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Introduction to RBMs

I Boltzmann machine: arbitrary interconnections between
units. Not effectively trainable in general.

I Restricted Boltzmann Machine (RBM): one input and one
hidden layer, no intra-layer links.
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Introduction to RBMs

I Usually fully connected between two layers but sparse
RBMs are possible.

I The layers allow for efficient implementations — weights
can be described by a matrix, fast computation.

I Generative probabilistic model: bipartite graph units in
hidden layer conditionally independent given input layer
and vice versa.

I RBMs allow efficient Gibbs sampling for training (as a step
in the overall procedure).

I Goodfellow et al 2016 (http://www.deeplearningbook.org)

Murphy ‘Machine Learning: a Probabilistic Perspective’
https://deeplearning4j.org/restrictedboltzmannmachine

http://www.deeplearningbook.org
https://deeplearning4j.org/restrictedboltzmannmachine


Training RBMs: reconstruction of input

w1, ...w6b′ (bias)

I Forward pass: P(output|input;w)

I Backprop: P(input|output;w)

I Overall, joint probability: P(input,output)



Graphical models

I graphical models: show dependence of variables
I unlinked nodes A and B are conditionally independent (so

constrain the model)
I directed graphical model (belief network, Bayesian

network): A → B means B is directly dependent on A
if A → B → C, then C is only indirectly dependent on A

I undirected graphical model (Markov Random Field (MRF),
Markov network): appropriate when variables interact but
causality unclear or operates bidirectionally

I an immorality: a directed graph with links from A to C and
B to C, but no link between A and B (cannot be converted
to an undirected graph)



Some (hopefully) intuitive explanations of terminology

I regularization: methods of choosing the priors to avoid
overfitting (less necessary if lots of data). e.g., fitting a
smooth curve rather than a wiggly one.

I energy function: approximation to probabilities of states
(always > 0) in undirected models. Close connection with
physics (hence terminology).

I back-propagation aka backprop: information about the cost
flowing backward through the network (e.g., computing the
gradient).

I stochastic gradient descent: performing learning using the
gradient.
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Combining RBMs

https://deeplearning4j.org/restrictedboltzmannmachine

Copyright 2016. Skymind. DL4J is distributed under an Apache 2.0 License.

https://deeplearning4j.org/restrictedboltzmannmachine


Deep Learning

I One of the most successful deep learning architectures
involves combining RBMs, so the output from one RBM is
the input to the next.

I RBMs can be trained separately and then fine-tuned in
combination.

I The layers allow for efficient implementations and
successive approximations to concepts.

I Unlike LDA (and other similar models), there is no
predefined interpretation for the latent variables.

I Different architecture needed for sequences and most
language problems (RNN/LSTM).



Deep Learning (continued)

I Deep learning: models are made as powerful as possible
to the point they are“barely possible to train or use”
(http://www.deeplearningbook.org 16.7).

I Training for non-standard tasks and tuning
hyperparameters is a matter of experimentation . . .

I Myths in the literature, but little publication of negative
results.

I The lack of predefined interpretation of the latent variables
is what makes the models more flexible/powerful.

I But the models are usually not interpretable by humans
after training: potential for serious practical and ethical
issues.

http://www.deeplearningbook.org
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Artifical vs biological NNs

I ANNs and BNNs both take input from many neurons and
carry out simple processing (e.g., summation), then output
to many neurons.

I ANNs are still tiny: biggest c160 billion parameters.
Human brain has tens of billions of neurons, each with up
to 100,000 synapses.

I Brain connections are much slower than ANNs: chemical
transmission across synapse. Incresed size and
parallelism (more than) makes up for this.

I Neurotransmitters are complex and not well understood:
biological neurons are only crudely approximated by on/off
firing.



Artifical vs biological NNs (continued)

I Brains grow new synapses and lose old ones: individual
brains evolve (Hebbian Learning: “Neurons which fire
together wire together”).

I Brains are embodied: processing sensory information,
controlling muscles. There is no hard division between
these parts of the brain and concepts/reasoning (e.g.,
experiments with kick vs hit).

I Brains have evolved over (about) 600 million years (more if
we include nerve nets, as in jellyfish).

I Brains are expensive (about 20% of a person’s energy),
but much more efficient than ANNs.

I and . . .



Next lectures

I Nov 10: Overview of RNNs and LSTMs
I Final lecture (Nov 24): using LSTMs, reviewing the state of

the art.
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