
University of Cambridge 2017 MPhil ACS / CST Part III Category Theory and Logic (L108)

Brief Notes on the Category Theoretic Semantics of
Simply Typed Lambda Calculus

Andrew Pitts

Notation: comma-separated snoc lists

When presenting logical systems and type theories, it is common to write finite lists of
things using a comma to indicate the cons-operation and with the head of the list at the
right. With this convention there is no common notation for the empty list; we will use the
symbol “�”. Thus ML-style list notation

nil a :: nil b :: a :: nil etc

becomes

� �, a �, a, b etc

For non-empty lists, it is very common to leave the initial part “�,” of the above notation
implicit, for example just writing a, b instead of �, a, b.

Write X∗ for the set of such finite lists with elements from the set X.

1 Syntax of the simply typed λ-calculus

Fix a countably infinite set V whose elements are called variables and are typically written
x, y, z, . . .

The simple types (with product types) A over a set Gnd of ground types are given by the
following grammar, where G ranges over Gnd:

A ::= G | unit | A x A | A -> A

Write ST(Gnd) for the set of simple types over Gnd.

The syntax trees t of the simply typed λ-calculus (STLC) over Gnd with constants drawn
from a set Con are given by the following grammar, where c ranges over Con, x over V and
A over ST(Gnd):

t ::= c | x | () | (t , t) | fst t | snd t | λx : A. t | t t

1

We identify such syntax trees modulo remaning of λ-bound variables. More formally a
simply typed λ-term is an equivalence class of syntax trees for the following, inductively
defined relation of α-equivalence =α

c =α c x =α x () =α ()

t1 =α t′1 t2 =α t′2
(t1 , t2) =α (t′1 , t′2)

t =α t′

fst t =α fst t′

t =α t′

snd t =α snd t′
t1 =α t′1 t2 =α t′2

t1 t2 =α t′1 t′2

(y x) · t =α (y x′) · t′ y does not occur in {x, x′, t, t′}
λx : A. t =α λx′ : A. t′

In the last rule (y x) · t indicates the syntax tree obtained from t by swapping occurrences
of y and x; given the condition that y does not occur in t, this is the same as replacing
all occurrences of x in t by y. Thus the last rule says that λx : A. t and λx′ : A. t′ are
α-equivalent if t and t′ become α-equivalent once we replace all occurrences of x in t and
all occurrences of x′ in t′ by some common “fresh” variable y.

It is conventional to not make a notational distinction between a tree t and the α-equivalence class
that it determines. That convention can be made mathematically precise via the use of
nominal sets; see for example Pitts [2013, Chapter 8]. An alternative to working with
λ-terms as α-equivalence classes of abstract syntax trees is to use a nameless representation
due to de Bruijn [1972] instead of explicitly named bound variables. For typed λ-calculi,
especially when using systems like Agda [wiki.portal.chalmers.se/agda/agda.php] or
Coq [coq.inria.fr], so-called well-scoped de Bruijn indices are very convenient (if not very
humam-readable); see for example Keller and Altenkirch [2010, Section 2].

2 Typing relation

We assume that the set Con comes with a function mapping each constant c ∈ Con to its
type A ∈ ST(Gnd). We some times write c as cA to indicate that A is its type.

In order to extend this typing function from constants to compound simply typed λ-terms
we have to assign types to (free) variables. We do so via typing environments Γ:

Γ ::= � | Γ, x : A (where x ∈ V, A ∈ ST(Gnd))

Thus the set of typing environments is in bijection with (V× ST(Gnd))∗, the set of finite
lists of (variable,type)-pairs. The domain dom Γ of a typing environment Γ is the finite set
of variables occurring in it:

dom � = ∅
dom(Γ, x : A) = dom Γ ∪ {x}

We only use the Γ that are well-formed Γ ok in the sense that no variable occurs more
than once in the list:

� ok
Γ ok x /∈ dom Γ

Γ, x : A ok

2

wiki.portal.chalmers.se/agda/agda.php
coq.inria.fr

Then the typing relation Γ ` t : A for assigning types A to terms t in a given typing
environment Γ is inductively defined by:

Γ ok x /∈ dom Γ
Γ, x : A ` x : A

(var)
Γ ` x : A x′ /∈ dom Γ

Γ, x′ : A′ ` x : A
(var’)

Γ ok

Γ ` cA : A
(const)

Γ ok
Γ ` () : unit

(unit)

Γ ` t : A Γ ` t′ : A′

Γ ` (t , t′) : A x A′
(pair)

Γ ` t : A x A′

Γ ` fst t : A
(fst)

Γ ` t : A x A′

Γ ` snd t : A′
(snd)

Γ, x : A ` t : A′

Γ ` λx : A. t : A -> A′
(λ)

Γ ` t : A -> A′ Γ ` t′ : A
Γ ` t t′ : A′

(app)

Here are some simple properties of the typing relation Γ ` t : A, proved by induction on its
derivation. The second property makes use of the finite set fv t of free variables of a term
t, which is well-defined by:

fv c = fv () = ∅ fv (t , t′) = fv t t′ = fv t ∪ fv t′

fv x = {x} fv λx : A. t = {x′ ∈ fv t | x′ 6= x}

Lemma 2.1. 1. If Γ ` t : A, then Γ ok.

2. If Γ ` t : A, then fv t ⊆ dom Γ.

3. If Γ ` t : A and Γ ` t : A′, then A = A′.

Property 3 says that terms have at most one type in any (well-formed) typing environment.
Of course some terms have no type; for example � ` () () : A is not derivable from the
rules for any type A (why?).

Because we have formulated typing environments as ordered lists (rather than, say, fi-
nite maps from variables to types), the important property of the typing relation that
it is preserved under weakening typing environments (that is, adding extra (variable,
type)-pairs while preserving the property of being well-formed) has to be formulated care-
fully. Here is a particular inductive definition of a weakening relation w : Γ′ B Γ (where
w ::= ι | w π | w x), inspired by Chapman [2009, Section 4.5], that interacts well with the
typing relation:

Γ ok
ι : Γ B Γ

w : Γ′ B Γ x /∈ dom Γ′

w π : (Γ′, x : A)B Γ
w : Γ′ B Γ x /∈ dom Γ′

w x : (Γ′, x : A)B Γ, x : A

Lemma 2.2. 1. If w : Γ′ B Γ and Γ ok, then Γ′ ok.

2. If Γ ` t : A and w : Γ′ B Γ, then Γ′ ` t : A.

3

Proof. Property 1 is proved by induction on the derivation of w : Γ′ B Γ.

For property 2, which is the desired weakening property of the typing relation, one pro-
ceeds by induction on the derivation of Γ ` t : A. For the base case when t is a variable,
one proves

Γ ` x : A and w : Γ′ B Γ implies Γ′ ` x : A

by induction on the derivation of w : Γ′ B Γ, using part 1; for the induction step when t is
a λ-abstraction one uses the fact that λ-terms are α-equivalence classes of syntax trees, so
that a representative λ-bound variable can chosen to not be in dom Γ′, allowing the third
rule for the w : Γ′ B Γ relation to be applied.

3 Cartesian closed categories

Recall that a category C is cartesian closed if it has

A terminal object: a C-object > with the property that for every Z ∈ obj C there is a
unique morphism 〈〉 ∈ C(Z,>). The uniqueness part of this property is:

f ∈ C(Z,>)⇒ f = 〈〉

Binary products: for all X, Y ∈ obj C there is a C-object X × Y and morphisms π1 ∈
C(X×Y, X), π2 ∈ C(X×Y, Y) with the property that for every Z ∈ obj C, f ∈ C(Z, X) and
g ∈ C(Z, Y), there is a unique morphism 〈 f , g〉 ∈ C(Z, X×Y) satisfying π1 ◦ 〈 f , g〉 = f and
π2 ◦ 〈 f , g〉 = g. The uniqueness part of this property is equivalent to requiring:

h ∈ C(Z, X×Y)⇒ h = 〈π1 ◦ h, π2 ◦ h〉

As a matter of notation, if f ∈ C(Z, X) and g ∈ C(W, Y) we define f × g ∈ C(Z×W, X×Y)
to be f × g , 〈 f ◦ π1, g ◦ π2〉.

Exponentials: for all X, Y ∈ obj C there is a C-object YX and a morphism app ∈ C(YX ×
X, Y) with the property that for every Z ∈ obj C and f ∈ C(Z × X, Y) there is a unique
morphism cur f ∈ C(Z, YX) satisfying app ◦ (cur f × idX) = f . The uniqueness part of this
property is equivalent to requiring:

h ∈ C(Z, YX)⇒ h = cur(app ◦ (h× idX))

4 Semantics in a cartesian closed category

Let C be a cartesian closed category. Any function M : Gnd → obj C assigning C-objects
to ground types can be extended to a function mapping types A ∈ ST(Gnd) to objects

4

MJAK ∈ obj C, by recursion over the structure of A:

MJGK = M(G)

MJunitK = 1 (terminal object in C)
MJA x A′K = MJAK×MJA′K (product in C)

MJA -> A′K = MJA′KMJAK (exponential in C)

Typing environments also denote C-objects, by recursion over the length of the list Γ:

MJ�K = 1
MJΓ, x : AK = MJΓK×MJAK

Finally, if in addition to M : Gnd→ obj C we also have a function assigning to each constant
c ∈ Con, of type A say, a global section1 M(c) ∈ C(1, MJAK), then for each derivable
instance of the typing relation Γ ` t : A we define a C-morphism

MJΓ ` t : AK ∈ C(MJΓK, MJAK)

as follows:

MJΓ, x : A ` x : AK = MJΓK×MJAK π2−→ MJAK

MJΓ, x′ : A′ ` x : AK = MJΓK×MJA′K π1−→ MJΓK
MJΓ`x:AK−−−−−→ MJAK if x′ /∈ dom Γ

MJΓ ` cA : AK = MJΓK
〈〉−→ 1

M(c)−−→ MJAK

MJΓ ` () : unitK = MJΓK
〈〉−→ 1

MJΓ ` (t , t′) : A x A′K = MJΓK
〈MJΓ`t:AK,MJΓ`t′ :A′K〉−−−−−−−−−−−−→ MJAK×MJA′K

MJΓ ` fst t : AK = MJΓK
MJΓ`t:A×A′K−−−−−−−→ MJAK×MJA′K π1−→ MJAK

where A′ is the unique type for which Γ ` t : A x A′ holds

MJΓ ` snd t : A′K = MJΓK
MJΓ`t:A×A′K−−−−−−−→ MJAK×MJA′K π2−→ MJA′K

where A is the unique type for which Γ ` t : A× A′ holds

MJΓ ` λx : A. t : A -> A′K = cur
(

MJΓK×MJAK
MJΓ,x:A`t:A′K−−−−−−−−→ MJA′K

)
MJΓt t′ : A′K = MJΓK

〈 f , f ′〉−−−→ MJA′KMJAK ×MJAK
app−−→ MJA′K

where A is the unique type for which Γ ` t : A -> A′ holds
and where f = MJΓ ` t : A -> A′K and f ′ = MJΓ ` t′ : AK.

Summary: given an interpretation of ground types as objects of C and constants as global sections
of objects in C, we give meaning to simple types as C-objects and meaning to simply-typed λ terms
(in a given typing environment) as C-morphisms.

We will need the following property of this semantics with respect to weakening typing
environments:

1In a category C with terminal object 1, morphisms f ∈ C(1, X) are called global sections of the C-object X.

5

Lemma 4.1 (Semantics of weakening). For each instance of the weakening relation w : Γ′B Γ we
get a C-morphism

MJw : Γ′ B ΓK : MJΓ′K→ MJΓK

by defining:

MJι : Γ B ΓK = MJΓK id−→ MJΓK

MJw π : (Γ′, x : A)B ΓK = MJΓ′K×MJAK π1−→ MJΓ′K
MJw:Γ′BΓK−−−−−−→ MJΓK

MJw x : (Γ′, x : A)B Γ, x : AK = MJΓ′K×MJAK
MJw:Γ′BΓK×id−−−−−−−−→ MJΓK×MJAK

If w : Γ′BΓ holds, then for all derivable Γ ` t : A, the meaning of Γ′ ` t : A (valid by Lemma 2.2(2))
in C is the morphism MJΓ′K → MJAK equal to the morphism given by composing MJw : Γ′ B ΓK
with MJΓ ` t : AK.

Proof. By induction on the derivation of Γ ` t : A, following the proof of Lemma 2.2(2). For
the induction step for λ-abstractions, one uses the fact that in a cartesian closed category
the Currying operation satisfies cur(f ◦ (g× id)) = (cur f) ◦ g.

When M is understood from the context one sometimes just writes JAK for MJAK and
similarly for JΓK and JΓ ` t : AK. Also, since the type A in Γ ` t : A is uniquely determined
(Lemma 2.1(3)), it is common to just write JΓ ` tK for JΓ ` t : AK.

If Γ ` t : A and Γ ` t′ : A, then a typed equation

Γ ` t = t′ : A

is satisfied by this semantics if MJΓ ` t : AK and MJΓ ` t′ : AK are equal morphisms
from MJΓK to MJAK in C. It is natural to ask which typed equations are always satisfied,
whatever the ccc C. This turns out to to be the notion of βη-equality given in Section 6. To
describe it we first have to define (capture-avoiding) substitution of terms for free variables
and its semantics.

5 Substitution

Substitutions σ are finite lists of (variable, term)-pairs,written with the following notation:

σ ::= � | σ, x := t

The domain dom σ of a substitution is given by

dom � = ∅
dom(σ, x := t) = dom σ ∪ {x}

and its set of free variables fv σ by

fv � = ∅
fv(σ, x := t) = fv σ ∪ fv t

6

Write x # σ to mean that x /∈ dom σ ∪ fv σ.

Then the simply-typed λ-term t[σ] resulting from applying the substitution σ to the
simply-typed λ-term t is well-defined by:

x[�] = x
x[σ, x := t] = t

x[σ, x′ := t] = x[σ] if x 6= x′

c[σ] = c

(t , t′)[σ] = (t[σ] , t′[σ])
(fst t)[σ] = fst(t[σ])
(snd t)[σ] = snd(t[σ])

(λx : A. t)[σ] = λx : A. (t[σ]) if x # σ

(t t′)[σ] = (t[σ])(t′[σ])

Recall that simply-typed λ-terms are α-equivalence classes of syntax trees. One has to check
that not only does the above definition respect α-equivalence, but also it gives a totally
defined function; it does so because in the penultimate clause, modulo α-equivalence we
can always choose the λ-bound variable x so that x # σ holds.

Note that t[�, x1 := t1, . . . , xn := tn] is a simultaneous substitution of ti for free occurrences
of xi in t for all i = 1, . . . , n and that may be different from an iterated single-substitution.
For example x[�, x := y, y := z] = y, whereas (x[�, x := y])[�, y := z] = z. We write t′[t/x]
for the single-substitution t′[�, x := t].

The relation Γ′ ` σ : Γ that σ is a well-formed substitution between the typing environ-
ments Γ′ and Γ is inductively defined by:

Γ′ ok
Γ′ ` � : �

Γ′ ` σ : Γ x /∈ dom Γ Γ′ ` t : A
Γ′ ` (σ, x := t) : (Γ, x : A)

Here are some simple properties of this relation that we need, and that can be proved by
induction on its derivation:

Lemma 5.1. If Γ′ ` σ : Γ, then

1. Γ ok and Γ′ ok

2. w : Γ′′ B Γ′ implies Γ′′ ` σ : Γ

3. x /∈ dom Γ ∪ dom Γ′ implies Γ′, x : A ` (σ, x := x) : (Γ, x : A)

Lemma 5.2. If Γ ` t : A and Γ′ ` σ : Γ, then Γ′ ` t[σ] : A.

Proof. By induction on the derivation of Γ ` t : A. The induction step for λ-abstractions uses
Lemma 5.1(3) together with the easily proved property of substitution that x # σ implies
x[σ] = x and t[σ, x := x] = t[σ].

7

Given a function M mapping ground types and constants to objects and global sections in a
ccc C, we can interpret substitutions Γ′ ` σ : Γ as morphisms MJΓ′ ` σ : ΓK : MJΓ′K→ MJΓK
like so:

MJΓ′ ` � : �K = MJΓ′K
〈〉−→ 1

MJΓ′ ` (σ, x := t) : (Γ, x : A)K = MJΓ′K
〈MJΓ′`σ:ΓK,MJΓ′`t:AK〉−−−−−−−−−−−−→ MJΓK×MJAK

Lemma 5.3. If Γ′ ` σ : Γ and x /∈ dom Γ ∪ dom Γ′, then the meaning of Γ′, x : A ` (σ, x := x) :
(Γ, x : A) (which is valid by Lemma 5.1(3)) is MJΓ′ ` σ : ΓK× id : MJΓ′K×MJAK → MJΓK×
MJAK.

Proof. By the definition of MJΓ′, x : A ` (σ, x := x) : (Γ, x : A)K, Lemma 4.1 and the fact that
in a cartesian category one always has f × id = 〈 f ◦ π1, π2〉.

Theorem 5.4 (Semantics of simultaneous substitution). If Γ ` t : A and Γ′ ` σ : Γ, then then
the following diagram commutes in C:

MJΓ′K
MJΓ′`σ:ΓK //

MJΓ′`t[σ]:AK))

MJΓK

MJΓ`t:AK
��

MJAK

Proof. By induction on the derivation of Γ ` t : A. For the induction step for λ-abstractions
one uses Lemma 5.3 and the fact that in a cartesian closed category the Currying operation
satisfies cur(f ◦ (g× id)) = (cur f) ◦ g.

Lemma 5.5 (Identity substitution). For each typing environment Γ, define the substitution idΓ
by:

id� = �
idΓ,x:A = (idΓ, x := x)

1. If Γ ok, then Γ ` idΓ : Γ.

2. If Γ ` t : A and Γ, x : A ` t′ : A′, then

Γ ` (idΓ, x := t) : (Γ, x : A),
t′[t/x] = t′[idΓ, x := t]

and Γ ` t′[t/x] : A′

3. MJΓ ` idΓ : ΓK is equal to the identity morphism on MJΓK.

Proof. By induction on the derivation of Γ ok, using Lemma 5.2 for part (2).

8

Corollary 5.6 (Semantics of single substitution). If Γ ` t : A and Γ, x : A ` t′ : A′, then the
following diagram commutes in C:

MJΓK
〈id,MJΓ`t:AK〉 //

MJΓ`t′[t/x]:A′K
**

MJΓK×MJAK

MJΓ,x:A`t′ :A′K
��

MJA′K

Proof. The result is a special case of Theorem 5.4 for the simultaneous substitution Γ `
(idΓ, x := t) : (Γ, x : A), using Lemma 5.5.

6 βη-Equality of simply-typed λ-terms

The relation Γ ` t =βη t′ : A is inductively defined by the following rules:

equivalence relation

Γ ` t : A
Γ ` t =βη t : A

Γ ` t1 =βη t2 : A
Γ ` t2 =βη t1 : A

Γ ` t1 =βη t2 : A Γ ` t2 =βη t3 : A
Γ ` t1 =βη t3 : A

β-conversions

Γ, x : A ` t : A′ Γ ` t′ : A
Γ ` (λx : A. t) t′ =βη t[t′/x] : A′

Γ ` t : A Γ ` t′ : A′

Γ ` fst (t , t′) =βη t : A
Γ ` t : A Γ ` t′ : A′

Γ ` snd (t , t′) =βη t′ : A′

η-conversions

Γ ` t : A -> A′ x /∈ fv t
Γ ` t =βη λx : A. (t x) : A -> A′

Γ ` t : A x A′

Γ ` t =βη (fst t , snd t) : A x A′
Γ ` t : unit

Γ ` t =βη () : unit

congruence rules

Γ ` t1 =βη t2 : A Γ ` t′1 =βη t′2 : A′

Γ ` (t1 , t′1) =βη (t2 , t′2) : A x A′
Γ ` t1 =βη t2 : A x A′

Γ ` fst t1 =βη fst t2 : A

Γ ` t1 =βη t2 : A x A′

Γ ` snd t1 =βη snd t2 : A′
Γ, x : A ` t1 =βη t2 : A′

Γ ` λx : A. t1 =βη λx : A. t2 : A -> A′

Γ ` t1 =βη t2 : A -> A′ Γ ` t′1 =βη t′2 : A
Γ ` t1 t′1 =βη t2 t′2 : A′

9

Lemma 6.1. If Γ ` t =βη t′ : A, then Γ ` t : A and Γ ` t′ : A.

Proof. By induction on the derivation of Γ ` t =βη t′ : A, using Lemma 5.2 for the first
β-conversion rule and Lemma 2.2(2) for first η-conversion rule.

Theorem 6.2 (Soundness). For any function M mapping ground types and constants to objects
and global sections in a cartesian closed category C, the associated semantics of types and terms
(Section 4) satisfies that if Γ ` t =βη t′ : A is derivable, then MJΓ ` t : AK and MJΓ ` t′ : AK are
equal morphisms in C(MJΓK, MJAK).

Proof. One has to check that the relation

Γ ` t : A and Γ ` t′ : A and MJΓ ` t : AK = MJΓ ` t′ : AK

is closed under the above rules inductively generating the relation βη-equality relation.
Here is the argument for the β-conversion involving λ-abstraction

Γ, x : A ` t : A′ Γ ` t′ : A
Γ ` (λx : A. t) t′ =βη t[t′/x] : A′

Given Γ, x : A ` t : A′ and Γ ` t′ : A, define

X = MJAK
Y = MJΓK
Z = MJA′K
f = MJΓ, x : A ` t : A′K
g = MJΓ ` t′ : AK

Thus f : Y× X → Z and g : Y → X in the ccc C and

MJΓ ` (λx : A. t) t′ : A′K = app ◦ 〈cur f , g〉 : Y → Z
(by definition of the semantics of terms)

MJΓ ` t[t′/x] : A′K = f ◦ 〈idY, g〉 : Y → Z
(by Corollary 5.6)

But in any ccc we have app ◦ 〈cur f , g〉 = app ◦ (cur f × idX) ◦ 〈idY, g〉 = f ◦ 〈idY, g〉. There-
fore MJΓ ` (λx : A. t) t′ : A′K = MJΓ ` t[t′/x] : A′K, as required.

Here is the argument for the η-conversion involving λ-abstraction

Γ ` t : A -> A′ x /∈ fv t
Γ ` t =βη λx : A. (t x) : A -> A′

Given Γ ` t : A -> A′ and x /∈ fv(t), without loss of generality we may assume also that
x /∈ dom Γ (since λx : A. (t x) =α λx′ : A. (t x′) for any x′ /∈ fv t ∪ dom Γ). Define

X = MJAK
Y = MJΓK
Z = MJA′K
h = MJΓ ` t : A -> A′K

10

Thus h : Y → ZX in C and

MJΓ, x : A ` t : A -> A′K = h ◦ π1 : Y× X → ZX

(by Lemma 4.1)
MJΓ, x : A ` x : AK = π2 : Y× X → X

(by definition of the semantics of terms)

Hence MJΓ ` λx : A. (t x) : A -> A′K = cur(app ◦ 〈h ◦ π1, π2〉). But in any ccc we have
cur(app ◦ 〈h ◦ π1, π2〉) = cur(app ◦ (h × idX)) = h and therefore MJΓ ` t : A -> A′K =
MJΓ ` λx : A. (t x) : A -> A′K, as required.

We leave checking closure under the other rules of βη-equivalence as an exercise.

7 The internal language of a cartesian closed category

Given a particular cartesian closed category C, we can take obj C to be the set of ground
types and take each global element f ∈ C(1, X) (for any C-object X) to be a constant of
type X. Taking the interpretation M to be the identity function, then the simple types and
the simply typed λ-terms over this collection of ground types and constants provides a
convenient language for describing the objects and morphisms of C and their (equational)
properties.

For example if X, Y and Z are three objects in a ccc C, then there is always an isomorphism

ZX×Y ∼= (ZY)X

One can construct the morphisms that constitute this isomorphism and prove they are
mutually inverse only using the universal properties of products and exponentials in C.
However, the internal language allows us describe the morphisms and prove that they are
inverse via properties of βη-equivalence; furthermore these descriptions look like what one
expect when C is the category of sets and functions:

s , λ f : (X x Y) -> Z. λx : X. λy : Y. f (x , y)

t , λg : X -> (Y -> Z). λz : X x Y. g (fst z) (snd z)

satisfy

� ` s : ((X x Y) -> Z) -> (X -> (Y -> Z))
� ` t : (X -> (Y -> Z)) -> ((X x Y) -> Z)

�, f : (X x Y) -> Z ` t (s f) =βη f : (X x Y) -> Z

�, g : X -> (Y -> Z) ` s (t g) =βη g : X -> (Y -> Z)

8 Free cartesian closed categories

Theorem 6.2 has a converse – a completeness theorem: given Γ ` t : A and Γ ` t′ : A, if
MJΓ ` t : AK = MJΓ ` t′ : AK holds for any interpretation M of the ground types and

11

constants in any ccc, then Γ ` t =βη t′ : A is derivable. In fact for any set of ground types
and constants, there is a particular freely generated ccc F containing an interpretation M of
the ground types and constants satisfying

MJΓ ` t : AK = MJΓ ` t′ : AK ⇔ Γ ` t =βη t′ : A (1)

F is constructed from the syntax of the simply typed λ-calculus quotiented by βη-equi-
valence. Specifically, one can take obj F = ST(Gnd). For two such objects A, A′ ∈ ST(Gnd),
we take F(A, A′) to be the quotient of the set {t | � ` t : A -> A′} of closed terms (i.e. those
with no free variables) of type A -> A′ by the equivalence relation relating two such terms
t and t′ if � ` t =βη t′ : A -> A′ holds. The identity morphism in F on A is the equivalence
class of λx : A. x. The composition of two morphisms represented by terms � : t : A -> A′

and � ` t′ : A′ -> A′′ is well-defined by taking the equivalence class of the term � ` λx :
A. t′ (t x) : A -> A′′. One has to check that this recipe does give a category and that it is
cartesian closed; unsurprisingly, the terminal object is unit, the product of objects A, A′ ∈
ST(Gnd) is the simple type A × A′ (equipped with the obvious projection morphisms)
and their exponential is the simple type A -> A′ (equipped with the obvious application
morphism).

Taking M to map each ground type G ∈ Gnd to G ∈ obj F and each constant cA to the
global element M c ∈ F(unit, A) given by the equivalence class of the term � ` λx :
unit. c : unit -> A, one can show that this interpretation has property (1).

F is a free ccc in a similar sense to Σ∗ being the free monoid on a set Σ – there is a universal
property that characterises it, whose statement in terms of morphisms of cartesian closed
categories is beyond the scope of these notes (see Crole [1993, Section 4.8]).

References

J. M. Chapman. Type Checking and Normalisation. PhD thesis, University of Nottingham,
2009. URL http://eprints.nottingham.ac.uk/id/eprint/10824. [Cited on page 3.]

R. L. Crole. Categories for Types. Cambridge University Press, 1993. [Cited on page 12.]

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Math-
ematicae, 34:381–392, 1972. [Cited on page 2.]

C. Keller and T. Altenkirch. Hereditary substitutions for simple types, formalized. In
Proceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional
Programming, MSFP ’10, pages 3–10, New York, NY, USA, 2010. ACM. URL http://doi.
acm.org/10.1145/1863597.1863601. [Cited on page 2.]

A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013. [Cited on page 2.]

12

http://eprints.nottingham.ac.uk/id/eprint/10824
http://doi.acm.org/10.1145/1863597.1863601
http://doi.acm.org/10.1145/1863597.1863601

	Syntax of the simply typed -calculus
	Typing relation
	Cartesian closed categories
	Semantics in a cartesian closed category
	Substitution
	-Equality of simply-typed -terms
	The internal language of a cartesian closed category
	Free cartesian closed categories

