	city	(“meta-population	model”)
– Each	compartmental	model	describes	the	
epidemics	in	a	given	city.

–Models	per	city	are	coupled	using	information	
from	air	travel
• Possible	simplification	of	the	reality	but	effective	
abstraction.

• Stochastic	model
– Probabilities	of	an	individual	of	moving	from	one	
city	to	the	next	follows	proportions	of	traffic	
observed	in	the	air	travel	data.



Epidemic	Pathways



Predicted	Outbreak	Likelihood



Comparison	with	Data



Epidemic	Spreading	Models	
and	Real	Data

• A	key	problem	is	how	to	extract	information	
for	modelling the	spreading	the	disease	from	
real	data.

• One	possibility	is	to	use	information	coming	
from	the	cellular	network:
– Transitions	between	base-stations	for	modelling
the	mobility;

– Phone	calls	graph	for	modelling the	underlying	
social	networks	between	callers	and	callees.



Epidemic	Spreading	Models	
and	Real	Data

• In	order	to	study	possible	strategies	of	
containment	of	epidemics,	an	important	aspect	is	
how	to	model	information	campaigns	for	
example	for	mass	vaccination.

• Vaccination	can	happen	through	the	population	
by	exploiting	the	“strong”	ties	between	them	
(family	ties	or	friendships,	etc.)

• Presence	of	two	concurrent	processes:
– Epidemic	spreading
– Information	diffusion	(spreading	of	“immunising
information”)
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Mobility	 Calls



Data	for	Development
Challenge

• Data	mining	competition	
using	a	data	set	containing	
movement	and	call	data	of	
5	million	individuals	in	
Ivory	Coast	in	order	to	help	
to	address	society	
development	questions	in	
novel	way

• Information	extracted	from	
the	Call	Data	Records	
(CDRs)	of	the	Orange	
network	in	Ivory	Coast
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Call	Data	Records

• A	Call	Data	Record	(CDR)	entry	contains	
information	about	a	specific	phone	call		
(usually	called	“metadata”),	including:
– The	phone	number	of	the	subscriber	originating	
the	call;

– The	phone	number	of	the	called	party;
– The	identification	of	the	equipment	writing	the	
record	(base	station).
• From	this	information	it	is	possible	to	extract	the	
geographic	location	of	the	caller.



Mobility	Matrix
• Movement	data	extracted	from	the	registration	
patterns	to	the	cellular	infrastructure	(i.e.,	CDRs)	
are	used	to	evaluate	the	influence	of	human	
mobility	on	the	spreading	of	the	disease	in	a	
given	geographic	area.

• From	the	data	it	is	possible	to	extract	the	
probability	of	transitions	between	different	areas,	
in	this	case	“sub-prefectures”	(counties)	of	Ivory	
Coast.

• Using	this	information,	we	build	a	mobility	matrix	
representing	movement	in	the	country	as	a	
Markov	process.



Mobility	Matrix

Probability	that	an	individual	moves	
from	the	sub-prefecture	 i to	the	

sub-prefecture	 j

Number	of	times	a	user	u moves	
from	the	sub-prefecture	 i to	the	

sub-prefecture	 j

Number	of	times	a	user	u moves	
from	the	sub-prefecture	 i to	the	

sub-prefecture	 k



Call	Graph

Probability	of	a	call	being	
established	between	sub-

prefectures	 i and	j

Number	of	phone	calls	initiated	
from	the	sub-prefecture	 i and	
directed	to	the	sub-prefecture	 j

Number	of	phone	calls	initiated	
from	the	sub-prefecture	 i and	

directed	to	the	sub-prefecture	 k



States

• Disease	spreading	process:
– S:	Susceptible
– I:	Infected
– R:	Resistant/recovered

• Information	spreading	process:
– U:	unaware
– A:	aware

• N(t)=S(t)+I(t)+R(t)=U(t)+A(t)
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Mobility	Matrix



Mobility	Matrix

Call	Matrix



Real-time	Predictive	Modelling

• By	using	a	model	like	this	one,	real-time	
predictive	modellingmight	be	possible

• Policy-makers	might	extract	the	parameters	of	
the	model,	such	as	the	mobility	matrix,	in	real-
time.

• Transmission	models	ha	been	widely	used	for	
assessing	potential	strategies	for	containing	
diseases	such	as	influenza.

• “Mobile	big	data”	might	help	in	developing	
more	accurate	models.



Real-time	Predictive	Modelling

• One	of	the	key	problems	is	understanding	the	
uncertainty	associated	to	the	model.

• It	is	difficult	to	understand	the	contribution	of	
many	factors	such	as:
– Climatic	factors
– Transmission	seasonality
– Long-term	immunity	of	a	population
– …

• Scenario-based	modelling is	routinely	used	in	
order	to	predict	future	evolution	of	epidemics.



Summary
• Epidemics	are	very	complex	processes.
• Existing	models	have	been	increasingly	capable	of	
capturing	their	essence.

• However	there	are	still	a	number	of	open	issues	
related	to	the	modelling of	real	disease	spreading	
or	information	dissemination.

• Mixing	geographic	factors	with	epidemics	model	
is	very	relevant	and	important.

• The	availability	of	“big	data”	might	help	in	
building	more	realistic	and	possibly	real-time	
epidemic	models.
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